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摘要 
 

强相互作⽤⼒(也被称为核⼒)，是⾃然界四种基本相互作⽤⼒之⼀，它将核⼦(质⼦与中⼦)束缚形

成原⼦核并⽀配着⾃然界中 90%以上的可见物质。量⼦⾊动⼒学（Quantum Chromodynamics, QCD)是

描述强作⽤⼒的现代理论。组成物质的基本单元—夸克与胶⼦，被强作⽤⼒禁闭在核⼦中，因此在⾃

然界没有发现⾃由的夸克与胶⼦。⾼温⾼密核物质相图是核物理研究领域的前沿和热点。格点 QCD 预

⾔在⾼温低重⼦密度区域，强⼦物质和夸克胶⼦等离⼦体之间发⽣的相变是平滑穿越，⽽基于量⼦⾊

动⼒学(QCD)有效模型计算表明在⾼重⼦密度区域，他们之间是⼀阶相变。因此，如果平滑穿越和⼀

阶相变边界真的如理论所预⾔，那么在⼀阶相变边界延伸到平滑穿越区⼀定会存在⼀个终结点，被称

为 QCD 相变临界点。QCD 临界点的实验确认将是探索强相互作⽤物质相结构的⾥程碑，具有重要科

学意义。为了在这⼀具有潜在重⼤发现的研究⽅向上占据领先地位、取得突破，各个国家纷纷建造⼤

型粒⼦探测器、开展重离⼦碰撞实验(包括：美国 RHIC-STAR 能量扫描实验， 德国 CBM 实验、俄罗斯 

NICA 实验、⽇本 J-PARC 实验以及中国兰州 CSR 外靶 CEE 实验)，其主要物理⽬标就是研究⾼温⾼密

核物质相图结构、寻找 QCD 相变临界点。 

在束流能量扫描（BES）项⽬的第⼀阶段，位于美国布鲁克海⽂国家实验室的相对论重离⼦对撞

机（RHIC）使⽤ STAR 探测器，通过加速重离⼦完成了⾦⾦每核⼦对的质⼼碰撞能量为 7.7，11.5，
	14.5，	19.6，	27，	39，	54.4，	62.4	 和 200		GeV 的数据采集。这就使我们能够探索相图中⽐较宽⼴

的区域，有利于临界点的寻找。 

在这篇论⽂中，我们完成了在⾦⾦对撞中质⼼碰撞能量为 √𝑠!! = 7.7 − 200	GeV, 在中⼼快度区间

(|𝑦| < 0.5)	和横动量区间为 0.4 < 𝑝" < 2.0	 GeV/c 内， 质⼦，反质⼦和净质⼦数分布的直到四阶累积

矩以及它们的⽐值和（反）质⼦的关联函数的测量；铜铜碰撞中，质⼼碰撞能量为 √𝑠!! = 	22.4，
	62.4	和 200	 GeV 下，在中⼼快度区间(|𝑦| < 0.5)和横动量区间为 0.4 < 𝑝" < 0.8	 GeV/c 内，质⼦，反

质⼦和净质⼦数分布的直到四阶累积矩以及它们的⽐值；⾦⾦碰撞固定靶实验中碰撞能量为 √𝑠!! =

4.5	 GeV 下，在快度区间为 −2 < 𝑦 < 0和横动量区间为 0.4 < 𝑝" < 2.0 GeV/c 内，（反）质⼦数分布

的直到四阶累积矩以及它们的⽐值。 

各阶累积矩和它们的⽐值可以表⽰为碰撞中⼼度，快度和横动量和能量的函数。我们观察到在最

中⼼ (0 − 5%)	⾦⾦碰撞中，  𝐶# 𝐶$⁄   这⼀⽐值随着能量呈现出⾮单调变化的趋势，其偏离值为3.1𝜎。为

了理解横动量接受度，净重⼦与净质⼦和净重⼦数守恒的影响， 在 STAR 接受度范围中进⾏了输运模

型 UrQMD 和强⼦共振⽓体（HRG）模型计算。⾦⾦碰撞中 𝐶% 𝐶$⁄ 	和		𝐶# 𝐶$⁄ 		的 UrQMD 和 HRG 模型

计算显⽰出随着能量的单调变化。 我们也与具有 QCD 相变临界点的模型相⽐较， 发现实验测量得到

的 C4/C2，其碰撞能量的依赖性符合理论模型的预期结果。此外，从测得的累积量中，我们提取出质⼦

和反质⼦的的关联函数，发现质⼼能量在 7.7 GeV 时中⼼碰撞中质⼦分布的 𝐶# 𝐶$⁄  值增⼤是由于四粒

⼦关联。我们在 RHIC 第⼀阶段能量扫描的守恒荷涨落测量中，⾸次观测到净质⼦数四阶涨落对碰撞

能量的⾮单调依赖(3.1σ显著性)，该实验测量为寻找 QCD 相变临界点提供了重要实验依据，也为 RHIC



第⼆阶段能量扫描以及 STAR 固定靶实验中守恒荷涨落的⾼精度测量奠定了基础。 

       这篇⽂章组织结构如下。第⼀章主要介绍了分析的⽬的和实验中所需要的观测量，以及这些量在

统计与概率中的表⽰。在第⼆章中，我们简单介绍了 RHIC 上的 STAR 探测器及其⼦探测器的结构和功

能。第三章中主要介绍了在实验分析中的细节，数据选择，事件选择，粒⼦鉴别，中⼼度的定义，以

及净质⼦数的分布和模型简介。第四章主要研究了⼀些效应对于结果的影响，例如中⼼度宽度修正和

有限探测器效率修正。最后⼀章中我们将会呈现实验的计算结果，包括在⾦⾦对撞中的质⼼系模式和

固定靶模式以及铜铜对撞， 并进⾏讨论和实验的发展前景。 

 

 

 

关键词：重离⼦碰撞；QCD 相变；QCD 临界点；⾼阶矩；关联函数 



Abstract

Strong interaction forces (also known as nuclear forces) are one of the four funda-
mental interaction forces in nature that bind nucleus (protons and neutrons) to form
atomic nuclei and dominate more than 90% of the visible matter in nature. Quantum
Chromodynamics (Quantum Chromodynamics, QCD) is a modern theory that describes
strong interaction forces. The basic unit of the substance, quarks and glues, is confined
to the nucleus by strong interaction forces, so no free quarks and gluons are found in
nature. The phase diagram of high temperature and high-density nuclear material is the
frontier and hot spot in the field of nuclear physics research. Lattice QCD predicts that
at high temperature and low baryon chemical potential, the phase transition between the
hadron matter and the quark gluon plasma occurs is smooth crossover, while the model
predicts that at the high baryon chemical potential, the phase transition between them
is a first-order phase transition. Therefore, if the first-order phase transition does exist,
then there must be an end point in the end of the first-order phase transition line to the
smooth crossover, which is called the QCD critical point.

The experimental confirmation of QCD critical point will be a milestone in the explo-
ration of the phase structure of strong interaction substances, which is of great scientific
significance. In order to take a leading position in this potentially significant discovery
research direction and make a breakthrough, various countries have built large particle
detectors and carried out heavy ion collision experiments (including: RHIC-STAR beam
energy scanning experiment in the United States, CBM experiment in Germany, NICA
experiment in Russia, J-PARC experiment in Japan and CEE experiment of the external
target of CSR in Lanzhou, China), the main physical goal is to study the structure of
high temperature and high-density nuclear material phase diagram, search for the critical
point.

In the first phase of Beam Energy Scan (BES) program, Relativistic Heavy Ion
Collider (RHIC) located at Brookhaven National Laboratory (BNL), in the Unites States
used the STAR detector to complete data collection of 7.7, 11.5 14.5, 19.6, 27, 39, 54.4,
62.4 and 200 GeV by accelerating heavy ions. This allows us to explore the phase diagram
in a broader range.

In this thesis, we have finished the measurements of up to the fourth-order cumulants
(Cn) of the proton, anti-proton and net-proton multiplicity distributions and correlation
functions of (anti-) protons in Au+Au collisions for center of mass energies per nucleon
pair, √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The measurements
are carried out at mid-rapidity (|y| < 0.5) and for transverse momentum 0.4 < pT < 2.0
(GeV/c); the measurements of up to the fourth-order cumulants (Cn) of the proton, anti-
proton and net-proton multiplicity distributions in Cu+Cu collisions for center of mass
energies per nucleon pair, √sNN = 22.4, 62.4 and 200 GeV at mid-rapidity (|y| < 0.5)
and for transverse momentum 0.4 < pT < 0.8 (GeV/c); the measurements of up to the
fourth-order cumulants (Cn) of the proton, multiplicity distributions in Au+Au collisions
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at Fixed-Target mode √sNN = 4.5 GeV at -2 < y < 0 and for transverse momentum 0.4
< pT< 2.0 (GeV/c).

The various order cumulants Cn and their ratios can be expressed as a function of
collision centrality, rapidity, transverse momentum pTand collision energy. We observe a
non-monotonic variation of the ratio of C4/C2 with the significance of 3.1σ for the most
central (0 − 5%) Au+Au collisions with √sNN . Transport model UrQMD and Hadron
Resonance Gas (HRG) model calculations are carried out in the STAR acceptance to
understand the effect of pT acceptance, net-baryon versus net-proton and conservation
of net-baryon number. The UrQMD and HRG model calculations of C3/C2 and C4/C2

in Au+Au collisions show a monotonic variation with √sNN . The collision energy de-
pendence of the C4/C2 is consistent with expectations from a QCD based model with
critical point. Further, we extract the various order correlation functions of protons and
anti-protons from the measured cumulants in Au+Au collisions and find that the large
value of C4/C2 for proton distributions in central collisions at √sNN = 7.7 GeV is due to
four-particle correlations. In the fluctuation measurements of conserved quantities in the
RHIC’s first beam energy scan program, we observed the non-monotonous dependence
(3.1σ) of the net-proton number four-order fluctuations on the collision energy for the
first time, which provides an important experimental baseline for searching for the crit-
ical point of QCD phase transition, and also lays the foundation for the high precision
measurement of the conservation load in the second phase of beam energy scan and the
STAR fixed target experiment at RHIC.

This thesis is organized as follows. The first chapter mainly introduced the mo-
tivation, the experimental measurements and the presentation of these observables in
statistics and probability. In the second chapter, we briefly introduced the structure and
function of the STAR detector and its sub-detectors at RHIC. The third chapter mainly
introduces the details of experimental analysis, data selection, event selection, particle
identification, definition of centrality, multiplicity distribution of net protons and model
introduction. The fourth chapter mainly studies the effect of some effects on the re-
sults, such as the centrality bin width correction of and the limited detector efficiency
correction. In the last chapter, we will present the calculation results of the experiment,
including the centroid model and fixed target mode in the Au+Au collisions and the
Cu+Cu collisions, and discuss the development prospects of the experiment.

Key Words: Heavy Ion Collisions; QCD Phase Transition; QCD Critical Point;
Higher Order Cumulants; Correlation Function
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Chapter 1

Introduction

1.1 Quantum Chromodynamics
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the

four fundamental forces. The theory describes the interactions between quarks and gluons
and is an important part of standard model of particle physics. Quarks and gluons, which
have three different color charges (red, green and blue), can form the hadrons. Hadrons
are divided into two kinds: baryons and mesons. Baryons are made of three quarks, such
as protons and neutrons; mesons are made of a quark and an anti-quark, such as pions
and kaons.

Color confinement and asymptotic freedom are the two characteristics of QCD. The
static QCD potential Vs and running coupling constant αs(Q) are written by:

Vs = −
4

3
× αs

r
+ k × r (1.1)

αs(Q) =
g2s
4π
≈ 4π

(11− 2
3
× nq)log(Q2/Λ2

QCD)
(1.2)

where Q is the energy scale, nq is the number of quark flavors and ΛQCD is the QCD
scale.

Fig. 1.1 shows the running coupling constant αs as a function of energy scale. The
running coupling constant αs decreases with the increasing energy scale Q. On the one
hand, if the distance between quarks is small (r → 0) or the momentum transfer is large
(Q→∞), αs becomes smaller (αs → 0), which means the interaction among quarks and
gluons becomes weak and QCD can be computed by means of perturbation method. This
property is called asymptotic freedom. On the other hand, if the distance between the
quarks is large (r → ∞) or momentum transfer according to QCD scale (Q → ΛQCD),
αs becomes larger (αs → ∞), which means the interaction among quarks and gluons
becomes strong, and the quarks can be confined in the hadrons. This property is called
color confinement. Therefore, the confined quarks and gluons can’t be observed directly.

1.2 QCD Phase Transition and Critical Point
From Eq. 1.2, when r →∞ or Q → ΛQCD, the nuclear matter is in the hadron gas

phase, however, if we decrease the distance between the quarks and gluons or enlarge the
momentum exchange, the interaction between quarks and gluons becomes weak. That

1
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Fig. 1.1: (color online) Running coupling constant αs(Q) as a function of energy scale Q.
Figure is taken from[1, 2].

is to say, with high densities and temperature, quarks and gluons are released from de-
confinement and enter a new phase−the quark-gluon plasma (QGP). The matter in the
new state is thought to consist of asymptotical free quarks and gluons and behaves as
a fluid. The two-dimensional diagram with the temperature T and the baryon chemical
potential µB can describe the QCD matter at different phases.

Fig. 1.2 shows the overview of the QCD phase diagram. Theoretically, various QCD-
based models predict that the phase transition is the first order phase transition in nonzero
baryon chemical potential[3–6]. Lattice QCD calculations demonstrate that the phase
transition between the hadronic phase and the QGP phase is a smooth crossover at
vanishing baryon chemical potential[7]. So, if the first-order phase transition exists, there
must be a critical point (CP) at the end of first order phase transition line towards the
crossover region[8, 9]. But there is no experimental evidence to prove their existence[10].
Many scientists are working on study the QCD phase diagram and search for the critical
point. Experimentally, to study the QCD phase diagram, we usually tune the colliding
center of mass energy (√sNN ) in heavy-ion collisions. The main goals of the heavy-ion
collisions at the Relativistic Heavy-Ion Collider (RHIC) of the beam energy scan (BES)
program at Brookhaven National Laboratory (BNL) are to map the QCD phase diagram
and search for the critical point[11]. The BES program has been running since 2010
at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. By changing the collision
energy, the temperature and baryon chemical potential will vary accordingly, then the
program can scan a large window in µB (25−422 MeV) and T in the phase diagram.
Some experimental projects are in the preparation stage at facilities, such as the Facility
for Anti-proton and Ion Research (FAIR) at GSI[12], the Nuclotron-based Ion Collider
Facility (NICA) in Dubna[13] and High Intensity heavy-ion Accelerator Facility (HIAF)
is under construction in Guangdong, which depict the QCD phase diagram of nuclear
matter.



CHAPTER 1. INTRODUCTION 3

Fig. 1.2: (color online) Overview of QCD phase diagram. The X-axis is the baryon
chemical potential µB, and the Y-axis is the temperature T.

1.3 Relativistic Heavy Ion Collisions
QGP are thought to be created after a few millionths of a second of the Big Bang,

when the universe was filled with a hot soup at extremely high temperature. To recreate
the conditions similar to those of the early universe, many powerful accelerators make
collisions at ultra-relativistic energies between massive ions, such as gold or lead nuclei.
Collisions between heavy atomic nuclei occurred near the speed of light.

Under the laboratory conditions, the two fast-moving nuclei collide each other like
pancakes due to the Lorentz contraction in the beam direction. Two collided nuclei
go through each other, and generate a large amount of energy, which is deposited in
the central collision area. Nuclear matter is then produced, which experiences a pre-
equilibrium stage, and then reaches the local thermal equilibrium. The quark-gluon
plasma matter is considered to be formed at this stage, and expands like a relativistic
fluid with the collision system expansion and cools down. When the temperature of the
system go to the critical temperature, quarks and gluons are confined in hadrons again,
which is hadronization process. After the fireball cools down, the quarks and gluons
recombine to form hadrons. The produced hadrons continue to interact with each other,
and may generate new hadrons via inelastic collisions. The temperature continues to cool
down until the chemical freeze-out temperature is reached, inelastic collisions stop and
the components of the hadron are fixed. After inelastic collision, elastic collisions takes
place. When the kinetic freeze-out temperature is reached, the elastic collisions between
the hadrons stops and the momentum spectrum is settled. After that the free hadrons fly
to the detectors, and are observed by the detectors. The evolution of heavy ion collisions
is shown in Fig. 1.3.

Although hadrons go through so many processes before reaching the detector, the
process from hadron to QGP cannot be erased. Therefore, one of the important tasks in
the study of QGP in heavy-ion collisions is to look at the distributions and fluctuations
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Fig. 1.3: (color online) Evolution of heavy ion collisions.

and correlations of the final state hadrons.

1.4 Critical Signature

Fig. 1.4: (color online) A sketch of the phase diagram of QCD of the σ field with the
freeze-out curve. The red region is negative, the blue region is positive. And the green
dashed line is the chemical freeze-out lines in heavy-ion collisions. The solid blue line is
the first-order phase transition and the red point is the so-called critical point. (Right)
Normalized fourth order proton cumulant κσ2 as a function of collision energy or µB

along the chemical freeze-out line. Figures are taken from[14–16].

Fig. 1.4 (left) shows the theoretical calculation about the critical point from σ
model[14–16]. Fig. 1.4 (right) shows fourth order fluctuation κσ2 as a function of baryon
chemical potential (µB). Due to the negative and positive critical contributions near the
critical point, the κσ2 will show a non-monotonic energy or µB dependence with respect
to the non-critical baseline. This might be the characteristic experimental signature of
the critical point we are looking for in the heavy-ion collision experiment. The model
describes the fluctuations based on the probability distribution of an order parameter
field, which can be quantified by the critical mode σ. Its probability distribution P (σ)
can be expressed as:

P (σ) ∼ exp{−Ω(σ)/T} (1.3)

where Ω is the free energy function of the field σ, which can be expanded into the
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exponential form and the expression of the gradients:

Ω(σ) =

∫
d3x[

1

2
(▽σ)2 + m2

σ

2
σ2 +

λ3
3
σ3 +

λ4
4
σ4 + · · · ] (1.4)

wheremσ = 1/ξ is the sigma-field screening mass, λ3 and λ4 are the interaction couplings.
In a system of volume V, the moments of the zero momentum mode is σV ≡∫

d3xσ(x), and the moments of the σ field are:

⟨σ2
V ⟩ = V Tξ2 (1.5)
⟨σ3

V ⟩ = 2λ3V Tξ
6 (1.6)

⟨σ4
V ⟩c = 6V T 3[2(λ3ξ)

2 − λ4]ξ8 (1.7)

where ξ is the correlation length and ⟨σ4
V ⟩c ≡ ⟨σ4

V ⟩ − 3⟨σ2
V ⟩2 is the fourth-order central

moment (the fourth-order cumulant) of σ field.
Near the critical point, ξ →∞, and the couplings λ3 and λ4 also scale with ξ:

λ3 = λ̃3T (Tξ)
−3/2 (1.8)

λ4 = λ̃4(Tξ)
−1 (1.9)

where dimensionless couplings λ̃3 and λ̃4 are universal, do not depend on ξ. The coupling
λ̃3 varies from 0 to about 8, and the coupling λ̃4 varies from about 4 to about 20,
depending on the direction of approach to the critical point (crossover or the first-order
transition side). Therefore, near the critical point, putting the equations Eq. 1.8 and
Eq. 1.9 into Eq. 1.6 and Eq. 1.7, the moments of the σ field are:

⟨σ3
V ⟩ = 2λ̃3V T

3/2ξ4.5 (1.10)
⟨σ4

V ⟩c = 6V T 2(2λ̃3 − λ̃4)ξ7 (1.11)

The kurtosis of the σ field is:

κ =
⟨σ4

V ⟩c
⟨σ2

V ⟩2
=

6

V
(2λ̃3 − λ̃4)ξ3 (1.12)

In Fig. 1.4, the value in the red region is negative, and the value in the blue region is
positive. When approach the crossover region from the critical point along the chemical
freeze-out line, according to the central limit theorem, the probability distribution of σV is
Gaussian (⟨σ4

V ⟩c = 0). In the region near the critical point, ⟨σ4
V ⟩c is negative (⟨σ4

V ⟩c < 0).
And the distribution of σV is skewed away from the crossover line, which makes the
kurtosis positive (⟨σ4

V ⟩c > 0), the distribution becomes non-Gaussian. Therefore, when
the chemical freeze-out line pass through the critical point from the crossover region,
the probability distributions of the σ field change from Gaussian to non-Gaussian, and
the corresponding fourth-order cumulant change from zero to negative and to positive.
Obviously, the fluctuations of the σ field can not be measured directly experimentally,
but they have effect on the multiplicities of observable particles, such as protons and
kaons. When consider the influence of the critical point on the fluctuations of proton
multiplicities, the fourth-order moment can be written as the terms of corresponding
moment of the σ field[15]:

⟨(δN)4⟩c = ⟨N⟩+ ⟨σ4
V ⟩c(

gd

T

∫
p

np

γp
)4 + · · · (1.13)
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where γp = (dEp/dm)−1 is the relativistic gamma-factor of a particle with momentum
p and mass m and ⟨N⟩ is the expected value of Poisson distribution. Near the critical
point, the normalized fourth-order cumulant (⟨(δN)4⟩c/⟨N⟩)will be smaller than 1. There
is a non-monotonic collision energy dependence of kurtosis for multiplicity distributions
along the chemical freeze-out line.

In the grand canonical ensemble system, the cumulants can be expressed in terms
of the susceptibility of the system:

CBQS
ijk = V T 3 × χBQS

ijk = V T 3 × ∂i+j+k(p/T 4)

∂µ̂B
i∂µ̂Q

j∂µ̂S
k

(1.14)

where µ̂q = µq/T , CBQS
ijk is the diagonal and off-diagonal cumulants of conserved quantities

(net-baryon B, net-charge Q and net-strangeness S). The results about the off-diagonal
cumulants from UrQMD model[17] and STAR experiment have been published[18]. In
this thesis, we only consider the diagonal cumulants, they can expressed as:

Cq
n = V T 3 × χq

n = V T 3 × ∂n(p/T 4)

∂(µq)n
(1.15)

where χq
n is the n-th order susceptibility, V is the volume of the system, and q=B, Q, S.

That is to say, the cumulants depend on the volume of the system.

1.5 Experimental Observables
We can measure the event-by-event particle multiplicity distributions of conserved

quantities (net-baryon, net-charge and net-strangeness) in the heavy-ion collision exper-
iment. Net-kaon and net-proton are proxies for net-strangeness and net-baryon, respec-
tively. According to Eq. 1.10 and Eq. 1.11, higher-order moments of conserved quantities
are more sensitive to correlation length (ξ)[15, 19–23]. For example, ⟨(δN)3⟩ ∼ ξ4.5,
⟨(δN)4⟩ − 3⟨(δN)2⟩ ∼ ξ7. Thus, we can use the higher-order moments of event-by-event
multiplicity distributions of conserved charges as the experimental observables to study
the QCD phase diagram and look for the QCD critical point[24–27].

The up to fourth-order cumulants can be written as the terms of event-by-event
multiplicity distributions:

C1 = ⟨N⟩ (1.16)
C2 = ⟨(δN)2⟩ (1.17)
C3 = ⟨(δN)3⟩ (1.18)
C4 = ⟨(δN)4⟩ − 3⟨(δN)2⟩2 (1.19)

where N is the measured event-by-event particle number, and ⟨N⟩ is the mean value over
the total events. δN = N − ⟨N⟩ is the difference of N and its mean value. The moments
can also be expressed in terms of cumulants:

M = C1 (1.20)
σ2 = C2 (1.21)

S =
C3

(C2)3/2
(1.22)

κ =
C4

C2
2

(1.23)
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Cumulant ratios are constructed to cancel the volume dependence and can also be ex-
pressed in terms of the products of moments κσ2 and Sσ, and can be directly related to
theoretical calculations:

C3

C2

= Sσ =
χq
3

χq
2

(1.24)

C4

C2

= κσ2 =
χq
4

χq
2

(1.25)

Fig. 1.5 shows energy dependence of cumulant ratios (σ2/M,Sσ/Skellam and κσ2)
of net-charge, net-kaon and net-proton multiplicity distributions for Au+Au collisions at√
sNN = 7.7−200 GeV for twocentralities (0 − 5% and 70 − 80%) within mid-rapidity

window. We observed a non-monotonic energy dependence of κσ2 in most central Au+Au
collisions for net-proton.

Fig. 1.5: (color online) Energy dependence of cumulant ratios (σ2/M, Sσ/Skellam and
κσ2) of net-charge, net-kaon and net-proton multiplicity distributions for Au+Au col-
lisions at √sNN = 7.7−200 GeV for two centralities (0 − 5% and 70 − 80%) within
mid-rapidity window[28–31].
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1.6 Definition of Statistical Observables

1.6.1 Moments
In probability theory and statistics, the moment-generating function MX(t) is the

mean value of the random variable etX :

MX(t) = E(etX) = 1 + tEX +
t2

2!
EX2 +

t3

3!
EX3 + · · ·+ tn

n!
EXn

= 1 + tm1 +
t2

2!
m2 +

t3

3!
m3 + · · ·+

tn

n!
mn (1.26)

where etX = 1+tX+ (tX)2

2!
+ (tX)3

3!
+· · ·+ (tX)n

n!
is the series expansion of etX andMX(0) = 1.

Thus, the n-th moments about zero mn of a random variable X is the n-th derivative of
MX(t) at t = 0:

mn =
dnMX(t)

dtn
|t=0 =M

(n)
X (0) = EXn = ⟨Xn⟩ (1.27)

The n-th central moment µn of a random variable X is the n-th moment about its mean
value:

µn ≡ E[(X − EX)n], (1.28)

where µ1 = 0 and M = m1 = EX = ⟨X⟩ is the mean value of the random variable ⟨X⟩.
From Eq. A.2−Eq. A.4, the normalized higher-order central moments are:

σ2 = µ2 = ⟨(X − ⟨X⟩)2⟩ (1.29)

S =
µ3

σ3
=
⟨(X − ⟨X⟩)3⟩

σ3
(1.30)

κ =
µ4

σ4
− 3 =

⟨(X − ⟨X⟩)4⟩
σ4

− 3 (1.31)

Usually, the first order moment around zero is the mean value of probability distribu-
tion; the higher-order central moments are used to describe the property of a probability
distribution. For example, the second central moment is the variance V ar(X), which is
used to describe the width of a distribution; Skewness S is the normalized third central
moment, which is used to describe the asymmetry of a distribution; and Kurtosis κ is the
normalized forth central moment, which is a descriptor of the sharpness of a probability
distribution.

1.6.2 Cumulants
The cumulant-generating function KX(t) of a random variable X is the natural

logarithum of the moment-generating function MX(t):

KX(t) = logMX(t) = logE(etX), KX(0) = 0 (1.32)

Thus, the cumulants can be expressed in the n-th derivative of KX(t) at t = 0:

Cn = K
(n)
X (0) =

dnKX(t)

dtn
|t=0 =

dn

dtn
logMX(t)|t=0 (1.33)
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From Eq. A.10−Eq. A.12, cumulants can be written as:

C1 = ⟨X⟩ (1.34)
C2 = ⟨X2⟩ − ⟨X⟩2 = ⟨(δX)2⟩ (1.35)
C3 = ⟨X3⟩ − 3⟨X2⟩⟨X⟩+ 2⟨X⟩3 = ⟨(δX)3⟩ (1.36)
C4 = ⟨X4⟩ − 4⟨X3⟩⟨X⟩ − 3⟨X2⟩2 + 12⟨X2⟩⟨X⟩2 − 6⟨X⟩4

= ⟨(δX)4⟩ − 3⟨(δX)2⟩2 (1.37)

Combine Eq. 1.29−Eq. 1.31 and Eq. 1.34−Eq. 1.37, moments can be written as the terms
of cumulants:

M = C1, σ2 = C2, S =
C3

(C2)
3
2

, κ =
C4

C2
2

(1.38)

And the relation between moment products and cumulant ratios is:

σ2/M =
C2

C1

, Sσ =
C3

C2

, κσ2 =
C4

C2

(1.39)

The cumulant ratios can cancel the volume dependence on the system, which can’t be di-
rectly to be measured. Thus the cumulant ratios are used to be experimental observables.
From Eq. A.18 − Eq. A.21, the moments can be expressed in terms of cumulants:

m1 = C1 (1.40)
m2 = C2 + C2

1 (1.41)
m3 = C3 + 3C2C1 + C3

1 (1.42)
m4 = C4 + 4C3C1 + 3C2

2 + 6C2C
2
1 + C4

1 (1.43)

and vice versa, from Eq. A.13 − Eq. A.16, the cumulants can be expressed in terms of
moments:

C1 = m1 (1.44)
C2 = m2 −m2

1 (1.45)
C3 = m3 − 3m2m1 + 2m3

1 (1.46)
C4 = m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1 (1.47)

From Eq. 1.44−Eq. 1.47, we can get the recursion formula for cumulants:

Cn = mn −
n−1∑
k=1

Ck−1
n−1Ckmn−k (1.48)

1.6.3 Properities of Cumulants
The cumulant-generating function KX+Y (t) for two independent random variables

X and Y from Eq. 1.32 is:

KX±Y (t) = logE[et(X±Y )]

= logEetXEe±tY

= logEetX + logEe±tY

= KX(t) +KY (±t) (1.49)
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Then, the n− th derivative of cumulant-generating function is given by:

dn

dtn
KX±Y (t) =

dn

dtn
KX(t) + (±1)n d

n

dtn
KY (−t) (1.50)

That is to say, the sum of the various order cumulants of two independent random
variables is the sum of the corresponding cumulants. Thus, the n− th cumulants of sum
and difference of two random variables are given by:

CX±Y = CX + (±1)nCY (1.51)

1.6.4 Factorial Moments
The factorial moment generating function HX(t) is the mean value of tX :

HX(t) = E[tX ] = ⟨tX⟩, HX(1) = 1 (1.52)

Thus, the n-th factorial moment Fn of a random variable X is given by the n-th derivative
of factorial moment generating function HX(t) at t=1:

Fn =
dn

dtn
HX(t)|t=1 =

dn

dtn
⟨tX⟩|t=1 = H

(n)
X (1) (1.53)

From Eq. A.22−Eq. A.25, we can obtain the various order factorial moments:

F1 = ⟨X⟩ (1.54)
F2 = ⟨X(X − 1)⟩ = ⟨X2⟩ − ⟨X⟩ (1.55)
F3 = ⟨X(X − 1)(X − 2)⟩ = ⟨X3⟩ − 3⟨X2⟩+ 2⟨X⟩ (1.56)
F4 = ⟨X(X − 1)(X − 2)(X − 3)⟩ = ⟨X4⟩ − 6⟨X3⟩+ 11⟨X2⟩ − 6⟨X⟩ (1.57)

Therefore, it’s easy to summarize the recursion formula for Fn[32]:

Fn = ⟨X(X − 1)(X − 2) · · · (X − n+ 1)⟩ = ⟨ X!

(X − n)!
⟩ (1.58)

1.6.5 Correlation Functions
The n-th correlation function κn is given by n-th derivatives from the logarithm of

factorial moment generating function HX(t) [33, 34]:

κn =
dn

dtn
lnHX(t)|t=1 (1.59)

and from Eq. A.26−Eq. A.29, correlation functions can be written in terms of the factorial
moments:

κ1 = F1 (1.60)
κ2 = F2 − F 2

1 (1.61)
κ3 = F3 − 3F2F1 + 2F 3

1 (1.62)
κ4 = F4 − 4F3F1 − 3F 2

2 + 12F2F
2
1 − 6F 4

1 (1.63)
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From Eq. 1.33, cumulants can also be written in terms of the factorial moments[34, 35]:

C1 = F1 (1.64)
C2 = F2 + F1 − F 2

1 (1.65)
C3 = F3 + 3F2 + F1 − 3F 2

1 − 3F2F1 + 2F 3
1 (1.66)

C4 = F4 + 6F3 + 7F2 + F1 − 4F3F1 − 18F2F1 − 7F 2
1 + 12F2F

2
1

+ 12F 3
1 − 3F 2

2 − 6F 4
1 (1.67)

Thus, we can express the correlation functions κn in terms of the cumulants Cn with
the mean particle number ⟨X⟩:

κ1 = C1 (1.68)
κ2 = C2 − ⟨X⟩ (1.69)
κ3 = C3 − 3C2 + 2⟨X⟩ (1.70)
κ4 = C4 − 6C3 + 11C2 − 6⟨X⟩ (1.71)

and vice versa,

C1 = κ1 (1.72)
C2 = κ2 + ⟨X⟩ (1.73)
C3 = κ3 + 3κ2 + ⟨X⟩ (1.74)
C4 = κ4 + 6κ3 + 7κ2 + ⟨X⟩ (1.75)

As we have the various order cumulants of (anti-)proton in our analysis, it’s straight-
forward to get the correlation functions according to the Eq. 1.68−Eq. 1.71. It should
be noted that the relation between correlation functions and cumulants is only valid for
a single source, such as protons or anti-protons[34]. Here we’re only interested in the
multi-proton correlations, so we consider proton correlations only.

1.7 Statistical Baseline

1.7.1 Binomial Distribution
In probability theory and statistics, the probability distribution of the binomial

distribution (BD) of random variable X = k is:

P (X = k) = B(k;N, p) = Ck
Np

k(1− p)N−k (1.76)

where k is the number of success and p is the probability of success in a sequence of n
independent trails. And Ck

N = N !
k!(N−k)!

is the binomial coefficient, which is the name of
the distribution. Therefore, the binomial distribution is used to describe the number of
successes in a sequence of N trails. The moment-generating function of BD is:

MB(t) =
∑
k

ektB(k;N, p) =
∑
k

N !

k!(N − k)!
pkekt(1− p)N−k

= (1− p+ pet)N
(1.77)



12 1.7. STATISTICAL BASELINE

and the cumulant-generating function of BD is:

KB(t) = lnMB(t) = Nln(1− p+ pet) (1.78)

then, the n-th moments of BD can be expressed the n-th derivative of MB(t) at t = 0:

mn =M
(n)
B (0) =

dnMB(t)

dtn
|t=0 (1.79)

Thus, the n-th cumulants of BD can be expressed the n-th derivative of KB(t) at t = 0:

Cn = K
(n)
B (0) =

dnKB(t)

dtn
|t=0 (1.80)

From Eq. A.31−Eq. A.35, various order moments of BD are given by:

m1 = Np (1.81)
m2 = N2p2 +Np(1− p) (1.82)
m3 = N3p3 − 3N2p2(1− p) +Np(1− 3p+ 2p2) (1.83)
m4 = N4p4 − 6N3p3(1− p) +N2p2(7− 18p+ 11p2)

+Np(1− 7p+ 12p2 − 6p3) (1.84)

From Eq. A.36−Eq. A.39, various order of cumulants of BD are given by:

C1 = Np (1.85)
C2 = Np(1− p) (1.86)
C3 = Np(1− p)(1− 2p) = Np(1− 3p+ 2p2) (1.87)
C4 = Np(1− p)(1− 6p+ 6p2) = Np(1− 7p+ 12p2 − 6p3) (1.88)

The mean value and variance of the BD are:

µ = Np, ϵ =
σ2

µ
= (1− p) (1.89)

Then, cumulants of BD can be written in terms of µ and ϵ:

C1 = µ (1.90)
C2 = µϵ (1.91)
C3 = µϵ(2ϵ− 1) (1.92)
C4 = µϵ(6ϵ2 − 6ϵ− 1) (1.93)

From Eq. 1.89, we can see 0 < ϵ < 1. And from Eq. 1.92, C2 = µϵ < µ, that is to say,
the variance of BD is smaller than its mean value.

1.7.2 Poisson Distribution
In probability theory and statistics, the probability of the Poisson distribution of

random variable X = k with parameters λ is given by:

Pλ(k) = e−λλ
k

k!
(1.94)
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The moment-generating function of Poisson distribution is:

MP (t) =
∞∑
k=0

ekte−λλ
k

k!
= e−λ

∞∑
k=0

(λet)k

k!
eλ(e

t−1) (1.95)

The cumulant-generating function of Poisson distribution is:

KP (t) = lnMP (t) = λ(et − 1) (1.96)

So, the cumulants can be expressed as follows:

Cn = λ
dn

dtn
(et − 1)|t=0 = λet|t=0 = λ (1.97)

And the various moments and moment products can be expressed as:

M = λ, σ =
√
λ, S =

1√
λ
, κ =

1

λ
(1.98)

Sσ = κσ2 = 1 (1.99)

Therefore, the various order cumulants of Poisson distribution are the same, and the
baseline of Poisson distribution for κσ2 and Sσ are unity.

1.7.3 Skellam Distribution
The Skellam distribution is the distribution of the difference of the two variables

follow Poisson distribution. The probability density function of the Skellam distribution
are defined as:

P (k;λ1, λ2) = e−(λ1+λ2)(
λ1
λ2

)k/2Ik(2
√
λ1λ2) (1.100)

where Ik(z) is the modified Bessel function of the first kind, and λ1, λ2 are the mean value
of the two idenpendent Poisson distributions.

The moment-generating function of Skellam distribution is:

MX,Y (t) =
∑
k

etkP (k;λ1, λ2)

=
∑
k

etke−(λ1+λ2)(
λ1
λ2

)k/2Ik(2
√
λ1λ2)

= e−(λ1+λ2)
∑
k

(et
√
λ1
λ2

)kIk(2
√
λ1λ2)

⇓
∑
k

Ik(z)m
k = e(

z
2
)(m+ 1

m
) (1.101)

= e−(λ1+λ2)e
√
λ1λ2(et

√
λ1
λ2

+e−t
√

λ2
λ1

)

= e−(λ1+λ2)+λ1et+λ2e−t (1.102)

The cumulant-generating function of Skellam distribution is:

KX,Y (t) = lnMX,Y (t) = −(λ1 + λ2) + λ1e
t + λ2e

−t (1.103)
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Then the various order cumulants of the Skellam distribution are given by:

Cn =
dn

dtn
KX,Y (t)|t=0 = λ1e

t|t=0 + (−1)nλ2e−t|t=0 = λ1 + (−1)nλ2 (1.104)

which also can be obtained from Eq. 1.51. The various order moments and moment
products of the Skellam distribution are:

M = λ1 − λ2 (1.105)
σ =

√
λ1 + λ2 (1.106)

S =
λ1 − λ2

(λ1 + λ2)
3
2

(1.107)

κ =
1

λ1 + λ2
(1.108)

Sσ =
C3

C2

=
λ1 − λ2
λ1 + λ2

(1.109)

κσ2 =
C4

C2

= 1 (1.110)

Therefore, the even and odd order cumulants of Skellam distribution are the sum and dif-
ference of cumulants of the two random variables, and the baseline of Skellam distribution
for κσ2 is unity.

1.7.4 Gaussian Distribution
The probability density function of Gaussian distribution of random variable X = x

is:
G(x;µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2 (1.111)

where µ and σ are the mean and standard deviation of the distribution.
The moment-generating function of Gaussian distribution is:

MG(t) = Eetx =

∫ ∞

−∞
etx

1√
2πσ2

e−
(x−µ)2

2σ2 dx

= eµt+
1
2
σ2t2 (1.112)

The cumulant-generating function of Gaussian distribution is:

KG(t) = lnMG(t) = µt+
1

2
σ2t2 (1.113)

So the cumulants can be written as:

C1 = µ (1.114)
C2 = σ2 (1.115)
Cn = 0 (1.116)

Only the first two cumulants are non-zero, the higher-order cumulants are zero. Non-zero
skewness and kurtosis indicates non-Gaussianity. That is to say, the measured higher-
order cumulants are ”non-Gaussianity”.



Chapter 2

The STAR Experiment

2.1 The Relativistic Heavy-Ion Collider (RHIC)
Fig. 2.1 is the overview picture of the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory (BNL)[36]. The RHIC rings consists of two independent
rings called ”Blue” and ”Yellow” rings, which carry heavy ions and proton in opposite
direction. It accelerates heavy ions up to a top energy of 100 GeV per nucleon. A large
number of particles are generated in each collision. There are six intersection points, and
four different detectors (STAR, PHENIX, BRAHMS and PHOBOS) were located at four
of the intersection points. The Solenoid Track at RHIC (STAR) detector is located at 6
o’clock of RHIC and is the only detector that’s still operating.

2.2 The STAR Detector
STAR was constructed to measure many observables, and to understand the space-

time evolution of heavy ion collisions. Further more, to investigate the properties of QGP
and search for the critical point. STAR has many sub-detectors, such as Time Projection
Chamber (TPC)[37], Time Of Flight (TOF)[38–40], Vertex Position Detector (VPD)[41].
Each sub-detector has its specific function, such as TPC can be used to track tracing,
measure momentum of charged particle at lower transverse momentum range, TOF can
identify charged particles at higher transverse momentum range, and VPD can measure
the primary vertex position, which is suitable for the event-by-event features in the heavy
ion collisions. Fig. 2.2 is the schematic diagram of the STAR detector.

2.2.1 Time Projection Chamber (TPC)
TPC is the main tracking detector at STAR, and is used to track the charged parti-

cles. TPC can reconstruct the vertex, measure momentum and identify charged particles
with ionization energy loss (dE/dx). It has a large acceptance with pseudo-rapidity of
−1 < η < 1 and full azimuthal coverage (0 < ϕ < 2π). Thus, the full azimuthal angles
and different multiplicity will be covered. The transverse momentum of proton can be
identified from 100 MeV/c to 1 GeV/c, and transverse momentum of charged particles
can be measured over a range of 100 MeV/c to 30 GeV/c. The schematic profile of TPC
is shown in Fig. 2.3. TPC is located in a solenoidal magnet with a uniform magnet field
of |B| = 0.5 T along the beam pipe (z-axis) direction. It’s a cylinder with a diameter of 4

15
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Fig. 2.1: (color online) The overview of the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory (BNL).

Fig. 2.2: (color online) The schematic diagram of the STAR detector. The figure is taken
from [42].
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Fig. 2.3: (color online) The schematic profile of STAR TPC detector. The figure is taken
from [37].

m and 4.2 m long (TPC spans from z = -210 cm to z = 210 cm). The inner field cage is
50 cm from the center of the beam pipe and the outer field cage is 200 cm from the center
of the beam pipe. The central membrane (CM) is located at the center of TPC (z = 0)
and operates at a high voltage of 28 kV. TPC is filled with P10 gas (10% methane CH4

and 90% argon Ar) and an uniform electric field of |E| = 135V /cm. The uniform electric
field of TPC are generated by the central membrane (CM), the outer field cage, the inner
field cage and the end caps. The collisions take place near the center of TPC. When the
charged particles transverse the TPC, will interact with the gas. The secondary electrons
released by the ionized gas atoms will drift to the readout end caps at the bottom of TPC
under the uniform electric field, and the track of particles will be reconstructed with high
resolution. The drift velocity of the gas in the TPC is typically 5.45 cm/µs. The readout
system is based on Multi-Wire Proportional Chambers (MWPC) with readout pads.

The anode pad plane with one full sector of TPC is shown in Fig. 2.4. The inner
sub-sector is on the right and it has small pads arranged in widely spaced rows. The
outer sub-sector is on the left and it is densely packed with larger pads. The inner sector
can detect the particles with lower momentum. The inner sector has 13 pad rows and
the outer sector has an additional 32 pad rows, so there is 45 pad rows in total.

The induced signals in a single pad row can determine the x and y coordinates of
electron clusters. Suppose the signals are Gaussian, the position on the x-axis and the
width of the signal σ with pad h2 centered at y = 0 are given by:

x =
σ2

2w
ln(

h3
h1

) (2.1)

σ2 =
w2

ln(h22/h1h3)
, (2.2)

where h1, h2 and h3 are amplitudes on three pads and w is the pad width. When a track
pass through the pad rows at large angles, it deposits ionization on many pads, and
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Fig. 2.4: (color online) The anode pad plane with one full sector. The inner sub-sector
is on the right and the outer sub-sector is on the left. The figure is taken from [37].

any three adjacent pads will have signals with similar amplitudes. The crossing angle is
the angle between the particle momentum and the pad row direction. Thus the weighted
mean algorithm will be better. The drift velocity divided by the drift time of the electrons
from the original point to the anode on the endcap can determine the position on the
z-coordinate.

Assume the initial primary vertex is located at the center of TPC, the reconstructed
tracks will start from the outermost hit points in the TPC, and then project inward.
The hit points in the pad rows are formed into reconstructed tracks, which are known
as the global tracks. The primary interaction vertex is fit from the global tracks with at
least ten hits. The primary vertex is found by considering all of the tracks reconstructed
in the TPC and then extrapolating them back to the origin. The global average is the
vertex position[37]. For each global track, the closest distance to the primary vertex is
called the distance of closest approach (dca). The global tracks refitted with dca < 3 cm
including the primary vertex are the primary tracks. In our analysis, we will discard the
tracks with dca > 3 cm and consider the primary tracks only, which will help determine
the momentum of the particle tracks.

The ionized energy loss(dE/dx) is used to identify charged particles. Bethe-Bloch
formula[43] gives the mean rate of energy loss for a charged particle:

−
〈
dE

dx

〉
= 2πNar

2
emec

2ρ
Z

A

z2

β2

[
ln

(
2meγ

2v2Wmax

I

)
− 2β2

]
(2.3)

with 2πNar
2
emec

2 = 0.1535 MeV cm2/g and γ = 1/
√

1− β2 = 1/
√

1− (v/c)2.

me : electron mass Wmax : maximum energy transfer in a single collision
I: mean excitation potential z: charge of incident particle in units of e
ρ : density of absorbing material Z: atomic number of absorbing material
re : classical electron radius A: atomic weight of absorbing material
Na : Avogadro’s number
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Fig. 2.5: (color online) The ionization energy loss distribution of charged particles at√
sNN = 39 GeV. The solid lines are from the Bichsel functions.

In the calculation, the energy transfer is parameterized in terms of momentum trans-
fer rather than impact parameters. Of course, this is more realistic because momentum
transfer is a measurable quantity, whereas the impact parameter sits. Different kinds of
particles with the same momentum have different ionization energy losses (dE/dx).

However, the Bethe-Bloch formula gives an inaccurate representation of energy de-
pendence, which is different from that of the Bichsel functions (dE/dx/x)[44]. In the
STAR experiment, the Bichsel functions are used to fit the dE/dx. the average dE/dx
cannot be accurately measured experimentally because of the Landau distribution with
a long tail. Thus a 70% truncated mean (typically 30% is removed before it’s averaged)
is used to measure the most probable dE/dx.

Fig. 2.5 shows the the ionization energy loss (dE/dx) distributions of charged parti-
cles as a function of rigidity at √sNN = 39 GeV. These lines are fitted by the Betha-Bloch
function. We can see that the proton can be clearly identified at momentum below 1
GeV/c. But they can not be identified clearly above 1 GeV/c due to the merged bands.
In order to clearly identify charged particles at higher momentum range, we add the Time
of Flight detector.

2.2.2 Time of Flight (TOF)
As is shown before, TPC can identify the charged particles within p ≤ 1 GeV/c, but

not for particles in p ≥ 1 GeV/c. However, the design of TOF detector can achieve this
goal.

The TOF detector is located outside of the TPC. Fig. 2.6 shows the geometry of TOF
trays, modules and pads at STAR. There are 120 trays mounted on the east and west
sides of the TPC (60 on each side), with pseudo-rapidity coverage −1 < η < 1 and full
azimuthal angles. Every TOF tray is consisted of 32 Multi-gap Resistive Plate Chamber
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Fig. 2.6: (color online) The details of TOF trays, modules and pads at STAR. The figure
is taken from [45].

(MRPC) modules, the side view of one MRPC module is shown in Fig. 2.7. MRPC
mainly contains the two electrodes with a voltage of 7kV applied and a stack of resistive
glass plates with six uniform gas gaps between them. Then every small gas gap is filled
with the high and uniform electric fields and MRPC works in avalanche mode. When
the charged particles pass through the module, there will be simultaneous avalanches in
the six gas gaps. The corresponding signal is the superposition of all avalanches in these
gas gaps. We already know the distance (L) between TOF and collision vertex, thus the
speed (β) of the particles and their mass can be calculated:

β =
v

c
=

L

c∆t
(2.4)

m2 = p2(
1

β
− 1) (2.5)

where β = p/E and E =
√
p2 +m2, p is the momentum of the particles measured by

TPC and ∆t is the difference between the start time (measured by TOF) and the stop
tome (measured by VPD, which will be discussed later). Fig. 2.8 shows the mass square
distribution measured by TOF as a function of rigidity at √sNN = 39 GeV. It’s obviously
to see that protons, kaons and pions are clearly separated at high momentum region.

2.2.3 Vertex Position Detector (VPD)
The VPD has two identical detector components, which are mounted symmetrically

on the east and west sides of STAR center at a distance of 5.7m. Fig. 2.9 shows the
the front view of one of the VPD assemblies. Each VPD assembly consists of nineteen
detectors, which corresponds to approximately half of the solid angle in a pseudo-rapidity
range of 4.24 ≤ η ≤ 5.1.

VPD can measure the primary vertex position (Zvtx) along the beam pipe and the
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Fig. 2.7: (color online) The two-side view on the Multi-gap Resistive Plate Chamber
(MRPC) modules. The figure is taken from [45].

Fig. 2.8: (color online) The mass square distribution as a function of rigidity at √sNN =
39 GeV.
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Fig. 2.9: (color online) (left) The schematic front view of a VPD assembly. (right) The
photo of the two VPD assemblies. The figure is taken from [41].

start time (Tstart) for TOF can be obtained by the following two formulas:

Zvtx = c(Teast − Twest)/2 (2.6)
Tstart = (Teast + Twest)/2− L/c, (2.7)

where Teast and Twest are the measured times from the east and west VPD assemblies
respectively, c is the speed of light and L is the distance between VPD assembly and the
center of the STAR.

2.3 The Fixed-Target (FXT) Program at STAR
In this section we will discuss the Fixed-Target (FXT) program at STAR. Just as

its name implies, the collision mode of FXT is different from the centroid collision mode.
The FXT program will approach higher µB range. Its main aim is to search for the
evidence of the first entrance into the QGP, and confirm the onsets of de-confinement
and the critical point.

On May 20, 2015, STAR performed its first test run for FXT program, and the test
run is successful. Fig. 2.10 shows the schematic of the FXT program at STAR. The target
is located at the edge of TPC, 211 cm from the center of TPC. And the incident beam
is from the right side of the figure (west side of the detector) and hits the target. The
target is a 1mm thick gold foil with 1 cm high and 4 cm wide. The mid-rapidity for the
FXT program is |ymid| = 1.52 at √sNN = 4.5 GeV.

Tab. 2.1 shows the TOF multiplicity cut for FXT program in Au+Au collisions at√
sNN = 4.5 GeV. There are six runs available for the analysis, runs from 16140033 to

16140036 have only one trigger and runs 16140037 and 16140038 have both a FXT and
a laser trigger. The last column is the number of the vertices within 210 cm < Vz < 212
cm.
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Fig. 2.10: (color online) Schematic of the STAR experiment for the Fixed-Target program.
The figure is taken from [46].

Tab. 2.1: TOF multiplicity cut and the total number of triggers for FXT program in
Au+Au Collisions

Run # # of Bunches TOF multiplicity cut # of Trigger # of Vertices

16140033 1 130 89294 89240

16140034 1 50 116629 108888

16140035 1 200 4909 4908

16140036 1 130 119238 119201

16140037 6 160 603721* 603658

16140038 6 130 414977 414796

Total 1348768 1340691
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Analysis Details

3.1 Data Sets
The datasets collected with a minimum bias trigger[47] at the STAR experiment in

Au+Au collisions are √sNN = 4.5, 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV,
and in Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV. The 7.7, 11.5, 39, 62.4 and
200 GeV data were taken in 2010, the 19.6 and 27 GeV data were taken in 2011, the 14.5
GeV data was taken in 2014, the offline 4.5 GeV data was taken in 2015, and the 54.4
GeV data were taken in 2017. The Cu+Cu data at √sNN = 22.4, 62.4 and 200 GeV were
collected in 2005. Minimum bias trigger is used in the data taking, its definition is the
coincidence of zero degree calorimeters (ZDC), VPD and beam-beam counters (BBC).
The details of these datasets are shown in the Tab. 3.1.

Tab. 3.1: Data sets in Au+Au collisions at √sNN = 7.7−200 GeV, in FXT collisions at√
sNN = 4.5 GeV and in Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV .

√
sNN (GeV) Trigger Setup name Year Production Tag TriggerID

Au+Au

7.7 AuAu7_Production
2010 P10ih

290001 290004

11.5 AuAu11_Production 310004 310014

14.5 production_15GeV_2014 2014 P14ii 440015 440016

19.6 AuAu19_Production
2011 P11id

340001 340011 340021

27 AuAu27_Production_2011 360001

39 AuAu39_Production 2010 P10ik 280001

54.4 AuAu54_Production_2017 2017 P17ii 580001 580011 580021

62.4 AuAu62_Production
2010 P10ik

270001 27001 270021

200 AuAu200_Production 260001 260011 260021 260031

Au+Au FXT 4.5 fixedTarget2015 2015 P16ia 1

Cu+Cu
22.4 Cu22ProductionMinBias 2005 P17ii 86011

62.4 Cu62productionMinBias 2005 P17ii 76002 76007 76011

200 CuProductionMinBias 2005 P17ii 66007

Tab. 3.1 shows the details of data sets in Au+Au collisions at √sNN = 7.7−200 GeV,
in FXT collisions at √sNN = 4.5 GeV and in Cu+Cu collisions at √sNN = 22.4, 62.4 and
200 GeV .

24
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Fig. 3.1: (color online) Run by run QA in Cu+Cu collisions at √sNN = 200 GeV.

3.1.1 Run by Run QA
We applied some Quality Assurance (QA) studies on the datasets to remove events

with the bad runs. Fig. 3.1 shows the averaged vertex position, number of proton, anti-
proton and net-proton as a function of run index in Cu+Cu collisions at √sNN = 200
GeV. We take out the runs that are out of 3σ, which are shown as red lines.

Bad run lists for BES-I energies: https://www.star.bnl.gov/protected/bulkcorr/
luoxf/PaperProposal2018/QA/BadRunList_3sig.txt

3.1.2 Signed DCAxy Cuts
According to the unfolding study for most central collisions at √sNN = 7.7 GeV,

predicted two-component structure[48] is likely there. Fig. 3.2 shows the net-proton
distributions for most central collisions without CBWC with unfolding method at √sNN
= 7.7 GeV.

In order to investigate the origin of the second component at smaller part of the
net-proton distribution, we have checked the run log(Fig. 3.3) and plotted events having
the number of protons less than 10 at most central (0-5%) collisions as a function of
run index, which is shown in Fig. 3.4. It is found that those events with extremely
small number of protons are mainly coming from specific run durations. Within runs
#11125089−#11126067, we picked up 15 events having protons less than 10, and plotted
various track-wise quantities for each event, see here. It was found in those strange events,
DCA distribution looks strange, which has mean value about 1.0. Since in higher-moment
analysis DCA cut < 1.0 cm is applied, number of protons become extremely small for
those events. In addition, the strange DCA distribution is found to be caused by the
shift of signed DCAxy distribution (normally around zero), which is shown in Fig. 3.7.

⟨DCAxy⟩ as a function of event ID for each run has been checked at √sNN = 7.7 GeV
for most central (0− 5%) centrality, which is summarized here. The left panel of Fig. 3.6
is an example of ⟨DCAxy⟩ distributions for strange events. It is found that ⟨DCAxy⟩ show

https://www.star.bnl.gov/protected/bulkcorr/luoxf/PaperProposal2018/QA/BadRunList_3sig.txt
https://www.star.bnl.gov/protected/bulkcorr/luoxf/PaperProposal2018/QA/BadRunList_3sig.txt
https://drupal.star.bnl.gov/STAR/system/files/stevent_red_final_7GeV.pdf
https://drupal.star.bnl.gov/STAR/system/files/DCAXY_7GeV.pdf
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Fig. 3.2: (color online) The net-proton distributions for most central collisions without
CBWC with unfolding method at √sNN = 7.7 GeV.

Fig. 3.3: (color online) Run log
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Fig. 3.4: (color online) The number of events with the number of protons less than 10 at
most central (0-5%) collisions is plotted as a function of run index.

Fig. 3.5: (color online) (left) The DCA distributions with strange events per event at
most central (0 − 5%) collisions at √sNN = 7.7 GeV, which has mean value about 1.0.
(right) The strange ⟨DCAxy⟩ distributions per event at most central ( 0− 5%) at √sNN
= 7.7 GeV. The strange DCA distribution is found to be caused by the shift of signed
DCAxy distribution (normally around zero).
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Fig. 3.6: (color online) (left) ⟨DCAxy⟩ vs event ID distributions for strange events,
⟨DCAxy⟩ shows negative values at the beginning of those runs. (right) The ⟨DCAxy⟩
distributions for normal runs (shown in black), where all events show ⟨DCAxy⟩ ∼ 0.

negative values at the beginning of those runs. Green and blue solid lines are mean and
+/−7σ determined for whole data sets (note that in some other energies mean and sigma
are determined for each run, since those are unstable). The last event ID which deviates
from mean +/−7σ, plus 20k (for safety) is defined as a ”event boundary”. For 7.7 GeV, all
events before the event boundary are removed from the cumulant calculations. You can
find the specific event boundary in the Tab. B.1 at √sNN = 7.7 GeV. The first column
is the (bad) run number, and the second column shows the event ID, we need to remove
all events before that event ID. The right panel of Fig. 3.6 is the ⟨DCAxy⟩ distributions
for normal runs (shown in black), where all events show ⟨DCAxy⟩ ∼ 0.

Fig. 3.7 shows the averaged DCAXY distributions with spoiled and good events at√
sNN = 7.7 GeV. Fig. 3.8 and Fig. 3.9 show the correlation between the number of proton

and averaged DCAXY with total, good and removed events for most central collisions at√
sNN = 7.7 GeV and 62.4 GeV. The same checks have also been done at √sNN = 11.5,

14.5, 19.6, 27, 54.4 and 62.4 GeV, please find the details here. You can find the eventId
cut in the Tab. B.2 at √sNN = 11.5, 14.5, 19.6, 27, 39 and 62.4 GeV.

3.1.3 Event Selection
There are some pile up events where TPC tracks do not match the TOF ( If (nFitPts

> 10 && Tofmatchflag > 0&& |η| < 0.5) nTofMatch++;), and other pile up events where
TPC tracks match the TOF but the velocity (β) is not calculated correctly (If (nFitPts
> 10&& β > 0.1 && |η| < 1) Beta_eta1++;).

Then we can get the correlation between the number of primary TPC tracks matched
to TOF and number of primary TPC tracks with η < 1 (TPC Refmult), which is shown
in the left Fig. 3.10. And the correlation between the number of primary TPC tracks
with wrong β and TPC Refmult is shown in the right Fig. 3.10. Events below the red
lines are need to be rejected. The additional two cuts should be placed in the analysis.
if ( nTofmatch ≤ 1 || nTofmatch < 0.5×(Refmult−20)) continue;
if ( Beta_eta1 ≤ 0 || Beta_eta1 < 26×(Refmult−20)/33.)) continue;

https://drupal.star.bnl.gov/STAR/blog/tnonaka/strange-events-bes-i-data
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Fig. 3.7: (color online) (left) The ⟨DCAxy⟩ distributions with boundary offset for 50k
with strange events for most central (0− 5%) collisions at √sNN = 7.7 GeV. (right) The
strange ⟨DCAxy⟩ distributions for most central ( 0− 5%) at √sNN = 7.7 GeV.

Fig. 3.8: (color online) The correlation between the number of proton and averaged
DCAXY with total (left panel), good (right panel ) and removed (right panel) events for
most central collisions at √sNN = 7.7 GeV

Fig. 3.9: The correlation between the number of proton and averaged DCAXY with
total (left panel), good (right panel ) and removed (right panel) events for most central
collisions at √sNN = 62.4 GeV.
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Fig. 3.10: (color online) (left) Correlation between number of tofmatched tracks and
number of primary tracks in Au+Au collisions at √sNN = 7.7 GeV. (right) Correlation
between number of tracks with β > 0.1 and number of primary tracks in Au+Au collisions
at √sNN = 7.7 GeV.

You can find the rejected events for all the BES-I energies in the Tab. B.3, which
shows the additional two cuts used in the analysis in Au+Au collisions at √sNN = 7.7,
11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV.

Tab. 3.2: Event Selection in Au+Au collisions at √sNN = 7.7−200 GeV, in FXT collisions
at √sNN = 4.5 GeV and in Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV .

√
sNN (GeV) Vz(cm) Vr(cm) |V pdVz − Vz| (cm) # of events (million)

Au+Au

7.7 |Vz| < 40
< 2

nan

3

11.5

|Vz| < 30

6.6

14.5 < 1 20

19.6

< 2

15

27 30

39

< 3

86

54.4 470

62.4 47

200 238

Au+Au FXT 4.5 210 < Vz < 212 nan nan 1.355

Cu+Cu
22.4

|Vz| < 30 < 2 nan
0.64

62.4 1.46

200 5.377

Tab. 3.2 shows the details of the event cuts and statistics after event selection in
Au+Au collisions at √sNN = 7.7−200 GeV, in FXT collisions at √sNN = 4.5 GeV and in
Cu+Cu collisions at√sNN = 22.4, 62.4 and 200 GeV . It’s well known that the radius of the
beam pipe is 3.95 cm, the proton sample contains background knocked out from the beam
pipe and detector material by interactions of produced hadrons in these material[49, 50].
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Fig. 3.11: (color online) Vz distribution after event cuts in Cu+Cu collisions at √sNN =
22.4 (left) and 200 GeV(right).

Fig. 3.12: (color online) Vy vs Vx distribution after event cuts in Cu+Cu collisions at√
sNN = 200 GeV.
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In order to reject these background, the event vertex radius (Vr =
√
V 2
x + V 2

y ) is required
to be within 2 cm of the center of STAR[47]. At √sNN = 14.5 GeV, the mean vertex
position for all events is centered at (0, -0.89) cm in the x − y plane, vr < 1 cm from
the center is applied[51]. In order to achieve uniform detector performance and sufficient
statistical of the measured observables, Vz within 30 cm are applied except for the 7.7
GeV (Vz ≤ 40 cm) to select the minimum bias trigger events. However, for FXT program,
the z-vertex cut should be 210 cm < Vz < 212 cm due to the target is located at at the
edge of TPC, 211 cm from the center of TPC. The difference between vertex along the
beam direction measured by TPC and VPD are less than 3 cm to eliminate pile up events
for energies greater than 39 GeV.

Fig. 3.11 shows the distributions of the reconstructed primary vertex along the beam
direction after event selection in Cu+Cu collisions at √sNN = 22.4 and 200 GeV. The
Vz distribution at low energy is more wider, flatter than its distribution at high energy,
this is mainly because that the beam is harder to focus at lower energy. Fig. 3.12 shows
the Vy vs Vx distribution after event selection in Cu+Cu collisions at √sNN = 200 GeV.
Vr(

√
V 2
x + V 2

y ) < 2 cm is applied.

3.1.4 Track Quality Cuts

Tab. 3.3: Track quality cuts, kinematic and PID cuts in Au+Au collisions at √sNN =
7.7−200 GeV, in FXT collisions at √sNN = 4.5 GeV and in Cu+Cu collisions at √sNN =
22.4, 62.4 and 200 GeV .

√
sNN (GeV ) Track Quality Cuts Kinematic Cuts PID Cuts

dca < 1 cm

|y| < 0.5

0.4 < pT < 0.8 (GeV/c) p < 1(GeV/c)
TPC

Au+Au nFitPts > 20 |nσp| < 2

7.7−200 nhitdEdx > 5
0.8 < pT < 2.0 (GeV/c) p < 3(GeV/c)

TPC+TOF

ratio > 0.52 |nσp| < 2 0.6 < m2 < 1.2(GeV2/c2)

dca < 1 cm

-2 < y < 0

0.4 < pT < 0.8 (GeV/c) p < 1(GeV/c)
TPC

Au+Au nFitPts > 20 |nσp| < 2

FXT: 4.5 nhitdEdx > 5
0.8 < pT < 2.0 (GeV/c) p < 3(GeV/c)

TPC+TOF

ratio > 0.52 |nσp| < 2 0.6 < m2 < 1.2(GeV2/c2)

dca < 1 cm

|y| < 0.5 0.4 < pT < 0.8 (GeV/c)

TPC
Cu+Cu nFitPts > 20

22.4, 62.4 and 200 nhitdEdx > 5 |nσp| < 2

ratio > 0.52

Tab. 3.3 shows the track quality, kinematic and PID cuts in Au+Au collisions at√
sNN = 7.7−200 GeV, in FXT collisions at √sNN = 4.5 GeV and in Cu+Cu collisions

at √sNN = 22.4, 62.4 and 200 GeV . The distance of closet approach (dca) to the re-
constructed primary tracks is required to be less than 1 cm to eliminate the effects of
secondary charged particles. The number of the points hit in the TPC used for track
fitting should be at least 20. The number of hit points for calculating the dE/dx is not
less than 5. To avoid the track splitting, the ratio of the number of points used in the
track fitting to the number of possible hits greater than 0.52 is required.



CHAPTER 3. ANALYSIS DETAILS 33

3.2 Particle Indentification
The two main detectors at STAR [36] are TPC (Time Projection Chamber) [37]

and TOF (Time Of Flight) [38], which can provide excellent particle identification and
identify charged particles within mid-rapidity window (|y| < 0.5).

3.2.1 For Au+Au Collisions

Fig. 3.13: (color online) (left bottom) The ionization energy loss (dE/dx) distributions
in Au+Au collisions at √sNN = 39 GeV, the solid lines in the figure are expectation line
from bichsel formula. (Left top) The mass square distributions in Au+Au collisions at√
sNN = 39 GeV. (right) The phase acceptance of (anti−) proton for Au+Au collisions

at √sNN = 39 GeV.

The top left panel of Fig. 3.13 shows the ionization energy loss (dE/dx) distributions
measured by STAR TPC in Au+Au collisions at √sNN = 39 GeV. It was found that at
higher pT range, protons and kaons can not be identified clearly because of merged bands.
The left upper panel of Fig. 3.13 shows the mass square distributions measured by STAR
TOF in Au+Au collisions at √sNN = 39 GeV. We can use mass square cut to select
protons and kaons within high momentum range. So, In order to maximize the purity
and efficiency of charged particles, we split the momentum into two intervals: the lower
pT range (0.4 < pT < 0.8 (GeV/c) ) with TPC, and the higher pT range (0.8 < pT <
2.0 (GeV/c) ) with both TPC and TOF. The right panel of Fig. 3.13 shows the phase
acceptance of (anti−)proton. The (anti−)proton included in the blue box are used for
the moment analysis. The particles included in the red line without (anti-)proton are
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used to determine the centrality to avoid the effect of auto-correlation. After particle
identification, we can get the purity of the proton and anti-proton.

3.2.2 For Fixed-Target Collisions

Fig. 3.14: (color online) (left top) The ionization energy loss (dE/dx) distribution. (right
top) The mass square distribution.(bottom) The phase acceptance of proton for Au+Au
FXT collisions at √sNN = 4.5 GeV.

Fig. 3.14 shows the particle identification for Au+Au FXT collisions at √sNN = 4.5
GeV. The left top panel shows the ionization energy loss (dE/dx) distribution for Au+Au
FXT collisions at √sNN = 4.5 GeV, which are measured by STAR TPC. The right top
panel shows the mass square distribution for Au+Au FXT collisions at √sNN = 4.5 GeV.
The bottom panel shows the proton acceptance.

3.2.3 For Cu+Cu collisions
Fig. 3.15 shows the particle identification for Cu+Cu collisions at √sNN = 22.4 GeV.

3.3 Centrality Determination
In heavy ion collisions, centrality determination is very important. A participant is

defined that a nucleon participanted in at least one collision. We usually use the Npart and
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Fig. 3.15: (color online) (left ) The ionization energy loss (dE/dx) distributions. (right)
The phase acceptance of (anti−)proton for Cu+Cu collisions at √sNN = 22.4 GeV.

Ncoll to describe the centrality of nucleus+nucleus collisions, where Npart is the number
of participants and Ncoll is the number of binary nucleon-nucleon collisions . The impact
parameter b is another parameter to describe the centrality and can be calculated in the
Glauber model [52, 53].

dNch

dη
= npp[xNcoll + (1− x)Npart

2
], (3.1)

which are expressed in reference [50, 54], where npp is the measured multiplicity in pp
collisions per unit of pesudo-rapidity, x is the fraction of npp. Npart and Ncoll can not be
directly measured in the heavy ion collision experiment,

dNch

dη
∝ (Npart ←→ Ncoll) ∝ b −→ Centrality (3.2)

The number of charged particles created in the collision, which is the experimental ob-
servable, is used as an indicator to determine the centrality. Fig. 3.16 is the cartoon of
charged particles Nch with Glauber quantities (b and ⟨Npart⟩) and centrality determina-
tion.

Tab. 3.4: Centrality determination in Au+Au collisions at √sNN = 7.7−200 GeV, in FXT
collisions at √sNN = 4.5 GeV and in Cu+Cu collisions at √sNN = 22.4, 62.4 and 200
GeV .

√
sNN (GeV ) Track Quality Cuts Kinematic Cuts PID Cuts

Au+Au dca <3 cm
|η| < 1 nσp < −3 m2 < 0.4

7.7−200 nFitPts>10

Au+Au dca <3 cm
|η| < 1 nσp < −3FXT: 4.5 nFitPts>10

Cu+Cu dca <3 cm
|η| < 1 nσp < −322.4, 62.4 and 200 nFitPts>10
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Fig. 3.16: (color online) The cartoon of charged particles Nch with Glauber quantities (b
and ⟨Npart⟩). The figure is taken from [52].
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Fig. 3.17: (color online) Normalized reference charged particle multiplicity (Nch) distri-
butions using only kaons and pions in |η| < 1.0 in Au+Au collisions at √sNN = 7.7, 11.5,
14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV.

3.3.1 For Au+Au Collisions
Fig. 3.17 shows the normalized reference charged particle multiplicity (Nch) distri-

butions using only kaons and pions in |η| < 1.0 in Au+Au collisions at √sNN = 7.7, 11.5,
14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The red lines are from Glauber simulation.
Tab. 3.5 shows the ⟨Npart⟩ and Nch for Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6,
27, 39, 54.4, 62.4 and 200 GeV.

3.3.2 For Fixed-Target Collisions
Fig. 3.18 shows the normalized reference charged particle multiplicity (Nch) distri-

butions using only kaons and pions in |η| < 1.0 in FXT collisions at √sNN = 4.5GeV. The
red lines are from Glauber simulation. In order to remove the pile-up events, the upper
limit on the reference multiplicity for an event in the most centrality bin was set to be
150. Tab. 3.6 shows the ⟨Npart⟩ and Nch for FXT collisions at √sNN = 4.5 GeV.

3.3.3 For Cu+Cu Collisions
Fig. 3.19 shows the normalized reference charged particle multiplicity (Nch) distri-

butions using only kaons and pions in |η| < 1.0 in Cu+Cu collisions at √sNN = 22.4, 62.4
and 200 GeVThe red lines are from Glauber simulation. Tab. 3.7 shows the ⟨Npart⟩ and
Nch for Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV.

3.4 Net-Proton Multiplicity Distributions
3.4.1 For Au+Au Collisions

Fig. 3.20 shows event-by-event net-proton multiplicity distributions for Au+Au colli-
sions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV for three centralities
(0-5%, 30-40% and 70-80%) at mid-rapidity. The error bars are statistical errors. The



38 3.4. NET-PROTON MULTIPLICITY DISTRIBUTIONS

Tab. 3.5: ⟨Npart⟩ and Nch for Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39,
54.4, 62.4 and 200 GeV.

√
sNN (GeV)

Centrality
0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

⟨Npart⟩

7.7 337 290 226 160 110 72 45 26 14

11.5 338 291 226 160 110 73 45 26 14

19.6 338 289 225 158 108 71 44 26 14

27 343 299 234 166 114 75 47 27 14

39 342 294 230 162 111 74 46 26 14

54.4 346.2 292.2 227.7 160.9 110.5 72.7 44.8 25.5 13.2

62.4 346.5 293.9 229.8 164.1 114.3 76.3 47.9 27.8 15.3

200 350.6 298.6 234.3 167.6 117.1 78.3 49.3 28.8 15.7

Nch

7.7 270 225 155 105 68 41 23 11 5

11.5 343 287 199 134 87 53 30 15 7

19.6 448 376 263 178 116 71 40 20 7

27 490 412 289 196 127 78 44 22 10

39 522 439 308 209 136 83 47 24 11

54.4 621 516 354 237 151 90 50 24 10

62.4 571 482 338 230 149 91 51 26 12

200 725 618 440 301 196 120 67 34 16

Fig. 3.18: (color online) Reference charged particle multiplicity (Nch) distributions using
only kaons and pions in |η| < 1.0 in FXT collisions at √sNN = 4.5 GeV.
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Tab. 3.6: ⟨Npart⟩ and Nch for FXT collisions at √sNN = 4.5 GeV

Centrality 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

⟨Npart⟩ 331 286 223 157 111 73 46 23 12

Nch 99 82 56 37 24 14 8 4 2

Fig. 3.19: (color online) Reference charged particle multiplicity (Nch) distributions using
only kaons and pions in |η| < 1.0 in Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV.

Tab. 3.7: ⟨Npart⟩ and Nch for Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV.

√
sNN (GeV)

Centrality
0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

⟨Npart⟩
22.4 109 106 98 81 59 41 27 18 11

62.4 113 110 102 86 62 42 28 18 11

200 113 110 99 76 54 36 24 15 9

Nch

22.4 128 108 76 53 36 23 15 9 5

62.4 174 153 115 85 58 38 24 15 9

200 236 198 138 80 53 34 21 13 7
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Fig. 3.20: (color online) Net-proton multiplicity distributions for Au+Au collisions at√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV for three centralities (0-5%,

30-40% and 70-80%) at mid-rapidity. The distributions are not corrected for the finite
centrality width effect nor for (anti-)proton reconstruction efficiency.

distributions are not corrected for the finite centrality width effect nor for (anti-)proton
reconstruction efficiency. The center and width of a distribution are the mean value and
standard deviation of the distribution correspondingly. It’s easily to see that, the most
central (0-5%) collisions have the more larger mean value and more widder distribution
for a fixed energy. The net-proton multiplicity distribution has the more larger mean
value and more wider distribution for a fixed centrality at low energy.

3.4.2 For Fixed-Target Collisions
Fig. 3.21 shows event-by-event proton multiplicity distributions for Au+Au colli-

sions FXT mode at √sNN = 4.5 GeV for three centralities (0-5%, 30-40% and 70-80%).
The distributions are not corrected for the finite centrality width effect nor for proton
reconstruction efficiency. The center and width of a distribution are the mean value and
standard deviation of the distribution correspondingly. It’s easily to see that, the most
central (0-5%) collisions have the more larger mean value and more width distribution
for a fixed energy. The low energy has the more larger mean value and more width
distribution for a fixed centrality.

3.4.3 For Cu+Cu Collisions
Fig. 3.22 shows event-by-event net-proton multiplicity distributions for Cu+Cu colli-

sions at √sNN = 22.4, 62.4 and 200 GeV for three centralities (0-5%, 30-40% and 70-80%)
at mid-rapidity within 0.4 < pT < 0.8 (GeV/c) . The distributions are not corrected for
the finite centrality width effect. The center and width of a distribution are the mean
value and standard deviation of the distribution correspondingly. It’s easily to see that,
the most central (0-5%) collisions have larger mean value and wider distribution for a
fixed energy. The low energy has the more larger mean value and more width distribution
for a fixed centrality.
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Fig. 3.21: (color online) Proton multiplicity distributions for Au+Au collisions FXT mode
at √sNN = 4.5 GeV for three centralities (0-5%, 30-40% and 70-80%). The distributions
are not corrected for the finite centrality width effect nor for proton reconstruction effi-
ciency.

Fig. 3.22: (color online) Net-proton multiplicity distributions for Cu+Cu collisions at√
sNN = 22.4, 62.4 and 200 GeV for three centralities (0-5%, 30-40% and 70-80%) at

mid-rapidity within 0.4 < pT < 0.8 (GeV/c) . The distributions are not corrected for the
finite centrality width effect nor for (anti-)proton reconstruction efficiency.
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3.5 Centrality Bin Width Correction
Usually, we present results in a wider centrality bin, such as 0-5%, 5-10%,...to have

smaller statistical error. However, different centrality bin width will have different re-
sults. So, in order to decrease the centrality bin width effect, we have proposed a anal-
ysis approach to calculate the moments, that is the Centrality Bin Width Correction
(CBWC)[55, 56]. The basic idea is in every centrality bin, taking weighted averaged for
every multiplicity bins:

Cn =
∑
i

wiCn,i (3.3)

wi =
ni∑
i ni

, (3.4)

where Cn,i is the n-th cumulant in i-th multiplicity bins in the centrality determination,
ni is the number of events in the i-th multiplicity bin and wi is the corresponding weight.
Fig. 3.23 shows cumulants of net-proton distributions as a function of ⟨Npart⟩ from Au+Au
collisions at √sNN = 7.7, 19.6 and 62.4 GeV. The results are shown with a default cen-
trality bin width corrected one and three different centrality bins (10%, 5% and 2.5%)
without centrality bin width correction. The results from the largest centrality bin with-
out CBWC have larger deviation from the default one with CBWC, and the results from
smallest centrality bin without CBWC are close to the default one with CBWC. So the
CBWC is important for the higher moments analysis.

3.6 Efficiency Correction
All the detectors at STAR have finite detecting efficiency in tracking the charged

particles. Usually, it’s not straightforward to get the efficiency corrected results for higher
cumulants directly, the basic idea is to treat the probability of detection efficiency as
a function of binomial distribution[57–62]. According to the definition Eq. 1.76, we
usually use ε to represent the detecting efficiency of the detector, then the the probability
distribution function of the binomial distribution can be expressed as:

B(k;N, ε) =
N !

k!(N − k)!
εk(1− ε)N−k (3.5)

where N is the produced particles and k is the measured particles.

3.6.1 For Au+ Au Collisions
In the STAR experiment, the TPC tracking efficiency are estimated by embedding

technique.
εTPC(pT ) =

Nreconstruction

Nembed

(3.6)

Fig. 3.24 shows the TPC efficiency as a function of pT for proton and anti-proton
within mid-rapidity at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 GeV.

The TOF efficiency is given by the ratio between the number of tracks detected by
TOF and the number of tracks detected by TPC. It can be written as:

εTOF =
N(|nσp|<2&0.6<m2<1.2)

N(|nσp|<2)

(3.7)
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Fig. 3.23: (color online) C1, C2, C3 and C4 of net-proton distributions from Au+Au
collisions at √sNN = 7.7, 19.6 and 62.4 GeV as a function of ⟨Npart⟩. The results are
shown for 10%, 5% and 2.5% centrality bins without CBWC and for 9 centrality with
CBWC. The bars are statistical errors.

Fig. 3.24: The efficiencies for detecting protons and anti-protons as a function of pT for
proton and anti-proton within mid-rapidity at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4
GeV.
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The final efficiency used in our analysis is the averaged efficiency of TPC and TOF, the
formula is:

⟨ε⟩ =
∫ b

a
ε(pT )f(pT )pTdpT∫ b

a
f(pT )pTdpT

(3.8)

where ε(pT ) is the transverse momentum dependence efficiency, f(pT ) is the efficiency
corrected transverse momentum spectra for (anti-)proton, (a, b) is the momentum range.

In the momentum analysis, if the spectra of proton and anti-proton is known. And
in the lower pT range, only TPC is used, in the higher pT range, both TPC and TOF are
used. Thus, according the above efficiency formula, we can obtain the averaged efficiency
for proton and anti-proton at low and high pT range. Then, we can get the various order
efficiency corrected cumulants for proton, anti-proton and net-proton.

The averaged efficiency for proton and anti-proton at low and high pT range can be
written as:

⟨εp(p̄)l⟩ =
∫ 0.8

0.4
εTPCf(pT )pTdpT∫ 0.8

0.4
f(pT )pTdpT

(3.9)

⟨εp(p̄)h⟩ =
∫ 2.0

0.8
εTPCεTOFf(pT )pTdpT∫ 2.0

0.8
f(pT )pTdpT

(3.10)

Fig. 3.25 shows the averaged efficiency as a function of collision centrality for proton
and anti-proton for lower pT range (0.4 < pT < 0.8 (GeV/c) ) and higher pT range (0.8 <
pT < 2.0 (GeV/c) ) at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV.

If the proton and anti-proton have same detecting efficiency, εp = εp̄, then the various
order efficiency corrected cumulants for net-proton can be expressed as the terms of the
efficiency and the measured cumulants:

C
Np−Np̄

1 =
⟨np⟩ − ⟨np̄⟩

ε
(3.11)

C
Np−Np̄

2 =
C

np−np̄

2 + (ε− 1)(⟨np⟩+ ⟨np̄⟩)
ε2

(3.12)

C
Np−Np̄

3 =
C

np−np̄

3 + 3(ε− 1)(C
np

2 − C
np̄

2 ) + (ε− 1)(ε− 2)(⟨np⟩ − ⟨np̄⟩)
ε3

(3.13)

C
Np−Np̄

4 =
C

np−np̄

4 − 2(ε− 1)C
(np−np̄

3 + 8(ε− 1)(C
np

3 + C
np̄

3 )

ε4

+
(5− ε)(ε− 1)C

np−np̄

2 + 8(ε− 1)(ε− 2)(C
np

2 + C
np̄

2 )

ε4

+
(ε2 − 6ε+ 6)(ε− 1)(⟨np⟩+ ⟨np̄⟩)

ε4
(3.14)

However, the efficiency of proton and anti-proton will depend on the phase space (y,
pT and ϕ). For simplicity, we only consider two subspace phase, the low pT and high pT
range. In the two subspace, the efficiencies of proton and anti-proton are constant. Then
the multivariate factorial moments of proton and anti-proton distributions can be easily
corrected according to the efficiency corrected formula:

Fu,v,i,j(Npl, Nph, Np̄l, Np̄h) =
fu,v,i,j(npl, nph, np̄l, np̄h)

(εpl)u(εph)v(εp̄l)i(εp̄h)j
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Fig. 3.25: (color online) The averaged efficiency as a function of collision centrality for
proton and anti-proton for lower pT range (0.4 < pT < 0.8 (GeV/c) ) and higher pT range
(0.8 < pT < 2.0 (GeV/c) ) at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200
GeV.
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Fig. 3.26: (color online) Centrality dependence of C1, C2, C3 and C4 for proton, anti-
proton and net-proton distributions in Au+Au collisions at √sNN = 7.7 −200 GeV. The
results are CBW-corrected but not are corrected for proton and anti-proton reconstruction
efficiency. The bars are statistical errors.

where εpl, εph, εp̄l, and εp̄h are the proton and anti-proton efficiencies in the two subspace,
which we have discussed in the figure Fig. 3.25, npl, nph, np̄l, np̄h are the number of proton
and anti-proton, fu,v,j,k(npl, nph, np̄l, np̄h) is the measured multivariate factorial moments
of proton and anti-proton multiplicity distributions and Fu,v,i,j(Npl, Nph, Np̄l, Np̄h) is the
true multivariate factorial moments. More details about the efficiency correction you
can find [57]. Fig. 3.26 shows the centrality dependence of efficiency uncorrected Cn

for proton, anti-proton and net-proton multiplicity distributions in Au+Au collisions at√
sNN = 7.7 −200 GeV. The results are CBW-corrected but not are corrected for proton

and anti-proton reconstruction efficiency.

3.6.2 For Fixed-Target Collisions
Fig. 3.27 shows the TPC efficiency for proton as a function of pT for FXT collisions

at √sNN = 4.5 GeV.

3.7 Uncertainty Estimation

3.7.1 Statistical Error Estimation
We usually use the general error formula to calculate the statistical errors of cu-

mulants and cumulant ratios of net-proton multiplicity distributions based on the Delta



CHAPTER 3. ANALYSIS DETAILS 47

Fig. 3.27: (color online) The TPC efficiency for proton as a function of pT for FXT
collisions at √sNN = 4.5 GeV.

theorem[63]:

V (ψ) =
n∑

i=1,j=1

∂ψ

∂Xi

∂ψ

∂Yi
Cov(Xi, Yj)

=
n∑

i=1

(
∂ψ

∂Xi

)2V (Xi) +
n∑

i=1,j=1,i ̸=j

∂ψ

∂Xi

∂ψ

∂Yi
Cov(Xi, Yj) (3.15)

where V (Xi) and V (Yj) are the variance of the random Xi and Yj, and Cov(Xi, Yj) is
the covariance of random Xi and Yj. The covariance Cov(Xi, Yj) can be written as the
terms of the multivariate moments, which are easily efficiency corrected. Then we have
the following relationship between the statistical errors and the efficiency, the variance
and statistics:

Error(Cn) ∝
σn

√
nεn

(3.16)

Error(Sσ) ∝ σ√
nε3/2

(3.17)

Error(κσ2) ∝ σ2

√
nε2

(3.18)

where σ is the width of the distribution, n is the number of events, and ε is the efficiency.
Fig. 3.28 shows the statistical errors of the efficiency corrected cumulant ratios as a
function of efficiency for a Skellam distribution with 1 million statistics according to the
delta theorem. The statistical errors of the cumulant ratios are proportional to the power
of the standard deviation and are dramatically increase with the decreasing efficiency
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Fig. 3.28: The statistical errors of efficiency corrected cumulant ratios (κσ2, Sσ and
σ2/M) as a function of efficiency for a Skellam distribution with 1 million statistics
according to the Delta theorem[57].

number. These data points can be fitted with functional form:

f(ε) =
1√
n

a

εb
(3.19)

where n is the number of events which is fixed to be one million here, a and b are free
parameters. The fitting parameters of a and b are 40.6 and 2.06 for κσ2, 6.02 and 1.65
for Sσ, 4.96 and 0.89 for σ2/M , respectively.

3.7.2 Systematic Error Estimation
To estimate systematic uncertainties in the higher moment analysis, we varied 4

track cuts (dca, nFitPts, nσp, m2) and TPC/TOF efficiency (ε), which are listed in the
Tab. 3.8. The dca mainly controls the fraction of background protons which are knocked
out from the beam pipe by other particles [50]. The selection of a sufficiently large
number of fit points can suppress track splitting in the TPC. The purity of the proton
samples can be controlled by the Z variable of the ionization energy loss for the protons.
The quality cuts such as dca, nFitPts, nσp, m2 and ε(εl, εh) are used to estimate the
systematic errors. The default cuts used in the analysis are: dca < 1, nFitPts > 20,
|nσp| < 2, 0.6 < m2 < 1.2 and ε(εl, εh). When we vary one set of the cuts, the other
sets of cuts stick to the default value. For each set of the cuts, we can calculate the
point by point difference between the various cuts and the default cuts. The systematic
errors from one kind of cuts σYi

can be calculated as the square root of the sum of these
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Tab. 3.8: The track cuts (dca, nFitPts, nσp, m2) and TPC/TOF efficiency (ε) are used
to calculate the systematic errors.

Variable Default Cut Changed Cut

dca < 1.0 < 0.8 < 0.9 < 1.1 <1.2
nFitPts > 20 > 15 > 18 > 22 > 25
nσp <2.0 < 1.6 < 1.8 < 2.2 <2.5

m2 0.6 < m2 <1.2
0.5 < m2 < 1.1 0.55 < m2 < 1.15
0.65 < m2 < 1.25 0.7 < m2 < 1.3

Efficiency(ε) (εpl, εph, εp̄l, εp̄h)
1.05 ×( εpl, εph, εp̄l, εp̄h)
0.95 × (εpl, εph, εp̄l, εp̄h)

differences:

σYi
=

√√√√ 1

m

m∑
j

(Yi,j − Ydefault)2 (3.7.20)

where Yi,j and Ydefault are the observables from various sets of systematic cuts (dca,
nfitPts, nσp, m2 and ε(εl, εh)) and default cuts respectively, and m is the number of each
set of the cuts.

Then the total systematic errors σYsys can be calculated as the square root of the
sum of the errors from all sets of cuts:

σYsys =

√√√√ n∑
i

(σYi
)2 (3.7.21)

For example,

σYdca
=

√√√√1

4

4∑
j=1

(Ydca,j − Ydefault)2, σYε =

√√√√1

2

2∑
j=1

(Yε,j − Ydefault)2 (3.7.22)

σYsys =
√
σ2
Ydca

+ σ2
YnFitPts

+ σ2
Ynσp

+ σ2
Ym2

+ σ2
Yε

(3.7.23)

Fig. 3.29 shows the centrality dependence of efficiency corrected cumulants and their
ratios for net-proton distributions with the the changes in above selection criteria in Au +
Au collisions at √sNN = 200 GeV. The systematic uncertainties on the measurements are
obtained according to the Eq. 3.7.23. Tab. 3.9 shows the systematic errors of net-proton
cumulants for most central (0− 5%) Au + Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6,
27, 39, 54.4, 62.4 and 200 GeV.

3.7.3 Barlow Check on Net-Proton Systematic Errors
We must make sure that the systematic errors are not simply accounting for statisti-

cal fluctuations. Then the distribution of ∆Y
σB

for each systematic variation are constructed
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Fig. 3.29: (color online) Cumulants and their ratios as a function of ⟨Npart⟩, for net-proton
distributions with variation of track selection (dca, nFitPts), particle identification (nσp,
m2) and ε(εl, εh) and systematic errors within |y| < 0.5 and 0.4 < pT < 2.0 (GeV/c) in
Au + Au collisions at √sNN = 200 GeV.



CHAPTER 3. ANALYSIS DETAILS 51

Tab. 3.9: Total systematic uncertainty as well as uncertainties from individual sources
on net-proton Cn in Au+Au collisions at √sNN = 7.7 − 200 GeV.

√
sNN (GeV) Cumulants Sys. Uncert. dca nFitPts nσp m2 Efficiency

7.7

C1 2.42 0.849 0.784 0.987 0.028 1.877
C2 2.03 0.724 0.598 0.819 0.032 1.607
C3 1.65 0.60 0.971 0.537 0.314 1.02
C4 16.20 5.56 12.544 6.40 2.68 5.11

11.5

C1 2.82 1.76 1.027 1.129 0.033 1.59
C2 2.34 1.439 0.733 0.986 0.0197 1.37
C3 1.36 0.642 0.195 0.854 0.035 0.822
C4 7.37 2.278 4.099 4.941 2.6 1.062

14.5

C1 1.72 0.766 0.538 0.763 0.029 1.22
C2 1.60 0.693 0.494 0.742 0.021 1.13
C3 1.16 0.517 0.437 0.511 0.047 0.779
C4 8.06 2.89 3.10 5.412 0.714 4.15

19.6

C1 1.46 0.604 0.618 0.556 0.045 1.03
C2 1.46 0.619 0.619 0.573 0.041 1.02
C3 0.678 0.363 0.256 0.228 0.132 0.44
C4 3.65 0.856 1.987 2.58 0.585 0.89

27

C1 1.20 0.508 0.527 0.468 0.025 0.832
C2 1.44 0.666 0.627 0.568 0.027 0.961
C3 0.62 0.332 0.265 0.232 0.035 0.389
C4 3.10 1.58 1.36 1.80 0.375 1.360

39

C1 0.941 0.393 0.446 0.347 0.026 0.641
C2 1.48 0.668 0.671 0.594 0.033 0.970
C3 0.506 0.287 0.209 0.174 0.041 0.313
C4 3.346 0.9996 2.7642 1.428 0.196 0.646

54.4

C1 0.805 0.430 0.332 0.203 0.034 0.557
C2 1.57 0.878 0.646 0.388 0.065 1.06
C3 0.418 0.269 0.147 0.078 0.024 0.272
C4 2.92 1.17 1.39 1.91 1.23 0.212

62.4

C1 1.0345 0.449 0.492 0.351 0.044 0.709
C2 2.147 1.046 1.087 0.786 0.113 1.306
C3 0.575 0.143 0.222 0.297 0.081 0.408
C4 3.99 2.40 2.30 1.38 1.21 1.23

200

C1 0.390 0.190 0.237 0.111 0.01 0.217
C2 2.42 1.11 1.53 0.771 0.087 1.31
C3 0.390 0.241 0.183 0.192 0.074 0.136
C4 4.89 2.69 3.07 1.80 1.41 1.42
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as the criteria for passing the Barlow check [64]. And we can calculate ∆Y
σB

for each set
of systematic cuts for all centralities.

∆Y = Ydefault − Ysys, σB =
√
σ2
default − σ2

sys (3.7.24)

where Ydefault is the default value of an observable Y (C1, C2, C3, C4, C2/C1, C3/C2 and
C4/C2 ) with statistical error σdefault, and Ysys is the systematic value with statistical
error σsys.

For the ideal case, the distribution of ∆Y
σB

is Gaussian and satisfies the following
criteria:

(i) Mean = 0

(ii) Std Deviation = 1

(iii) 68% entries within |∆Y
σB
| < 1

(iv) 95% entries within |∆Y
σB
| < 2

However, for the common case, criteria loosened in this study because of low counts,
the distribution of ∆Y

σB
satisfies at least 3 of the following 4 criteria for passing Barlow

check:

(i) Mean = 0.3

(ii) Std Deviation = 1.3

(iii) 55% − 68% entries within |∆Y
σB
| < 1

(iv) 80% − 95% entries within |∆Y
σB
| < 2

We don’t need to consider that systematic variation in the calculation of systematic
errors when systematic variation passing the Barlow check. Fig. 3.30 shows the distribu-
tion of ∆Y

σB
(C1, C2, C3, C4, C2/C1, C3/C2 and C4/C2 ) for all sets of systematic cuts (dca,

nfitPts, nσp,m2 and ε) in Au+Au collisions at √sNN = 7.7 GeV for all centralities. It’s
obvious that the distributions of ∆Y

σB
for dca, nfitPts, nσp and m2 cuts don’t satisfy the

Barlow check. Although the distributions for efficiency cuts satisfy the first two condi-
tions, but 100% entries within |∆Y

σB
|, that is to say, all sets of systematic cuts failed the

Barlow check.

3.8 Model Study
Although our results can be compared to several models[17, 65–76], we have chosen

two different models which do not have phase-transition or critical- point physics. They
have contrasting physics processes to understand the following: (a) Effect of measuring
net-protons instead of net-baryons [77, 78], (b) Role of resonance decay for net-baryon
measurements[79–82], (c) Effect of finite pT acceptance for the measurements[83, 84] and
(d) Effect of net-baryon number conservation[77, 85, 86]. The model results also provide
an appropriate baseline for comparison to data.
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Fig. 3.30: Distribution of ∆Y
σB

(Y = C1, C2, C3, C4, C2/C1, C3/C2 and C4/C2 ) for all sets
of systematic cuts (dca, nfitPts, nσp,m2 and ε) in Au+Au collisions at √sNN = 7.7 GeV
for all centralities.
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3.8.1 Hadron Resonance Gas Model
The Hadron Resonance Gas (HRG) model includes all the relevant degrees of freedom

for the hadronic matter and also implicitly take into account the interactions that are
necessary for resonance formation[87, 88]. Hadrons and resonances of masses up to 3
GeV/c are included. Considering a Grand Canonical Ensemble picture, the logarithm of
the partition function (Z) in the HRG model is given as:

LnZ(T, V, µ) =
∑
B

lnZi(T, V, µi) +
∑
Z

lnZi(T, V, µi) (3.8.1)

where,

LnZi(T, V, µi) = ±
V gi
2π2

∫
dp3{1± exp[(µi − E)/T ]} (3.8.2)

T is the temperature, V is the volume of the system, µi is the chemical potential, E is the
energy and gi is the degeneracy factor of the ith particle. The total chemical potential
µi = BiµB + QiµQ + SiµS, where Bi, Qi and Si are the baryon, electric charge and
strangeness number of the ith particle, with corresponding chemical potentials µB, µQ and
µS, respectively. The “+” and “-” signs are for baryons (B) and mesons (M) respectively.
The nth order generalized susceptibility for baryons can be expressed as[88]:

χ
(n)
x,baryon =

xn

V T 3

∫
dp3

∞∑
k=0

(−1)k(k + 1)nexp{−(k + 1)E

T
}exp{(k + 1)µ

T
} (3.8.3)

And for mesons,

χ(n)
x,meson =

xn

V T 3

∫
dp3

∞∑
k=0

(k + 1)nexp{−(k + 1)E

T
}exp{(k + 1)µ

T
} (3.8.4)

The factor x represents either B, Q or S of the ith particle depending on whether the
computed χx represents baryon or electric charge or strangeness susceptibility.

For a particle of massm with pT , η and ϕ (azimuthal angle), the volume element (dp3)
and energy (E) can be written as dp3 = pTmT coshηdpTdηdϕ and E = mT coshη, where
mT =

√
p2T +m2. The experimental acceptance can be incorporated by considering the

appropriate integration ranges in pT , η, ϕ and charge states by considering the values of
|x|. The total generalized susceptibilities will then be the sum of the contributions from
baryons and mesons as, χ(n)

x =
∑
χ
(n)
x,baryon +

∑
χ
(n)
x,meson.

In order to make the connection to the experimental results, the beam-energy de-
pendence of µB and T parameters of the HRG model need to be provided. This is
obtained from the parameterization of µB and T as a function of √sNN [89]. The
µB dependence of the temperature is given as T (µB) = a − bµ2

B − cµ4
B with a =

0.166±0.002GeV, b = 0.139±0.016GeV−2 and c = 0.053±0.028GeV−3. The energy de-
pendence of µB is parameterized as µB(

√
sNN ) = d

1+e
√
sNN

with d = (1.308± 0.028)GeV
and e = (0.273 ± 0.008)GeV−1. Further, the ratio of baryon to strangeness chemical
potential is parameterized as µS

µB
≃ 0.164 ± 0.018√sNN .
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3.8.2 UrQMD Model
The UrQMD (Ultra relativistic Quantum Molecular Dynamics) model[90, 91] is a

microscopic transport model where the phase space description of the reactions are con-
sidered. It treats the propagation of all hadrons as classical trajectories in combination
with stochastic binary scattering, color string formation and resonance decays. It in-
corporates baryon-baryon, meson-baryon and meson-meson interactions. The collisional
term includes more than 50 baryon species and 45 meson species. The model preserves
the conservation of electric charge, baryon number, and strangeness number as expected
for QCD matter. It also models the phenomena of baryon-stopping, an essential feature
encountered in heavy-ion collisions, at lower beam energies. In this model, the space-
time evolution of the fireball is studied in terms of excitation and fragmentation of color
strings and formation and decay of hadronic resonances. It can simulate heavy-ion colli-
sions in the energy range from SIS (SchwerIonen Heavy-ion Synchrotron) to Relativistic
Heavy Ion Collider and Large Hadron Collider. Since the model does not include the
quark-hadron phase transition or the QCD critical point, the comparison of the data to
the results obtained from the UrQMD model will shed light on the contributions from the
hadronic phase and its associated processes, baryon number conservation and the effects
of measuring only net-protons relative to net-baryons.



Chapter 4

Results

In this chapter, we will present the centrality, energy, rapidity, pT and acceptance
dependence of cumulants and cumulant ratios of proton, anti-proton and net-proton for
Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. And
the centrality, energy, rapidity, pT and acceptance dependence of correlation function
of proton will also be presented. The centrality dependence of efficiency corrected cu-
mulants and cumulant ratios of proton for FXT collisions at √sNN = 4.5 GeV and the
centrality dependence of efficiency uncorrected cumulants and cumulant ratios of proton,
anti-proton and net-proton for Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV will
also be present.

4.1 Results for Au+Au collisions
Fig. 4.1 shows the centrality dependence of cumulants (C1, C2, C3 and C4 ) of proton,

anti-proton and net-proton multiplicity distributions for Au+Au collisions at √sNN =
7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The measurements are made in
mid-rapidity (|y| < 0.5) and 0.4 < pT < 2.0 (GeV/c) . The error bars are statistical
errors and the caps represent systematic errors. The Cn for proton, anti-proton and net-
proton increase with Npart at all the collision energies. At lower energies, the net-proton
cumulants has main contributions from protons. The larger values of C3 and C4 for most
central (0-5%) collisions shows the distributions are non-Gaussian. At higher energies,
the proton and anti-proton are almost pair produced. To make the C4 values at different
centralities have similar Y-axis scales, the values of C4 at √sNN = 7.7 GeV are divided
by 5.

Fig. 4.2 shows the centrality dependence of scaled correlation functions (κ2/κ1, κ3/κ1
and κ4/κ1) for proton and anti-proton multiplicity distributions for Au+Au collisions at√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The scaled correlation

functions are obtained from the measured Cn of proton and anti-proton distributions in
the acceptance |y| < 0.5 and 0.4 < pT < 2.0 (GeV/c) . The error bars are statistical
errors and the caps represent systematic errors.

The scaled two-particle correlation functions (κ2/κ1) for protons and anti-protons
are shown to be negative. The small values of κ2/κ1 for anti-protons at lower energies
are because of their low production yield. The scaled two-particle correlation functions
(κ2/κ1) of anti-protons show weak centrality dependence. The scaled two-particle cor-
relation functions (κ2/κ1) of protons decrease with collision centrality except for high
energy (√sNN = 200 GeV), and increase with the increasing energy for the most central

56
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4.1.1 Centrality Dependence

Fig. 4.1: (color online) Centrality dependence of C1, C2, C3 and C4 of proton, anti-proton
and net-proton multiplicity distributions for Au+Au collisions at √sNN = 7.7, 11.5, 14.5,
19.6, 27, 39, 54.4, 62.4 and 200 GeV. The measurements are made in mid-rapidity (|y|
< 0.5) and 0.4 < pT < 2.0 (GeV/c) . The error bars are statistical errors and the caps
represent systematic errors.

Fig. 4.2: (color online) Centrality dependence of scaled correlation functions
(κ2/κ1, κ3/κ1 and κ4/κ1) for proton and anti-proton multiplicity distributions for Au+Au
collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The correlation
function ratios are obtained from the measured Cn of proton and anti-proton distributions
in the acceptance |y| < 0.5 and 0.4 < pT < 2.0 (GeV/c). The error bars are statistical
errors and the caps represent systematic errors.
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Fig. 4.3: Centrality dependence of cumulant ratios ( C2/C1, C3/C2 and C4/C2 ) of proton,
anti-proton and net-proton multiplicity distributions for Au+Au collisions at√sNN = 7.7,
11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The measurements are made in mid-
rapidity (|y| < 0.5) and 0.4 < pT < 2.0 (GeV/c) . The error bars are statistical errors and
the caps represent systematic errors.

collision. The κ2/κ1 for protons and anti-protons are comparable at √sNN = 200 GeV.
The κ3/κ1 for protons and anti-protons are non-significant non-zero values. There

is no strong centrality dependence for κ4/κ1 observed for all the collision energies.
In order to understand the evolution of centrality dependence of cumulants in Fig. 4.1,

we invoke the central limit theoremand consider the distribution at any given centrality
i to be a superposition of several independent source distributions[92] . Assuming the
average number of the sources for a given centrality are equal up to some number of times
the corresponding ⟨Npart⟩, the cumulants (Cn) should be linearly dependent on ⟨Npart⟩
and the cumulant ratios (C2/C1, C3/C2 and C4/C2 ) should be constant as a function of
⟨Npart⟩. Fig. 4.3 shows the centrality dependence of cumulant ratios (C2/C1, C3/C2 and
C4/C2 ) of proton, anti-proton and net-proton multiplicity distributions for Au+Au colli-
sions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. For higher energies
(above 19.6 GeV), the values of C2/C1 show a smooth decrease with increasing centrality
and for lower energies the dependence is small. The C3/C2 values show weak centrality
dependence and they are positive below unity for all the collision energies. The C3/C2

values of net-proton decrease with the increasing energies for all the centralities. For
proton and net-proton, the C4/C2 values decrease with increasing centralities except the
significant increase at √sNN = 7.7 GeV. Having presented the efficiency corrected results
for cumulants and cumulant ratios, we will focus on discussing the energy, rapidity, pT
and the acceptance dependence for most central (0− 5%) Au+Au collisions.

4.1.2 Rapidity Dependence
Fig. 4.4 shows the rapidity dependence of cumulants (C1, C2, C3 and C4 ) of proton,

anti-proton and net-proton multiplicity distributions for most central (0 − 5%) Au+Au
collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The X-axis
rapidity cut ymax is applied as |y| < ymax (−ymax < y < ymax,∆y = 2ymax). The measure-
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Fig. 4.4: Rapidity dependence of cumulants (C1, C2, C3 and C4 ) of proton, anti-proton
and net-proton multiplicity distributions for Au+Au collisions at √sNN = 7.7, 11.5, 14.5,
19.6, 27, 39, 54.4, 62.4 and 200 GeV. The error bars are statistical errors and the caps
represent systematic errors.

ments are made in the pT range between 0.4 and 2.0 GeV/c (0.4 < pT < 2.0 (GeV/c) ).
The Cn values for proton, anti-proton and net-proton increase with the increasing rapid-
ity window. The Cn values for proton and net-proton have similar values at √sNN < 27
GeV.

Fig. 4.5 shows the rapidity dependence of scaled correlation functions (κ2/κ1, κ3/κ1
and κ4/κ1) of proton and anti-proton multiplicity distributions for most central (0− 5%)
Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The
κ2/κ1 values for protons monotonically decrease as the increasing rapidity acceptance
window for all energies. For anti-proton, the κ2/κ1 values decrease with the increasing
rapidity window except for the low energies (√sNN < 19.6 GeV). For anti-proton, the
κ2/κ1 values show larger deviation from zero at higher energies and larger rapidity win-
dow. For proton, the κ3/κ1 values start to become negative at √sNN = 7.7 GeV when
the rapidity window is beyond ymax = 0.2. The κ4/κ1 values for proton show a monoton-
ically increasing behavior for most central (0 − 5%) Au+Au collisions at larger rapidity
window (|y|>0.2) at √sNN = 7.7 GeV, however, the κ4/κ1 values for proton are almost
independence on ∆y for other energies except for √sNN = 54.4 GeV.

Fig. 4.6 shows the rapidity dependence of cumulant ratios (C2/C1, C3/C2 and C4/C2 )
of proton, anti-proton and net-proton multiplicity distributions for most central (0−5%)
Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The
C2/C1 values for net-proton show a monotonic energy dependence, and the C2/C1 values
show the decrease with the increasing rapidity acceptance at√sNN < 39 GeV. The C3/C2

values show an energy dependence (decrease with increasing energy) and decrease with
increasing ∆y except for high energies. The C3/C2 values for protons and anti-protons
are similar at √sNN =62.4 and 200 GeV. At √sNN = 7.7 and 11.5 GeV, the C3/C2 values
of proton and net-proton are similar. The C4/C2 values for proton, anti-proton and net-
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Fig. 4.5: Rapidity dependence of scaled correlation functions (κ2/κ1, κ3/κ1 and κ4/κ1)
of proton and anti-proton multiplicity distributions for most central (0 − 5%) Au+Au
collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The X-axis
rapidity cut ymax is applied as |y| < ymax. The error bars are statistical errors and the
caps represent systematic errors.

Fig. 4.6: Rapidity dependence of cumulant ratios (C2/C1, C3/C2 and C4/C2 ) of proton,
anti-proton and net-proton multiplicity distributions for most central (0 − 5%) Au+Au
collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The measure-
ments are done for 0.4 < pT < 2.0 (GeV/c) . The error bars are statistical errors and the
caps represent systematic errors.



CHAPTER 4. RESULTS 61

Fig. 4.7: Transverse momentum dependence of cumulants (C1, C2, C3 and C4 ) of proton,
anti-proton and net-proton multiplicity distributions for most central (0 − 5%) Au+Au
collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The measure-
ments are made in mid-rapidity (|y| < 0.5). The error bars are statistical errors and the
caps represent systematic errors.

proton are similar and independent of rapidity window for √sNN > 39 GeV. The values
are close to unity, deviations from unity start to appear for proton and anti-proton at√
sNN = 27 GeV and decrease with the increasing ∆y. The C4/C2 values for proton and

net-proton increase with the increasing ∆y at at √sNN = 7.7 GeV. In Ref. [93], it has
been proposed to look at the rapidity dependence of cumulants (C1, C2, C3 and C4 ) to
understand the character of the system formed in the high energy heavy-ion collisions.

4.1.3 Transverse Momentum (pT) Dependence
Fig. 4.7 shows the pT dependence of cumulants (C1, C2, C3 and C4 ) of proton, anti-

proton and net-proton multiplicity distributions for most central (0− 5%) Au+Au colli-
sions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The error bars are
statistical errors and the caps represent systematic errors. At higher energies, all of the
Cn values of proton, anti-proton and net-proton, except C4, increase with increasing pT
acceptance. The C4 values are independent of pT . At lower energies, the Cn values of
proton and net-proton increase with pT acceptance, however the Cn values of anti-protons
remains constant due to their low production.

Fig. 4.8 shows the pT dependence of scaled correlation functions (κ2/κ1, κ3/κ1 and
κ4/κ1) of proton and anti-proton multiplicity distributions for Au+Au collisions at√sNN =
7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The κ2/κ1 values for protons and
anti-protons are negative and monotonically decrease with increasing pT acceptance at
high energies. At lower energies (√sNN < 19.6 GeV) no such decrease is observed for
protons and anti-protons. No significant three-particle correlations are observed as a
function as pT for protons and anti-protons for √sNN > 11.5 GeV. The κ4/κ1 values
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Fig. 4.8: Transverse momentum dependence of scaled correlation functions (κ2/κ1, κ3/κ1
and κ4/κ1) of proton and anti-proton multiplicity distributions for most central (0− 5%)
Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The
error bars are statistical errors and the caps represent systematic errors.

for anti-protons are almost zero for all collision energies, and for protons the κ4κ1 values
increase with the pT acceptance at √sNN = 54.4 and 62.4 GeV.

Fig. 4.9 shows the pT dependence of cumulant ratios (C2/C1, C3/C2 and C4/C2 ) of
proton, anti-proton and net-proton multiplicity distributions for most central (0 − 5%)
Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. It was
found that most of the ratios are weak independent on pT acceptance dependence for all
the energies. The C2/C1 values of protons, anti-protons and net-protons are similar for√
sNN < 27 GeV. The C3/C2 values for protons and anti-protons are similar at higher

energies, but differ from each other at lower energies. At √sNN = 7.7 GeV, the C4/C2

ratios for protons and net-protons increase with the increasing pT acceptance.

4.1.4 Acceptance Dependence
Fig. 4.10 shows the acceptance dependence (average number of proton, anti-proton

and sum of proton and anti-proton) of cumulants (C1, C2, C3 and C4 ) of proton, anti-
proton and net-proton multiplicity distributions for most central (0− 5%) Au+Au colli-
sions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. ∆y represents the
rapidity acceptance, and varied within 0.1 unit (∆y = 0.2, 0.4, 0.6, 0.8 and 1). ∆pT rep-
resents the pT acceptance and varied within 0.4 to 2 GeV/c (0.4 < pT < 1.0, 1.2, 1.4, 1.6
and 2.0 GeV/c). When changing the rapidity and pT acceptance, the number of protons
and anti-protons are varied. The C1, C2 and C3 of proton, anti-proton and net-proton
show a linear increase with the number of proton, anti-proton and the sum of them in the
acceptance. For C4 the variations with multiplicity acceptance are small except at √sNN
= 7.7 GeV. It’s observed that C4 values of protons and net-protons increase rapidly with
the multiplicity acceptance.
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Fig. 4.9: Transverse momentum dependence of cumulant ratios (C2/C1, C3/C2 and
C4/C2 ) of proton, anti-proton and net-proton multiplicity distributions for most cen-
tral (0 − 5%) Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and
200 GeV. The error bars are statistical errors and the caps represent systematic errors.

Fig. 4.10: Acceptance dependence (average number of proton, anti-proton and sum of
proton and anti-proton) of cumulants (C1, C2, C3 and C4 ) of proton, anti-proton and net-
proton multiplicity distributions for most central (0− 5%) Au+Au collisions at √sNN =
7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The error bars are statistical errors
and the caps represent systematic errors.
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Fig. 4.11: Acceptance dependence (average number of proton and anti-proton) of scaled
correlation functions (κ2/κ1, κ3/κ1 and κ4/κ1) of proton and anti-proton multiplicity
distributions for most central (0− 5%) Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6,
27, 39, 54.4, 62.4 and 200 GeV. The error bars are statistical errors and the caps represent
systematic errors.

Fig. 4.11 shows acceptance dependence (average number of proton and anti-proton)
of scaled correlation functions (κ2/κ1, κ3/κ1 and κ4/κ1) of proton and anti-proton mul-
tiplicity distributions for most central (0 − 5%) Au+Au collisions at √sNN = 7.7, 11.5,
14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The conclusions are similar to as seen for the
variation of κn/κ1 with centrality and rapidity acceptance. A strong particle multiplicity
dependence of κn/κ1 is observed for proton at √sNN = 7.7 GeV. From the above differ-
ent studies that scaled correlation functions for proton and anti-proton extracted from
the corresponding cumulant measurements, we found that the two-particle correlations of
protons are negative for most central (0− 5%) Au+Au collisions at all collision energies,
the three-particle correlation for protons are positive and the four-particle for protons
have a larger enhancement at √sNN = 7.7 GeV.

Fig. 4.12 shows the acceptance dependence (average number of proton, anti-proton
and sum of proton and anti-proton) of cumulant ratios (C2/C1, C3/C2 and C4/C2 ) of
proton, anti-proton and net-proton multiplicity distributions for most central (0 − 5%)
Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The
C2/C1 values are almost independent of multiplicity acceptance. The C3/C2 values of net-
protons decreases with increase in multiplicity acceptance. The net-proton and proton
C4/C2 values show weak dependence on multiplicity acceptance except √sNN = 7.7 GeV.
A strong increase of net-proton and proton C4/C2 ratios are observed when increasing
the total number of protons and anti-protons at √sNN = 7.7 GeV.

As discussed in [62, 78, 94, 95], the cumulants (Cn) and correlation functions (κn) are
expected to grow with increasing in ∆y and pT acceptance and then saturate in the limit
of full acceptance. When the rapidity acceptance (∆y) is much smaller than the typical
correlation length (ξ) of the system (∆y ≪ ξ), the Cn and κn should scale with some power
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Fig. 4.12: Acceptance dependence (average number of proton, anti-proton and sum of pro-
ton and anti-proton) of cumulant ratios (C2/C1, C3/C2 and C4/C2 ) of proton, anti-proton
and net-proton multiplicity distributions for most central (0− 5%) Au+Au collisions at√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV.

of number of accepted mean particle multiplicities and ∆y as Cn, κn ∝ (∆N)n ∝ (∆y)n.
While in the regime where the rapidity acceptance becomes much larger than ξ (∆y ≪ ξ
), the Cn, κn scale linearly with ∆y or mean multiplicity in the acceptance, and cumulant
ratios are expected to be acceptance independent. On the other hand, the effect of
baryon number conservation plays an important role on proton cumulants and correlation
functions in heavy-ion collisions, especially at low energies. It is the main reason for the
negative two-particle correlation functions of proton and anti-proton[39, 40]. Dependence
of the cumulants and correlation functions on ∆y, p and mean proton and anti-proton
multiplicities provide data to understand various effects in more detail.

4.1.5 Energy Dependence
Fig. 4.13 shows the variation of χB

2 /χ
B
1 , χ

B
3 /χ

B
2 and χB

4 /χ
B
2 as a function of √sNN

from a hadron resonance gas model. The results are shown for different pT acceptances.
The differences due to acceptance are very small, the maximum effect of which is at
the level of 5% for √sNN = 7.7 GeV for χB

4 /χ
B
2 . The HRG results also show that the

net-proton results with resonance decays are smaller compared to net-baryons and larger
than net-protons without the decay effect. Here also the effect is at the level of 5% for
the lowest √sNN and smaller at higher energies in case of χB

4 /χ
B
2 . The corresponding

effect on χB
3 /χ

B
2 and χB

2 /χ
B
1 is larger at the higher energies and of the order of 17% for

net-proton without resonance decay and net-baryon, while the effect is 10% for net-proton
with resonance decays and net-baryons[87].

Fig. 4.14 left shows energy dependence of net-baryon C2/C1, C3/C2 and C4/C2 for
various pT acceptance from UrQMD model. It was observed that the larger pT acceptance
is, the smaller values of cumulant ratios are. Further, with the same pT acceptance, the
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Fig. 4.13: (color line) (left) pT dependence of χB
2 /χ

B
1 , χ
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2 and χB
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2 with √sNN

from hadron resonance gas model. (right) The energy dependence of χX
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X
1 , χ

X
3 /χ

X
2

and χX
4 /χ

X
2 within the experimental acceptance. Where X is the net-baryon, net-proton

without resonance decay and net-proton with resonance decay[87].

Fig. 4.14: (color line) (left) Energy dependence of C2/C1, C3/C2 and C4/C2 of net-baryon
from different pT acceptance from UrQMD model[90, 91]. (right) Energy dependence
of C2/C1, C3/C2 and C4/C2 of net-proton and net-baryon from UrQMD model within
experimental acceptance.
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Fig. 4.15: Collision energy dependence of cumulants and cumulant ratios
(C1, C2, C3, C4, C2/C1, C3/C2 and C4/C2 ) of proton, anti-proton and net-proton mul-
tiplicity distributions for most central (0 − 5%) Au+Au collisions at √sNN = 7.7, 11.5,
14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV from STAR experiment. The measurements
are done for |y|< 0.5 and 0.4 < pT < 2.0 (GeV/c) . The error bars are statistical errors
and the caps represent systematic errors.

values of net-baryon C4/C2 and C2/C1 ratios decrease with decreasing energies. Fig. 4.14
right also shows the comparison of the cumulant ratios for net-baryon and net-proton
within the experimental acceptance for various energies. It can be found that the dif-
ferences between results from different acceptance are larger for UrQMD compared to
HRG model. In UrQMD the difference be- tween net-baryon and net-protons are larger
at the lower beam energies for a fixed pT and y acceptance. The negative C4/C2 values
of net-baryons observed at low energies are mainly due to the effect of baryon number
conservation.

Fig. 4.15 shows the collision energy dependence of cumulants and cumulant ratios
(C1, C2, C3, C4, C2/C1, C3/C2 and C4/C2 ) of proton, anti-proton and net-proton multi-
plicity distributions for most central (0 − 5%) Au+Au collisions at √sNN = 7.7, 11.5,
14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The Cn for anti-proton increase with energies.
The C1 and C3 values for proton and net-proton decrease with energies, while the C2

and C4 for net-proton show a non-monotonic dependence on energies . The Cn values for
net-proton and proton are similar for √sNN < 19.6 GeV. Also shown in Fig. 4.15 are the
ratios C2/C1, C3/C2 and C4/C2 for proton, anti-proton and net-proton as a function of
energies. for most central (0− 5%) Au+Au collisions. The C2/C1 values for proton and
anti-proton are close to unity, however for net-proton the values increase with energies.
The C3/C2 values for anti-proton smoothly approach unity with decreasing in energies.
While those for proton start to deviate from anti-proton for √sNN < 54.4 GeV. The
net-proton C3/C2 shows a non-monotonic variation with energies. The C4/C2 values for
anti-proton are close to unity. While those for proton and net-proton closely follow the
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Fig. 4.16: Collision energy dependence of cumulant ratios (C2/C1, C3/C2 and C4/C2 )
of net-proton multiplicity distributions for most central (0 − 5%) Au+Au collisions at√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The results are com-

pared to corresponding values from UrQMD and HRG models within the experimental
acceptances. The bars on the data point are statistical errors and the caps represent
systematic errors. The widths of the bands reflect the statistical uncertainties with the
model calculations.

non-monotonic variation with √sNN .
Fig. 4.16 shows the comparison between experimental measurements of C2/C1, C3/C2

and C4/C2 of net-proton distributions for most central (0 − 5%) Au+Au collisions as a
function of √sNN with the corresponding results from HRG and UrQMD models. We
observe both the models, which do not have phase transition effects, show monotonic
variations of the cumulant ratios with beam energy. However the experimental mea-
surements of C3/C2 and C4/C2 ratios show a non-monotonic variation with √sNN . The
C2/C1 ratios in both model and data show a smooth increase with √sNN . It may be
noted that higher-order cumulants are more sensitive to the correlation length of the
system.

Based on Eq. 1.67, the cumulants can be expressed into the sum of various order
multi-particle correlation functions. In order to understand the contributions to the
(anti-)proton cumulants from different physics effects, one can present different orders of
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Fig. 4.17: Energy dependence of normalized cumulants and correlation functions of proton
and anti-proton multiplicity distributions for Au+Au collisions at √sNN = 7.7, 11.5, 14.5,
19.6, 27, 39, 54.4, 62.4 and 200 GeV. The error bars are statistical errors and the caps
represent systematic errors.
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correlation functions, separately.
Fig. 4.17 shows the energy dependence of the scaled (anti-)proton cumulants and

correlation functions for most central (0 − 5%) Au+Au collisions. We found that the
scaled second cumulants minus unity are negative and show a decreasing trend for proton
with decreasing collision energies. These energy dependence trends are mainly dominated
by the two-particle correlation of proton. The negative values of κ2 are mainly due to the
effects of baryon number conservation. For the scaled third-order cumulants of proton,
the contribution is mainly dominated by the two-particle correlation, due to the small
three particle correlation of proton. For the scaled fourth-order cumulants of proton,
we observe a non-monotonic energy dependence. The behavior is dominated by the
combination of large enhancement of the four-particle and suppression of two-particle as
the energy decreases. As discussed in [48, 94, 96], the observed large proton C4 or κ4 at√
sNN = 7.7 GeV are very important and could be related to the signature of critical point

or the first order phase transition. The three and four-particle correlation functions for
anti-proton show a flat energy dependence.

We also show the results from UrQMD calculations to compare with the experimental
data. The energy dependence trends for second and third-order (anti-)proton cumulants
and correlation functions can be qualitatively described by the UrQMD model. However,
the non-monotonic energy dependence trend for fourth-order proton cumulants observed
in the STAR data cannot be explained by the UrQMD model. On the other hand, the
three and four-particle correlation functions for (anti-)proton from UrQMD show almost
no energy dependence and are consistent with zero. It indicates that the higher-order (n
> 2) (anti-)proton correlation functions are not sensitive to the effect of baryon number
conservation, which could serve as a good probe of the critical fluctuations in heavy-ion
collisions[82, 83].

4.2 Results for Fixed-Target Collisions
Fig. 4.18 and Fig. 4.19 shows the centrality dependence of C1, C2, C3, C4, C2/C1, C3/C2

and C4/C2 for proton multiplicity distributions for Au+Au collisions in FXT mode at√
sNN = 4.5 GeV. The measurements are made in −2 < yp < 0 within 0.4 < pT <

2.0 (GeV/c)with efficiency uncorrected and corrected. Due to the low production of anti-
proton at √sNN = 4.5 GeV, we only consider the proton. The efficiency corrected C1

and C2 values linearly increase with the increasing averaged number of participant nu-
cleons. The efficiency corrected C3 dropped to zero at most central (0 − 5%) Au+Au
collisions. The C2/C1 value has weak centrality dependence. The C3/C2 value decreases
from mid-central to most central. The C4/C2 value increases from mid-central to most
central. Since the FXT data is the test run and have very little statistics at √sNN = 4.5
GeV, the results can be wildly inaccurate, but is still can provide a baseline for the future
FXT energies.

4.3 Cumulants and Cumulant Ratios for Cu+Cu col-
lisions

Fig. 4.20 shows the centrality dependence of C1, C2, C3 and C4 for proton, anti-
proton and net-proton multiplicity distributions for Cu+Cu collisions at √sNN = 22.4,
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Fig. 4.18: The centrality dependence of C1, C2, C3 and C4 for proton multiplicity distri-
butions for Au+Au collisions in FXT mode at √sNN = 4.5 GeV. The measurements are
made in −2 < yp < 0 within 0.4 < pT < 2.0 (GeV/c) . The error bars are statistical
errors.
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Fig. 4.19: The centrality dependence of C2/C1, C3/C2 and C4/C2 for proton multiplicity
distributions for Au+Au collisions in FXT mode at √sNN = 4.5 GeV. The measurements
are made in −2 < yp < 0 within 0.4 < pT < 2.0 (GeV/c) . The error bars are statistical
errors.
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Fig. 4.20: The centrality dependence of C1, C2, C3 and C4 for proton , anti-proton and
net-proton multiplicity distributions for Cu+Cu collisions at √sNN = 22.4, 62.4 and
200 GeV. The measurements are made in mid-rapidity (|yp| < 0.5) within low pT range
(0.4 < pT < 0.8 (GeV/c) ). The error bars are statistical errors.
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Fig. 4.21: The centrality dependence of C2/C1, C3/C2 and C4/C2 for proton multiplicity
distributions for Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV. The measurements
are made in |yp| < 0.5 within 0.4 < pT < 0.8 (GeV/c) . The error bars are statistical
errors.

62.4 and 200 GeV. The measurements are made in |yp| < 0.5 within 0.4 < pT <
0.8 (GeV/c) with efficiency uncorrected. The efficiency uncorrected cumulants (C1, C2, C3

and C4 ) of proton, anti-proton and net-proton linearly increase with the increasing av-
eraged number of participant nucleons.

Fig. 4.21 shows the centrality dependence of C2/C1, C3/C2 and C4/C2 for proton,
anti-proton and net-proton multiplicity distributions for Cu+Cu collisions at √sNN =
22.4, 62.4 and 200 GeV. The measurements are made in |yp| < 0.5 within 0.4 < pT <
0.8 (GeV/c) without efficiency corrections. The cumulant ratios (C2/C1, C3/C2 and
C4/C2 ) of proton, anti-proton and net-proton have weak centrality dependence.

Fig. 4.22 and Fig. 4.23 shows the energy dependence of C1, C2, C3, C4, C2/C1, C3/C2

and C4/C2 for proton, anti-proton and net-proton multiplicity distributions for most cen-
tral (0 − 5%) Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV. The measurements
are made in |yp| < 0.5 within 0.4 < pT < 0.8 (GeV/c) with efficiency uncorrected. The
efficiency uncorrected cumulants (C1, C2, C3 and C4 ) of anti-proton linearly increase with
the increasing averaged number of participant nucleons. The C1 and C3 values of net-
proton decrease with the increasing energies. The C2/C1 value of net-proton for most
central (0 − 5%) Cu+Cu collisions increases with the increasing energies. The C3/C2

value of net-proton for most central (0 − 5%) Cu+Cu collisions decreases with the in-
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Fig. 4.22: The energy dependence of C1, C2, C3 and C4 for proton, anti-proton and net-
proton multiplicity distributions for most central (0− 5%) Cu+Cu collisions at √sNN =
22.4, 62.4 and 200 GeV. The measurements are made in mid-rapidity (|yp| < 0.5) within
low pT range (0.4 < pT < 0.8 (GeV/c) ). The error bars are statistical errors.
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Fig. 4.23: The energy dependence of C2/C1, C3/C2 and C4/C2 for proton , anti-proton
and net-proton multiplicity distributions for most central (0− 5%) Cu+Cu collisions at√
sNN = 22.4, 62.4 and 200 GeV. The measurements are made in mid-rapidity (|yp| < 0.5)

within low pT range (0.4 < pT < 0.8 (GeV/c) ). The error bars are statistical errors.
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creasing energies. The C2/C1 and C3/C2 values for proton and anti-proton for most
central (0 − 5%) Cu+Cu collisions are close to unity for these three energies and they
have weak energy dependence. The C4/C2 value for proton and net-proton have weak
energy dependence. Since the embedding data for Cu+Cu collisions is in progress, the
efficiency corrected results haven’t shown in the thesis. However, if the efficiency cor-
rected results for Cu+Cu collisions are done, the comparison with Au+Au collisions can
be used as a tool for studying the system size of the system.



Chapter 5

Summary and Outlook

5.1 Summary
In summary, measurements of the cumulants of net-proton, proton and anti-proton

distributions up to fourth-order at mid-rapidity (|y| < 0.5) within 0.4 < pT < 2.0 (GeV/c)
in Au+Au collisions over a wide range of √sNN have been presented to search for a
possible critical point and signals of a phase transition in the collisions. The measurements
are presented as a function of collision centrality, y, pT and average number of protons
and anti-protons in the acceptance. Correlation functions for protons and anti-protons
have also been obtained from the measured cumulants for all of the energies studied.

The protons and anti-protons are identified with better than 97% purity using the
TPC and TOF detectors of STAR. The centrality selection has been done. Using pi-
ons and kaons at mid-rapidity to avoid self-correlation effects for the net-proton, proton
and anti-proton fluctuation measurements. The maximum allowed rapidity acceptance
at mid-rapidity has been used for centrality determination to minimize the effect of cen-
trality resolution. The variation of average number of protons and anti-protons in a wide
centrality bin has been accounted by doing the centrality bin width correction, which also
minimizes the volume fluctuation effects. The cumulants are corrected for the proton and
anti-proton. Reconstruction efficiency using binomial response function. The statistical
errors on the cumulants are based on the delta theorem method and are shown to be
consistent with those obtained by the bootstrap method. A detailed estimate of the sys-
tematic uncertainties has also been presented. Results on cumulant ratios from hadron
resonance gas[87] and UrQMD model[90, 91] have been presented to understand the ef-
fect of experimental acceptance in pT, resonance decay, net-proton versus net-baryons
and baryon number conservation effects.

The cumulant ratios show a centrality and energy dependence, which are neither
reproduced by non-CP transport model calculations, nor by a hadron resonance gas
model. Specifically the C4/C2 value for the most central (0 − 5%) Au+Au collisions
shows a non-monotonic variation with √sNN , with 3.1σ signification. A large value of
C4/C2 is observed for most central (0 − 5%) Au+Au collisions at √sNN = 7.7 GeV.
This is found to be due to four particle correlations in the system. The rapidity, pT and
proton+anti-proton multiplicity acceptance dependence of the cumulants and their ratios
provide valuable data to understand the acceptance dependence of the fluctuations in the
vicinity of critical point as discussed in [35, 97]. Specifically it will provide information
on the range of correlations and their relation to the acceptance of the detector. The
data presented here also provide information to extract freeze-out conditions in heavy-ion
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collisions using QCD based approaches[98–100].
The centrality dependence of cumulants and cumulant ratios of proton multiplicity

distributions in rapidity window -2 < y <0 and within 0.4 < pT < 2.0 (GeV/c) for
Au+Au collisions FXT mode at √sNN = 4.5 GeV have been presented. The centrality
and energy dependence of efficiency uncorrected cumulants and cumulant ratios of proton,
anti-proton and net-proton multiplicity distributions in rapidity window |y| < 0.5 and
within 0.4 < pT < 0.8 (GeV/c) for Cu+Cu collisions at √sNN = 22.4, 62.4 and 200 GeV
have been presented. Within uncertainties, the most central data of 200 GeV Cu+Cu
collisions are consistent with the corresponding centrality of 200 GeV Au+Au collisions.

5.2 Future Prospects
In the second phase of beam energy scan (BES-II) program, STAR will take about

10 to 20 times (depending on energy) statistics data than BES-I to confirm the non-
monotonic behavior observed in the fourth order fluctuations (κσ2) of net-protons in
Au+Au collisions in the BES-I measured by the STAR experiment. With more statistics,
the estimated BES-II statistical error will be smaller, and we’ll get more precise results
for measurements of higher-order moments of net-proton to search for the QCD critical
point.

In 2019, RHIC has started the second phase of the beam energy scan program[101].
Due to the stochastic electron cooling of ion beam, the luminosity for low energy runs
will be increased by a factor of four to fifteen, depending on beam energy. Meanwhile,
the upgrades to the STAR detector system will significantly improve the quality of the
measurements[101]. Primarily the goal is to make high-statistics measurements, with ex-
tended kinematic range in rapidity and transverse momentum for the measurements dis-
cussed in this thesis. In addition, STAR will make further improvements to the centrality
selection by having a dedicated detector at forward rapidity compared to the cumulants
measurements at mid-rapidity. The extended kinematic range in rapidity and transverse
momentum is brought about by upgrading the inner TPC (iTPC)[102] to extend the
measurement coverage to |η| < 1.5, pT acceptance to greater than 100 MeV/c and better
dE/dx resolution. Particle identification capability will be extended to −1.6 < η < 1.0
with the addition of an end-cap TOF (eTOF)[103] detector. The centrality selection will
be through the measurements of charged particles using Event Plane Detector (EPD)[104]
at 2.1 < |η| < 5.1. This detector is expected to provide forward event plane determi-
nation and centrality definition with a better control on self correlation effects. And
STAR have successfully installed the three detectors for Run-19. The upgrades of these
STAR detectors[105] are shown in Fig. 5.1 and Tab. 5.1. And the event statistics goals
for BES-II are given in Tab. 5.2. In addition, STAR will also run in fixed target mode
to make measurements up to 700 MeV in µB in the QCD phase diagram. In the Fixed
Target (FXT) mode, STAR will take about 100 million events at energies from √sNN =
7.7 to 3.0 GeV, which can further extend the energy coverage of the STAR experiment
and allow us to explore the phase structure at higher baryon density region. The event
statistics goals for the future FXT program are given in Tab. 5.3. The BES-II program,
with these upgrades, will allow for high-statistics measurements, with an extended kine-
matic range in rapidity and transverse momentum, using sensitive observables, to reveal
the structure of the QCD phase diagram.

Fig. 5.2 shows energy dependence of the fourth-order net-proton fluctuations κσ2 and



80 5.2. FUTURE PROSPECTS

Fig. 5.1: The upgrade of STAR detector

Tab. 5.1: The STAR detector upgrades

iTPC EPD eTOF

|η| < 1.5 2.1 < |η| < 5.1 −1.6 < η < −1
Better dE/dx resolution Better centrality and event plane resolution Extend forward PID capability
Fully operational in 2019 Fully operational in 2018 Fully operational in 2019

Tab. 5.2: Statistics for the BES-II

√
sNN (GeV) BES-II/BES-I Statistics(M) µB(MeV) T(MeV)

7.7 2021/2010 100/4 422 140
9.1 2020 160 370 140
11.5 2020/2010 230/12 316 152
14.5 2019/2014 300/20 264 156
19.6 2019/2011 400/36 206 160
27 2018/2011 500/ 70 156 162
39 2010 86 112 164
54.4 2017 1000 83 165
62.4 2010 45 73 165
200 238 25 166
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Tab. 5.3: Statistics in Au+Au Collisions for Fixed Target mode

FXT Energy Year Statistics(M) µB(MeV)

3.0
2020

100

721
3.2 699
3.5 666
3.9 2019 633
4.5 589
5.2 2020 541
6.2 487
7.7 2019 420

Fig. 5.2: The energy dependence of the fourth-order fluctuations (κσ2) of net-proton
from BES-I and the estimated statistical BES-II error for net-proton for the most central
Au+Au collisions.
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the estimated statistical BES-II error for net-proton for the most central Au+Au collisions
measured by STAR at RHIC BES-I. Non-monotonic energy dependence behavior has
been observed, although the statistical errors are still large at energies below 20 GeV. The
HADES experiment recently reported the proton number fluctuation in Au+Au collisions
at √sNN = 2.4 GeV[106]. It showed that the fourth order proton number fluctuations κσ2

of 0-10% central Au+Au collisions is about 0.2 but with large error bar touching unity,
although their kinematic cuts of protons are 0.4 < pT < 1.6 (GeV/c), |y| < 0.4[106], while
the cut for STAR is 0.4 < pT < 2.0 (GeV/c) , |y| < 0.5[27]. Thus, obviously, it is very
crucial to perform precise measurement of proton number fluctuation between √sNN =
2−8 GeV to confirm the possible peak structure at low energy region, which is predicted
by the theoretical model calculations with the assumption of presence of QCD critical
point. If the peak structure was confirmed, it might be the signature of QCD critical
point and/or the first order phase transition. In the near future, precise measurement
will be made with high statistics data from BES-II, both in collider (√sNN = 7.7−19.6
GeV) and FXT mode (√sNN = 3−7.7 GeV)[107]. The state of the art experimental
facilities, such as FAIR (√sNN = 2−5 GeV, CBM: FXT exp.)[108, 109], HIAF (√sNN
up to 2.25 GeV[110], CEE: FXT exp.) and NICA (√sNN = 4−11 GeV, MPD: collider
exp.)[111], aiming to explore the QCD phase structure at high baryon density are also
under construction.
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Appendix

A Formula

A.1 Formula for Moments

According to the definition of the central moments Eq. 1.28, we can express the
higher-order central moments as terms of the moments about zero:

µ1 ≡ E(X − EX) = 0 (A.1)

µ2 ≡ E(X − EX)2 = ⟨(X − ⟨X⟩)2⟩ = ⟨(δX)2⟩

= ⟨(X2 − 2X⟨X⟩+ ⟨X⟩2)⟩

= ⟨X2⟩ − ⟨X⟩2 (A.2)

µ3 ≡ E(X − EX)3 = ⟨(X − ⟨X⟩)3⟩ = ⟨(δX)3⟩

= ⟨(X3 − 3X2⟨X⟩+ 3X⟨X⟩2 − ⟨X⟩3)⟩

= ⟨X3⟩ − 3⟨X2⟩⟨X⟩+ 2⟨X⟩3 (A.3)

µ4 ≡ E(X − EX)4 = ⟨(X − ⟨X⟩)4⟩ = ⟨(δX)4⟩

= ⟨(X4 − 4X3⟨X⟩+ 6X2⟨X⟩2 − 4X⟨X⟩3 + ⟨X⟩4)⟩

= ⟨X4⟩ − 4⟨X3⟩⟨X⟩+ 6⟨X2⟩⟨X⟩2 − 3⟨X⟩4 (A.4)

where δX = X −⟨X⟩. Thus, the central moments can be expressed in terms of moments
about zero:

µ1 = 0 (A.5)

µ2 = m2 −m1 (A.6)

µ3 = m3 − 3m2m1 + 2m3
1 (A.7)

µ4 = m4 − 4m3m1 + 6m2m
2
2 − 3m4

1 (A.8)

92



REFERENCE 93

A.2 Formula for Cumulants
According to the definition of the cumulants Eq. 1.33, we have the expression for up

to forth-order cumulants:

C1 =
d

dt
logMX(t)|t=0 =

M
(1)
X (t)

MX(t)
|t=0

= ⟨X⟩ (A.9)

C2 =
d2

dt2
logMX(t)|t=0 =

d

dt
[
M

(1)
X (t)

MX(t)
]|t=0

=
M

(2)
X (t)

MX(t)
|t=0 − (

M
(1)
X (t)

MX(t)
)2|t=0

= ⟨X2⟩ − ⟨X⟩2

= ⟨(δX)2⟩ (A.10)

C3 =
d3

dt3
logMX(t)|t=0 =

d

dt
[
M

(2)
X (t)

MX(t)
− (

M
(1)
X (t)

MX(t)
)2]|t=0

=
M

(3)
X (t)

MX(t)
|t=0 − 3

M
(2)
X (t)

MX(t)

M
(1)
X (t)

MX(t)
|t=0 + 2(

M
(1)
X (t)

MX(t)
)3|t=0

= ⟨X3⟩ − 3⟨X⟩⟨X2⟩+ 2⟨X⟩3

= ⟨(δX)3⟩ (A.11)

C4 =
d4

dt4
logMX(t)|t=0 =

d

dt
[
M

(3)
X (t)

MX(t)
− 3

M
(2)
X (t)

MX(t)

M
(1)
X (t)

MX(t)
+ 2(

M
(1)
X (t)

MX(t)
)3]|t=0

= [
M

(4)
X (t)

MX(t)
]|t=0 − 4

M
(3)
X (t)

MX(t)

M
(1)
X (t)

MX(t)
|t=0 − 3[

M
(2)
X (t)

MX(t)
]2|t=0

+ 12
M

(2)
X (t)

MX(t)
[
M

(1)
X (t)

MX(t)
]2|t=0 − 6[

M
(1)
X (t)

MX(t)
]4|t=0

= ⟨X4⟩ − 4⟨X3⟩⟨X⟩ − 3⟨X2⟩2 + 12⟨X2⟩⟨X⟩2 − 6⟨X⟩4

= ⟨(δX)4⟩ − 3⟨(δX)2⟩2 (A.12)

A.3 Relationship between Cumulants and Moments
From Eq. A.10−Eq. A.12, the cumulants can also be written as the terms of moments:

C1 = m1 (A.13)
C2 = m2 −m2

1 = µ2 (A.14)
C3 = m3 − 3m2m1 + 2m3

1 = µ3 (A.15)
C4 = m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1 = µ4 − 3µ2
2 (A.16)
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And vice versa, according to the relationship of moment-generating function Eq. 1.26
and cumulant-generating function Eq. 1.32, the moments can be written as terms of
cumulant-generating function, and the terms of the cumulants:

mn =
dn

dtn
MX(t)|t=0 =

dn

dtn
eKX(t)|t=0 =M

(n)
X (0) (A.17)

where eKX(0) =MX(0) = 1, and K(n)
X (0) = Cn.

Thus, the up to fourth-order central moments can be expressed as:

m1 =
d

dt
eKX(t)|t=0 = eKX(t)K

(1)
X (t)|t=0

= C1 (A.18)

m2 =
d2

dt2
eKX(t)|t=0 =

d

dt
eKX(t)K

(1)
X (t)|t=0

= eKX(t)K
(2)
X (t)|t=0 + eKX(t)[(K

(1)
X (t)]2|t=0

= C2 + C2
1 (A.19)

m3 =
d3

dt3
eKX(t)|t=0 =

d

dt

{
eKX(t)K

(2)
X (t) + eKX(t)[(K

(1)
X (t)]2

}
|t=0

= eKX(t)K
(3)
X (t)|t=0 + 3eKX(t)K

(2)
X (t)K

(1)
X (t)|t=0 + eKX(t)[(K

(1)
X (t)]3|t=0

= C3 + 3C2C1 + C3
1 (A.20)

m4 =
d4

dt4
eKX(t)|t=0

=
d

dt

{
eKX(t)K

(3)
X (t) + 3eKX(t)K

(2)
X (t)K

(1)
X (t) + eKX(t)[(K

(1)
X (t)]3

}
|t=0

= eKX(t)K
(4)
X (t)|t=0 + 4eKX(t)K

(3)
X (t)K

(1)
X (t)|t=0 + 3eKX(t)[K

(2)
X (t)]2|t=0

+ 6eKX(t)K
(2)
X (t)[K

(1)
X (t)]2|t=0 + eKX(t)[(K

(1)
X (t)]4|t=0

= C4 + 4C3C1 + 3C2
2 + 6C2C

2
1 + C4

1 (A.21)

A.4 Formula for Factorial Moments
According to the definition of the factorial moments Eq. 1.53, we have the expression

for various order factorial moments:

F1 =
d

dt
⟨tX⟩|t=1 = ⟨XtX−1⟩|t=1 = ⟨X⟩ (A.22)

F2 =
d2

dt2
⟨tX⟩|t=1 =

d

dt
⟨XtX−1⟩|t=1

= ⟨X(X − 1)tX−2⟩|t=1

= ⟨X(X − 1)⟩

= ⟨X2⟩ − ⟨X⟩ (A.23)
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F3 =
d3

dt3
⟨tX⟩|t=1 =

d

dt
⟨X(X − 1)tX−2⟩|t=1

= ⟨X(X − 1)(X − 2)tX−3⟩|t=1

= ⟨X(X − 1)(X − 2)⟩

= ⟨X3⟩ − 3⟨X2⟩+ 2⟨X⟩ (A.24)

F4 =
d4

dt4
⟨tX⟩|t=1 =

d

dt
⟨X(X − 1)(X − 2)tX−3⟩|t=1

= ⟨X(X − 1)(X − 2)(X − 3)tX−4⟩|t=1

= ⟨X(X − 1)(X − 2)(X − 3)⟩

= ⟨X4⟩ − 6⟨X3⟩+ 11⟨X2⟩ − 6⟨X⟩ (A.25)

A.5 Formula for Correlation Function

According to the definition of the correlation function Eq. 1.59, we have the expres-
sion for various order correlation function:

κ1 =
d

dt
lnHX(t)|t=1 =

H
(1)
X (t)

HX(t)
|t=1 = F1 (A.26)

κ2 =
d2

dt2
lnHX(t)|t=1 =

d

dt

H
(1)
X (t)

HX(t)
|t=1

=
H

(2)
X (t)

HX(t)
|t=1 − (

H
(1)
X (t)

HX(t)
)2|t=1

= F2 − F 2
1 (A.27)

κ3 =
d3

dt3
lnHX(t)|t=1 =

d

dt
[
H

(2)
X (t)

HX(t)
− (

H
(1)
X (t)

HX(t)
)2]|t=1

=
H

(3)
X (t)

HX(t)
|t=1 − 3

H
(2)
X (t)

HX(t)

H
(1)
X (t)

HX(t)
|t=1 + 2(

H
(1)
X (t)

HX(t)
)3|t=1

= F3 − 3F2F1 + 2F 3
1 (A.28)

κ4 =
d4

dt4
lnHX(t)|t=1 =

d

dt
[
H

(3)
X (t)

HX(t)
− 3

H
(2)
X (t)

HX(t)

H
(1)
X (t)

HX(t)
+ 2(

H
(1)
X (t)

HX(t)
)3]|t=1

=
H

(4)
X (t)

HX(t)
|t=1 − 4

H
(3)
X (t)

HX(t)

H
(1)
X (t)

HX(t)
|t=1 − 3(

H
(2)
X (t)

HX(t)
)2|t=1

+ 12
H

(2)
X (t)

HX(t)
(
H

(1)
X (t)

HX(t)
)2|t=1 − 6(

H
(1)
X (t)

HX(t)
)4|t=1

= F4 − 4F3F1 − 3F 2
2 + 12F2F

2
1 − 6F 4

1 (A.29)
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A.6 Formula for Moments of Binomial Distributions

From Eq. 1.81−Eq. 1.84, moments of BD are given by:

m1 =
d

dt

∑
k=0

N !

k!(N − k)!
pkekt(1− p)N−k|t=0

=
∑
k=0

kN !

k!(N − k)!
pkekt(1− p)N−k|t=0

=
∑
k=1

Npet(N − 1)!

(k − 1)!(N − k)!
pk−1e(k−1)t(1− p)N−k|t=0

⇓ x = k − 1 (A.30)

=
∑
x=0

Npet(N − 1)!

x!(N − 1− x))!
pxetx(1− p)N−1−x|t=0

= Npet(1− p+ pet)N−1|t=0

= Np (A.31)

where kN !
k!(N−k)!

pkekt(1− p)N−k|t=0,k=0 = 0.

m2 =
d

dt

∑
k=0

kN !

k!(N − k)!
pkekt(1− p)N−k|t=0

=
∑
k=0

k2N !

k!(N − k)!
pkekt(1− p)N−k|t=0

=
∑
k=1

N !

(N − k)!
[
k − 1

(k − 1)!
+

1

(k − 1)!
]pkekt(1− p)N−k|t=0

⇓ x = k − 1 (A.32)

=
∑
x=0

xpetN(N − 1)!

x!(N − 1− x))!
pxetx(1− p)N−1−x|t=0 +Np

= N(N − 1)p2e2t(1− p+ pet)N−2|t=0 +Np

= N2p2 +Np(1− p) (A.33)
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m3 =
d

dt

∑
k

k2N !

k!(N − k)!
pkekt(1− p)N−k|t=0

=
∑
k

k3N !

k!(N − k)!
pkekt(1− p)N−k|t=0

=
∑
k

N !

(N − k)!
[
(k − 1)(k − 2) + 3(k − 1) + 1

(k − 1)!
]pkekt(1− p)N−k|t=0

= N(N − 1)(N − 2)p3e3t(1− p+ pet)N−3|t=0 + 3[N2p2 +Np(1− p)] +Np

= N(N − 1)(N − 2)p3 + 3N(N − 1)p2 +Np

= N3p3 − 3N2p2(1− p) +Np(1− 3p+ 2p2) (A.34)

m4 =
d

dt

∑
k

k3N !

k!(N − k)!
pkekt(1− p)N−k|t=0

=
∑
k

k4N !

k!(N − k)!
pkekt(1− p)N−k|t=0

=
∑
k

N !

(N − k)!
[
(k − 1)(k − 2)(k − 3) + 6(k − 1)(k − 2) + 7(k − 1) + 6

(k − 1)!
]pkekt(1− p)N−k|t=0

= N(N − 1)(N − 2)(N − 3)p4e4t(1− p+ pet)N−4|t=0

+ 6N(N − 1)(N − 2)p3 + 7N(N − 1)p2 + 6Np

= N(N − 1)(N − 2)(N − 3)p4 + 6N(N − 1)(N − 2)p3 + 7N(N − 1)p2 +Np

= N4p4 − 6N3p3(1− p) +N2p2(7− 18p+ 11p2) +Np(1− 7p+ 12p2 − 6p3) (A.35)

A.7 Formula for Cumulants of Binomial Distributions

According to the definition of the cumulants of BD Eq. 1.80, we have the expression
for various order cumulants of BD:

C1 = N
d

dt
ln(1− p+ pet)|t=0 = N

pet

1− p+ pet
|t=0

= Np (A.36)

C2 = N
d2

dt2
ln(1− p+ pet)|t=0 = N

d

dt

pet

1− p+ pet
|t=0

= N
pet

1− p+ pet
|t=0 −N(

pet

1− p+ pet
)2|t=0

= Np(1− p) (A.37)
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C3 = N
d3

dt3
ln(1− p+ pet)|t=0 = N

d

dt
[

pet

1− p+ pet
− (

pet

1− p+ pet
)2]|t=0

= N
pet

1− p+ pet
|t=0 − 3N(

pet

1− p+ pet
)2|t=0 + 2N(

pet

1− p+ pet
)3|t=0

= Np(1− p)(1− 2p)

= Np(1− 3p+ 2p2) (A.38)

C4 = N
d3

dt3
ln(1− p+ pet)|t=0

= N
d

dt
[

pet

1− p+ pet
− 3(

pet

1− p+ pet
)2 + 2(

pet

1− p+ pet
)3]|t=0

= N
pet

1− p+ pet
|t=0 − 7N(

pet

1− p+ pet
)2|t=0 + 12N(

pet

1− p+ pet
)3|t=0

− 6N(
pet

1− p+ pet
)4|t=0

= Np(1− 7p+ 12p2 − 6p3) (A.39)

Usually, we have:

d

dt
(

pet

1− p+ pet
)n|t=0 = n(

pet

1− p+ pet
)n|t=0 − n(

pet

1− p+ pet
)n+1|t=0

= npn − npn+1

= npn(1− p) (A.40)
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B Tables for Details

Tab. B.1: EventId cuts at √sNN = 7.7 GeV. The first column is the bad run number,
and the second column shows the event Id. For event boundary, we need to remove all
events before that event Id.

RunId EventId RunId EventId RunId EventId

11123022 21016 11126033 61875 11130005 33806
11124013 23879 11126034 50369 11130007 53262
11125072 64756 11126035 23438 11130010 37838
11125078 67273 11126044 53583 11130011 30055
11125079 78581 11129007 44492 11130022 54371
11125085 61019 11129027 22920 11130023 53040
11125100 58912 11129064 53517 11130024 54270
11125101 51412 11129074 45949 11130026 23619
11125102 47067 11129076 41697 11130043 23846
11126001 40854 11129077 52600 11140094 130816
11126004 44678 11129078 67841 11140096 66021
11126010 47188 11129079 30795 11141001 66960
11126011 78231 11129080 22733 11141021 62837
11126012 66410 11129081 62777 11141023 56108
11126014 28841 11129082 64989 11141068 29345
11126015 30924 11130001 66901 11143035 27277
11126028 24609 11130002 37324 11144010 20570
11126031 63731 11130003 48597 11144063 20562
11126032 33541 11130004 57035
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Tab. B.2: Bad eventId cuts at √sNN = 11.5, 14.5, 19.6, 27, 39 and 62.4 GeV.

√
sNN (GeV) EventId Cuts

11.5

if (RunId == 11148017) { if (EventId <= 42349) continue;}

if (RunId == 11148048) { if (EventId <= 29116) continue;}

if (RunId == 11148057) { if (EventId <= 42611) continue;}

if (RunId == 11148067) { if (EventId <= 24713) continue;}

if (RunId == 11148071) { if (EventId <= 40455) continue;}

if (RunId == 11149002) { if (EventId <= 36872) continue;}

if (RunId == 11149009) { if (EventId <= 31302) continue;}

if (RunId == 11149012) { if (EventId <= 21430) continue;}

if (RunId == 11149013) { if (EventId <= 23563) continue;}

if (RunId == 11149014) { if (EventId <= 34073) continue;}

if (RunId == 11149086) { if (EventId <= 20511) continue;}

if (RunId == 11150002) { if (EventId <= 20335) continue;}

if (RunId == 11151070) { if (EventId <= 34788) continue;}

if (RunId == 11157028) { if (EventId <= 27977) continue;}

14.5 if (RunId == 15049041) continue;

19.6

if (RunId == 12114001) { if (EventId > 300000) continue;}

if (RunId == 12114024) { if (EventId > 40000) continue;}

if (RunId >= 12114038 && RunId <= 12114121) continue;

if (RunId == 12115011) { if (EventId > 125000) continue;}

if (RunId == 12115092) { if (EventId > 180000) continue;}

if (RunId == 12115071) { if (EventId > 70000 && EventId < 110000) continue;}

if (RunId == 12119064) { if (EventId > 80000 && EventId < 130000) continue;}

27

if (RunId == 12176066) { if (EventId > 560000) continue;}

if (RunId == 12176017) { if (EventId>= 20000 && EventId <= 60000) continue;}

if (RunId == 12176018) { if (EventId>= 240000 && EventId <= 280000) continue;}

if (RunId == 12177053) { if (EventId>= 170000 && EventId <= 220000) continue;}

if (RunId == 12179023) { if (EventId>= 80000 && EventId <= 100000) continue;}

if (RunId == 12179061) { if (EventId>= 160000 && EventId <= 190000) continue;}

39
if (RunId == 11102085) { if (EventId >= 330000 && Eventid <= 410000 ) continue;}

if (RunId == 11102085) { if (EventId >= 500000 && EventId <= 560000 ) continue;}

62.4

if (RunId == 11085031) { if (EventId >= 210000 && EventId <= 260000 ) continue;}

if (RunId == 11086085) { if (EventId >= 225000) continue;}

if (RunId>= 11084046 && RunId<=11084050) continue;

if (RunId>= 11085047 && RunId<=11086019) continue;
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Tab. B.3: Bad events cut in Au+Au Collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39,
54.4, 62.4 and 200 GeV. These cuts should be included in the analysis.

√
sNN (GeV) nTofmatch and Beta_eta1 vs Refmult

7.7
if (nTofmatch ≤ 1 || nTofmatch < 0.5×(Refmult−20)) continue;

if (Beta_eta1 ≤ 0 || Beta_eta1 < 26×(Refmult−20)/33.)) continue;

11.5
if (nTofmatch ≤ 1 || nTofmatch < 0.4848×(Refmult−20)) continue;

if (Beta_eta1 ≤ 0 || Beta_eta1 < 29×(Refmult−20)/33.) continue;

14.5
if (nTofmatch ≤ 1 || nTofmatch < 10×(Refmult−20)/19.) continue;

if (Beta_eta1 ≤ 0 || Beta_eta1 < 14×(Refmult−20)/19.) continue;

19.6
if (nTofmatch ≤ 1 || nTofmatch < 0.5116×(Refmult−20)) continue;

if (Beta_eta1 ≤ 0 || Beta_eta1 < 37×(Refmult−20)/43.) continue;

27
if (nTofmatch ≤ 1 || nTofmatch < 0.5208×(Refmult−20) ) continue;

if (Beta_eta1 ≤ 0 || Beta_eta1 < 19×(Refmult−20)/22. ) continue;

39
if (nTofmatch ≤ 1 || nTofmatch < 0.5208×(Refmult−20)) continue;

if (Beta_eta1 ≤ 0 || Beta_eta1 < 7×(Refmult −20)/8.) continue;

54.4
if ((nTofmatch+10) ≤ 0.46× Refmult) continue;

if ((tofmult+100) ≤ 2.7×Refmult || (tofmult-230) ≥ 3.7× Refmult) continue;

62.4
if (nTofmatch ≤ 1 || nTofmatch < 0.5172× (Refmult−20)) continue;

if (Beta_eta1 ≤ 0 || Beta_eta1 < 21×(Refmult−21)/26.) continue;

200
if (nTofmatch ≤ 1 || nTofmatch < 0.5×(Refmult−40)) continue;

if ((Beta_eta1 ≤ 0 || Beta_eta1 < 25×(Refmult−40)/31.) continue;
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