

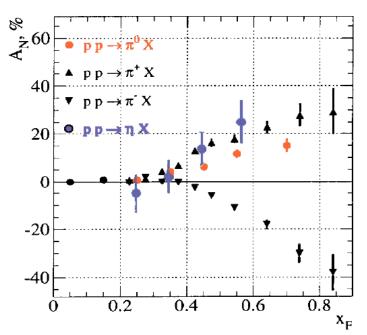
Measurement of Transverse Single Spin Asymmetry A_N in Eta Mass Region at Large Feynman X_F with the STAR Forward Pion Detector

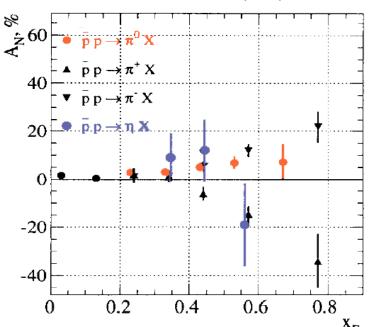
Steve Heppelmann

For STAR Collaboration

Previous observation of Single Spin Transverse Asymmetry for Forward Production of Eta Meson by FNAL Exp 704. They reported:

- 1) Nominally (perhaps not significantly) larger asymmetry for Eta than Pi0.
- 2) Large Uncertainty in Eta A_N .


$$\frac{p^{\uparrow} + p \to M + X}{\overline{p}^{\uparrow} + p \to M + X} \qquad A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$


$$\sqrt{s} = 19.4 GeV$$

10

FNAL E704 Collaboration/Nuclear Physics B 510 (1998) 3-11

$$\langle p_{\scriptscriptstyle T} \rangle$$
 ~ $1 GeV/c$

Should A_N be larger for Eta production than Pi0 production?

- Gluons have Isospin I=0. Fragmentation to I=0 Eta mesons at large fragmention fraction Z may be enhanced for gluon jets.
- But in PQCD (both Collins or Sivers models), we expect these mesons to come from fragmentation of quark jets.

$$I = 0 \begin{cases} \eta \approx \frac{1}{\sqrt{3}} (u\overline{u} + d\overline{d} - s\overline{s}) \\ \eta' \approx \frac{1}{\sqrt{6}} (u\overline{u} + d\overline{d} + 2s\overline{s}) \end{cases}$$
$$I = 1 \begin{cases} \pi^0 = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d}) \end{cases}$$

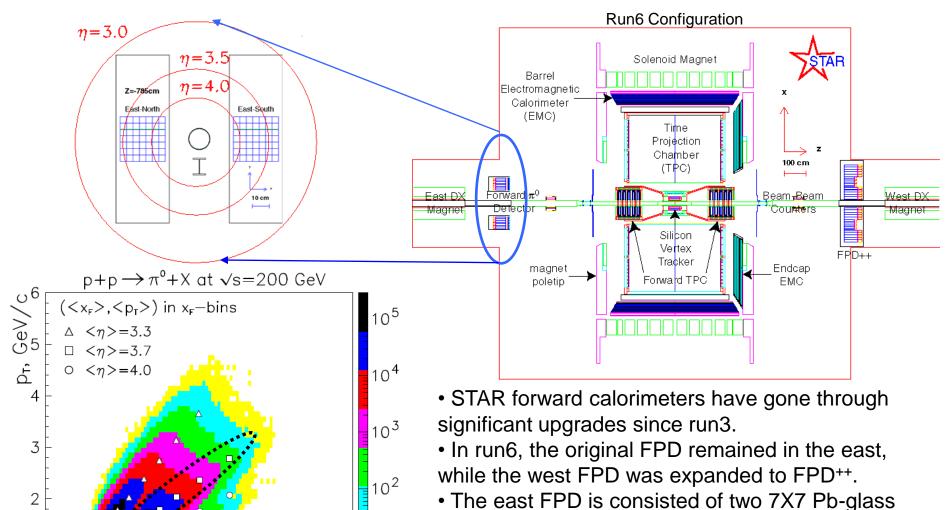
*Assume η, η' mixing angle: $\theta_P \sim -19.5^{\circ}$

- •For Sivers Effect: Asymmetry is in the jet and should not depend on the details of fragmentation. Do Eta's and Pi0's come from different kinds of jets?
- •For Collins Effect: Asymmetry reflects transverse quark polarization through transverse momentum dependence in the fragmentation of the quark jet to a leading Pi0 or Eta meson. Differences in fragmentation could relate to:
 - •Mass differences?
 - •Isospin differences?
 - •Role of Strangeness?

Pattern from Previous Transverse Single Spin Asymmetry Measurements of Forward Pion/Eta Production with High Energy Polarized Proton/Antiproton Beams.

- 1. Majority valence quark in polarized proton.
 - *u* for proton
 - \overline{u} for antiproton.
- 2. Minority valence quark
 - <u>d</u> for proton
 - *d* for antiproton.
- 3. Pion containing only majority quarks gets large positive An.
- 4. Pion containing only minority quarks gets large negative A_N.
- 5. Pion containing both majority and minority quarks (neutral pions) have intermediate positive A_N.

Polarized Beam	Observed Meson	Exp.	⟨ s ⟩	$\langle p_{\scriptscriptstyle T} angle$	$\sim X_{\scriptscriptstyle F}$	$\sim\!A_{\!N}$	Comment on A_N
Proton uud	π^+ : $u\overline{d}$	E 704 BRAHMS	19.4 GeV 62.4 GeV	~ 1 GeV/c ~ 1 GeV/c	0.5 - 0.7 0.4 - 0.6	+0.15 to +0.25 +0.2 to +0.25	Large Positive
Proton uud	π^0 : $\frac{1}{\sqrt{2}} \left(u\overline{u} - d\overline{d} \right)$	E 704 STAR	19.4 GeV 200 GeV	~ 1 GeV/c ~ 2.5 GeV/c	0.5 - 0.7 0.5065	+0.10 to +0.15 +0.06 to + 0.1	Medium Positive
Proton uud	π^- : $d\overline{u}$	E 704 BRAHMS	19.4 GeV 62.4 GeV	~ 1 GeV/c ~ 1 GeV/c	0.5 - 0.7 0.4 - 0.6	-0.10 to -0.25 -0.25 to -0.3	Large Negative
Anti Proton $\overline{u} \overline{u} \overline{d}$	π^- : $d\overline{u}$	E 704	19.4 GeV	~1 GeV/c	0.5 - 0.7	0.10 to +0.20	Large Positive
Anti Proton $\overline{u} \overline{u} \overline{d}$	$\pi^{0}: \frac{1}{\sqrt{2}} \left(u \overline{u} - d \overline{d} \right)$	E 704	19.4 GeV	~1 GeV/c	0.5 - 0.7	0.05 to +0.10	Medium Positive
Anti Proton $\overline{u} \overline{u} \overline{d}$	π^+ : $u\overline{d}$	E 704	19.4 GeV	~1 GeV/c	0.5 - 0.7	-0.10 to -0.25	Large Negative
Proton uud	$\frac{\eta:}{\sqrt{3}}\left(u\overline{u}+d\overline{d}-s\overline{s}\right)$	E 704	19.4 GeV	~ 1 GeV/c	0.50 - 0.60	0.25 ± .09	Possibly Larger than for π ⁰

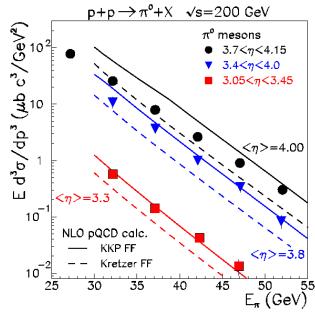

0.2

0.4

0.6

0.8

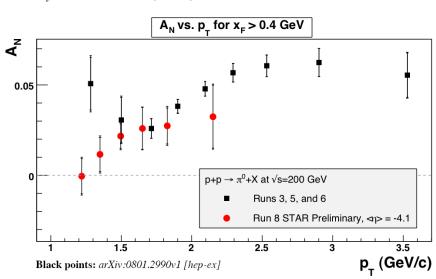
STAR Forward Pion Detector (FPD)


x-offset~30cm, $\langle \eta \rangle$ ~3.7.

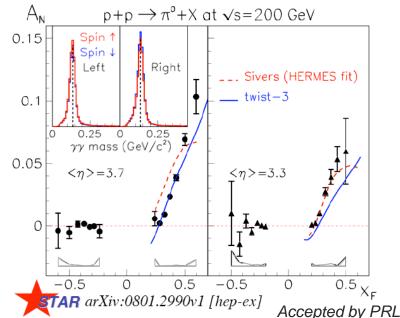
10

modules, EN and ES. During run6, it was placed at

Forward π^0 Single Spin Asymmetry



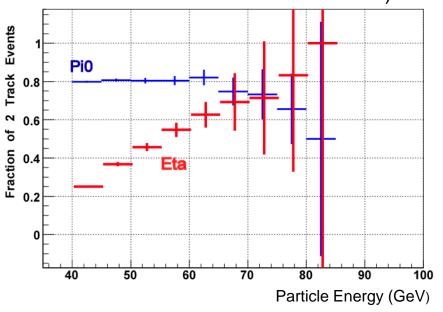
Phys. Rev. Lett. 97 (2006) 152302


At \sqrt{s} =200GeV, π^0 cross-section measured by STAR FPD is consistent with the NLO pQCD calculation. Results at $<\eta>=3.3$ and $<\eta>=3.8$ have been included in the DSS global pion fragmentation function analysis. *(Phys.Rev.D75(2007) 114010)*

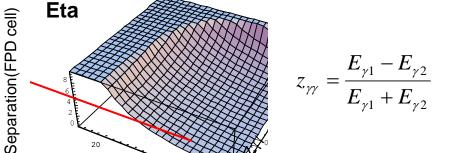
$$A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \cong \frac{1}{P} \frac{\sqrt{N^{\uparrow}S^{\downarrow}} - \sqrt{S^{\uparrow}N^{\downarrow}}}{\sqrt{N^{\uparrow}S^{\downarrow}} + \sqrt{S^{\uparrow}N^{\downarrow}}}$$

We find that A_N increases with x_F , roughly consistent with theoretical predictions. Contrary to predictions, however, A_N does not fall as a function of p_T at fixed x_F in this kinematic region.

From Spin2008 talk by J.Drachenberg



Acceptance and Reconstruction


Fast Simulator

The ratio of N(reconstructed particles) to N(generated particles whose center of mass falls within Forward Pion Detector)

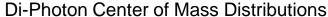
$$m_{\gamma\gamma} = E_{tot} \sqrt{1 - (Z_{\gamma\gamma})^2} Sin \frac{\theta}{2}$$

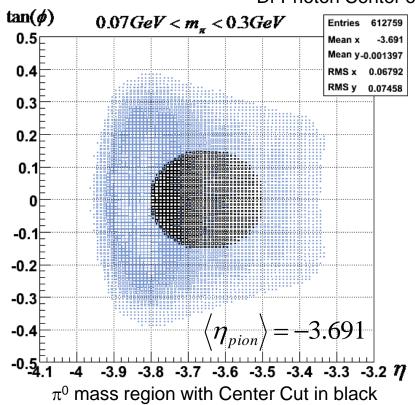
$$\Rightarrow Separation (FPDcell) \cong \frac{425 m_{\gamma\gamma}}{E_{tot} \sqrt{1 - (Z_{\gamma\gamma})^2}}$$

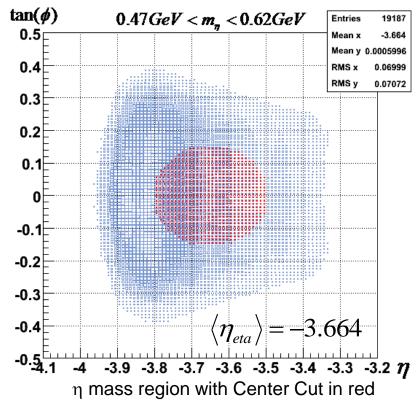
 π^0

 $E_{tot(G_{eV})}$

40GeV, a eer of the


 $E_{tot(G_{eV})}$


- 7x7 FPD has limited acceptance for Eta mesons. At 40GeV, a symmetrically decaying Eta needs to point to the center of the FPD to fit in. Acceptance improves greatly at higher energy.
- The reconstruction efficiency for π^0 starts to drop at E>60GeV, where the separation between two photons for symmetric decay becomes ~1 cell width.



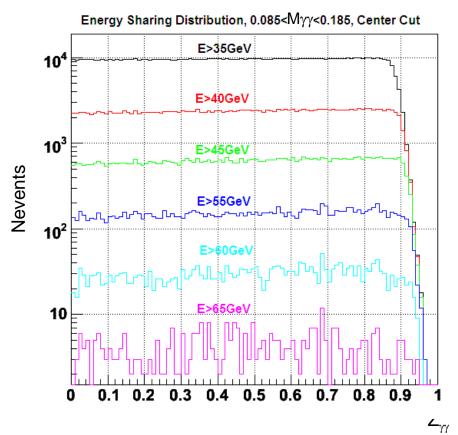
Event Selection and Mass Reconstruction

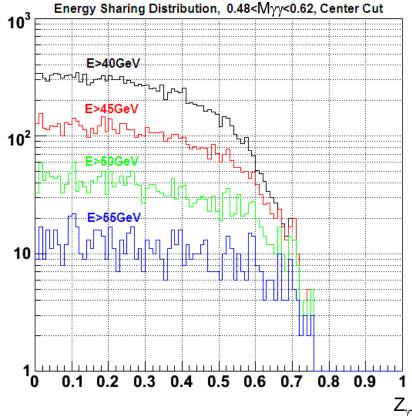
Event Cuts

- 2 photon events
- E_{total}>25GeV
- Hardware threshold nominally at 25GeV
- "Center Cut" for 2γ CoM defined as $(\eta 3.65)^2 + Tan(\phi)^2 < (0.15)^2$

$$m_{\gamma\gamma} = E_{tot} \sqrt{1 - (Z_{\gamma\gamma})^2} Sin \frac{\theta}{2}$$

- Etot: Detector summed energy
- Zγγ and photon separation: Fitted photon energy/locations
- Reconstructs on the entire FPD
- Vertex set at zero for all events




η and π^0 Energy Sharing ($Z_{\gamma\gamma}$) Distribution

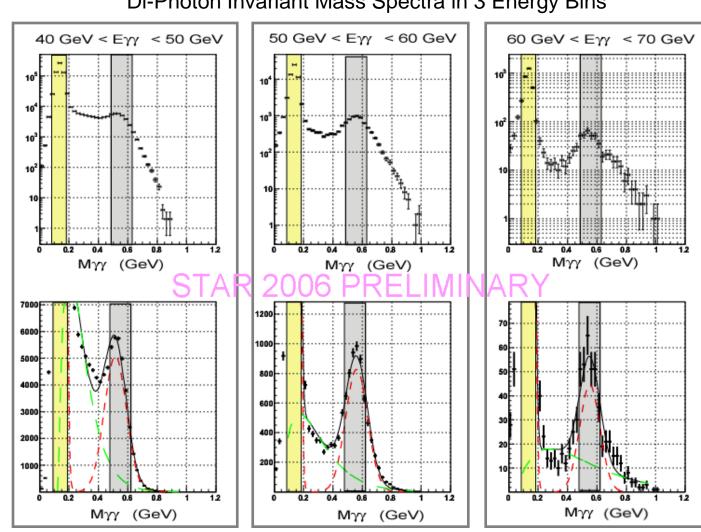
$$z_{\gamma\gamma} = \frac{E_{\gamma 1} - E_{\gamma 2}}{E_{\gamma 1} + E_{\gamma 2}}$$

 π^0 mass region with Center Cut

Eta mass region with Center Cut

Observation of Eta Signal

Di-Photon Invariant Mass Spectra in 3 Energy Bins

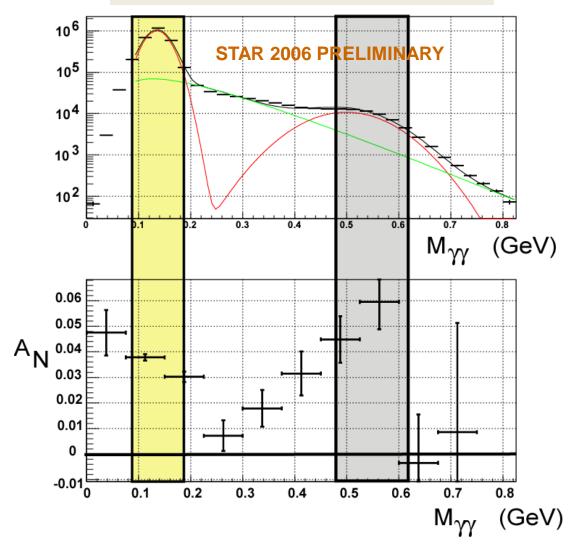

- Center Cut
- 3 columns for 3 energy bins
- Each column shows a single plot in log and linear scale.

π^0 Mass Cut

 $.085 \; GeV < M_{_{PV}} < .185 \; GeV$

Eta Mass Cut

 $.48 \; GeV < M_{\gamma\gamma} < .62 \; GeV$


 $A_{N}(x_{F})$ will be reported for di-photon events in these two shaded mass regions. We will not here separate possible contributions from backgrounds under the Eta and π^0 peaks.

Mass Dependence of A_N

$$p^{\uparrow} + p \rightarrow M + X$$

$$M \rightarrow \gamma + \gamma \qquad \sqrt{s} = 200 \, GeV$$

- 1. $N_{photon} = 2$
- 2. E_{total} > 40GeV
- 3. No Center Cut
- 4. Average Yellow Beam Polarization = 56%

- Yellow beam asymmetry clearly reveals the shape of two mass resonances.
- There is an "asymmetry valley" in between π^0 and η mass regions.

.30

.35

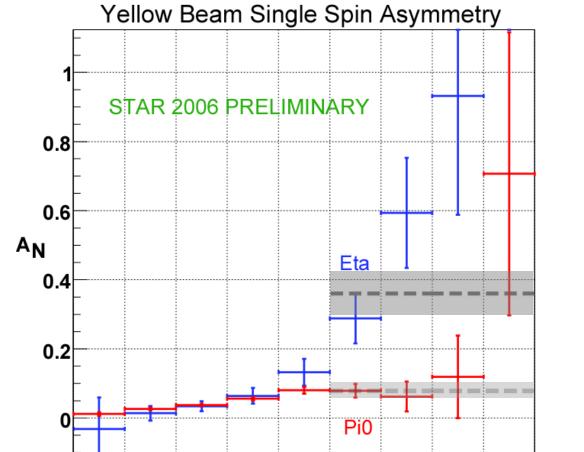
.40

.45

.50

.55

 X_{F}


.60

.65

.70

$A_N(x_F)$ in π^0 and Eta Mass Regions

$$p^{\uparrow} + p \rightarrow M + X M \rightarrow \gamma + \gamma \qquad \sqrt{s} = 200 \, GeV$$

- 1. $N_{photon} = 2$
- 2. Center Cut $(\eta \text{ and } \phi)$
- 3. Pi0 or Eta mass cuts
- 4. Average Yellow Beam Polarization = 56%

$$.55 < X_F < .75$$

$$\left\langle A_N \right\rangle_{\eta} = 0.361 \pm 0.064$$

$$\left\langle A_N \right\rangle_{\pi} = 0.078 \pm 0.018$$

For $.55 < X_F < .75$, the asymmetry in the η mass region is greater than 5 sigma above zero, and about 4 sigma above the asymmetry in the π^0 mass region.

Summary

- 1. Previously, the STAR Forward Pion Detectors at RHIC (Brookhaven National Laboratory) have been used to successfully measure the forward single spin asymmetry, A_N , for π^0 meson in < η >=3.3~4.0 region.
- 2. In RHIC run 6, during \sqrt{s} =200 GeV p+p collisions, π^0 and Eta mesons were observed in the east FPD. We measured and compared the single spin asymmetry in the π^0 and the Eta mass regions, at $<\eta>\sim 3.65$ and x_F above 0.4.
- 3. A_N as a function of the invariant mass reveals π^0 and Eta resonance peaks.
- 4. From 55GeV to 75GeV, (x_F =0.55~0.75) the average transverse single spin asymmetry in the Eta mass region was measured to be $A_N = 0.361 \pm 0.064$, about 4 standard deviations greater than the average A_N in the π^0 mass region.
- 5. Preliminary estimates of possible systematic effects show that the systematic uncertainties are considerably smaller than the statistical uncertainties.