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Abstract

The phase structure of the matter of quarks and gluons has been conjectured by many theories, which
is depicted as quantum chromodynamics (QCD) phase diagram with respect to temperature (T) and
baryon chemical potential (ug). Lattice QCD calculations predict a smooth crossover transition from
the hadronic gas to a deconfined state in which quarks and gluons are free to move by weak coupling,
so-called Quark-Gluon Plasma (QGP) at up = 0. On the other hand, the first-order phase transition is
predicted at large pp region. The connecting point between the first-order phase boundary and crossover
is called a QCD critical point.

The higher-order cumulant of conserved quantities is a powerful tool to probe the QCD phase struc-
ture. Various orders of cumulants of conserved quantities such as the number of net baryons, charge,
and strangeness are expected to be proportional to the correlation length which diverges near the critical
point. Furthermore, the fourth-order susceptibilities given by Lattice calculations predict a characteristic
enhancement near the critical point. Experimentally, to understand the QGP properties and QCD phase
structure, a hot and dense matter has been created by colliding two heavy ions. The Relativistic Heavy
Ton Collider (RHIC) at Brookhaven National Laboratory (BNL) is one of the heavy-ion colliders. To ex-
plore the critical point and phase transition, the Beam Energy Scan program has been carried out in the
RHIC-STAR experiment for Au+Au collisions from 7.7 to 200 GeV in center-of-mass energy. Through
recent measurements on the fourth- and sixth-order cumulants of net-proton multiplicity distribution, it
was found that the critical point could exist between 2.4 < /syy < 7.7 GeV, and the phase transition
at up = 25 GeV could be a smooth crossover.

Several signals of QGP formation have been observed in Au+Au collisions, on the other hand, it is
still not clear whether the QGP is created in the small system such as high multiplicity events of p+p
or p+A collisions. The strangeness enhancement and flow have been studied in p+p collisions, while
the results indicate that the signal of QGP formation is very uncertain. The fluctuation of conserved
quantities is a new viewpoint to explore the phase transition signal. In this study, precise measurements of
higher-order cumulants of net-proton number distributions were performed for p+p collisions to determine
physics baselines to be compared to those from Au+Au collisions. The goal of this study is to verify the
possibility of phase transitions in high multiplicity events of p+p collisions.

A lot of datasets have been analyzed to measure higher-order cumulants for Au+Au collisions, while
this is the first time to measure the cumulants for p+p collisions. We found that the particle multiplicity
is significantly affected by pileup events (superposition of more than one single collision events) in p+p
collisions. This issue was taken care of in two ways: by applying scaling corrections as a function of
luminosity, or by defining luminosity-independent particle multiplicity. The cumulants and their ratios
are compared with statistical baseline and PYTHIA 8 calculations. The higher-order cumulants deviate
from the statistical baselines at high multiplicity and the PYTHIA 8 calculations can not reproduce
the multiplicity dependence for both ways. The multiplicity dependence of the cumulant ratios shows
different trends for the two ways. PYTHIA 8 calculations can reproduce the multiplicity dependence with
the later way for most order of cumulant ratios. Based on the agreement of cumulants among different
luminosity groups, the later way was employed.

Acceptance and multiplicity dependence of cumulants and the ratios of net-proton distributions were
measured up to the sixth-order in p+p collisions at /s = 200 GeV. The acceptance |y| and pr depen-
dence of cumulants and their ratios are below the statistical baselines and the deviations increase with
increasing the rapidity and transverse momentum acceptance. The PYTHIA 8 calculations for cumulants
increase with increasing acceptance and deviate from the Skellam, while PYTHIA 8 do not reproduce the
observed values of both the observed cumulants and their ratios. The assumption of baryon number con-
servation within full phase space does not reproduce the deviation of normalized second-order cumulant
for both observed and PYTHIA 8, which indicates the origin of the deviation of the observed result is
beyond the effect of baryon number conservation. For the multiplicity dependence, observed cumulants
up to fourth-order show increasing trends, while the increasing of fifth- and sixth-order cumulants are
suppressed at high multiplicity. Values of sixth-order cumulant were found to stay positive, while they
show decreasing trend with increasing of multiplicity. The observed cumulants and their ratios deviate
from Skellam except for first-order cumulants and the larger deviations are shown in higher-order. The
PYTHIA 8 calculation of Cy/Cs, C5/Cy and Cg/Cy show decreasing trends with peaks near the mean



multiplicity, which qualitatively reproduces the observed trend, while PYTHIA 8 do not overlap the ob-
served multiplicity dependence and average values for most order of cumulants even if the effect of color
reconnection is considered. The average values show C5/C7 > 0 and Cs/Cs > 0 for p+p collisions, while
C5/C1 < 0 and Cs/Cs < 0 for central Au+Au collisions. Furthermore, the results from p+p collisions
fit into the centrality dependence of Au+Au collisions at the same energy. Lattice QCD calculations
show that the negative signs of fifth- and sixth-order cumulants indicate the chiral phase transition in
the thermalized QCD matter. In the results for p+p 200 GeV collisions, the values show decreasing from
positive value and show significantly small values at high multiplicity.
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Chapter 1

Introduction

1.1 Quantum chromodynamics (QCD)

One of the most fundamental goals in nuclear physics is to explore the constituents of matter and the
mechanisms of their interactions. During the past century, it was found that nuclei are composed of
nucleons, protons, and neutrons, and they are bounded by strong interactions over short distances.
Furthermore, the hadrons represented by the nucleons have internal structures and components of partons,
which was discovered in the deep inelastic scattering experiment in the 1960s. After that, the quark-
parton model was constructed to describe the structure of hadrons. It shows that the gluons can propagate
the interaction between quarks, which is strong interaction. Quarks and gluons are confined in hadrons
by the strong interaction. quantum chromodynamics (QCD) is an effective quantum theory based on
strong interaction. The quantum theory of electromagnetic interactions (QED) describes the meditation
by exchanging photons, while QCD describes the meditation by the exchange of gluons between quarks.
Instead the photon couples to the electric charge in QED, the gluon couples to a color charge of parton in
QCD. The coupling strength in QCD is much larger than in QED. The fundamental properties of QCD
theory are asymptotic freedom and confinement.

1.1.1 Asymptotic freedom

One of the properties of QCD theory is the asymptotic freedom at a short distance between quarks and
gluons. The QCD potential (V}.) is composed of the Coulomb potential at short distance and confinement
of quarks and gluons as:
4  ay
V= —= x = +kr, 1.1

" 3 r + (1.1)
where the a; is effective QCD coupling strength and r is the distance between two partons, and k is the
string tension. The first term is corresponding to the case of short distance. In the strong interactions,
the o is parameterized by the gauge coupling parameter g5, which is written as:

A
4m

ars (1) (1.2)

where p is the momentum transfer scale.

1.1.2 Confinement

As the experimental evidence of free quarks is not observed, it is believed that the quarks are confined
within hadrons (quark confinement). At a long distance (O(1fm)) between two quarks, the color force can
work with V. = kr in Eq. 1.1. In this case, the quarks are connected to each other with constant tension.
When the quarks are separated, a large amount of energy is stored on the connecting quarks. According to
Heisenberg’s uncertainty principle, quark pairs appear and disappear repeatedly in a vacuum. During the
string connection of the quarks becomes long, they are separated into pieces, and then the pieces create
many hadronic pairs (hadronization). The dynamics of strong interaction describe that gluons attract
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each other (self-interactions). The separation of quarks requires an infinite amount of energy. As a result
of gluon self-interactions, quarks and gluons are affected by color forces confined inside QCD potential.
This quark confinement is numerically described by a first principle non-perturbative calculation called

Lattice QCD.

1.2 QCD phase diagram

The phase of QCD matter is characterized by temperature (T) and baryon chemical potential (1p) which
is depicted as the QCD phase diagram as shown in Fig. 1.1. There are the hadronic gas phase and
Quark-Gluon Plasma (QGP) phase. In the 10~20 s after the Big Bang, the universe was filled with
super-hot and dense matter. The QGP is a deconfined state in which quarks and gluons were free to
move by weak coupling in that initial moment. In the heavy ion collisions, it is known that the QGP is
hadronized into a hadron gas via chemical freeze-out [20]. Although the nature of the phase transition
between these two phases is still experimentally uncertain, the transition at yg = 0 MeV is shown to
be a smooth crossover by Lattice QCD calculations [21,22]. On the other hand, the phase transition is
predicted to be the first-order transition at high up region [23]. If those predictions at low and high up
are true, there should also exist the QCD critical point which is a connecting point between the smooth
crossover and first-order transition. However, the locations of the critical point and phase transition lines

are unclear.

Quark-Gluon
Plasma

Temperature

Hadronic Gas

Baryon Chemical Potential p,

Figure 1.1: Hlustration of QCD phase diagram with predicted phase transition lines, critical point,
and the range of BES collision energies [1].

1.3 Observables

Higher-order fluctuation of conserved quantities can be used to probe the QCD phase structure. Fluctu-
ations (moments and cumulants) are important observable to characterize the shape of the distribution.

1.3.1 Definition

If the particle number N is given by a probability distribution function P(N) with > P(N) = 1,
nth-order moment about zero (non-central moment) u,, is written by:

pin = (N")=> N"P(N), (1.3)

where brackets represent average over events. The nth-order moment about the mean (central moments)
u, is defined as:

o = (ON)") = (N = (N)"). (1.4)
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The relationship between non-central and central moments for n > 1 can be written by:
n—1
n,n n n—m, m, n—m n
i = ot (Y, (15)
m=1
where the parentheses indicate binomial coefficients, () = n!/{n!(n —m)!}.

Cumulants are an alternative description of the moments to describe the shape of distributions. The
nth-order cumulant C), is expressed in terms of moments as:

Cy; = (N), (1.6)
G = ((ON) = o, (17)
C3 = ((ON)?) = ps, (1.8)
Ca = ((BN)*) =3((6N)?)* = g — 3113 (1.9)
Cs = ((6N)°) —10((6N)*){(6N)?) (1.10)
Cs = ((ON)®) = 15((6N)")((6N)?) = 10((8N)*)* 4 30((sN)*)? (1.11)
Co = fin— mZ (:;i) Conftn—m. (1.12)

The relationships between cumulants and variance (02), skewness (S), kurtosis (k) are given by

o = ((6N)?) = Oy, (1.13)
S = ((ON)*/0®) = C5/(Cy)*/?, (1.14)
ko= ((6N)*/oh) = Ca/(Co)?, (1.15)

where S is the skewness and « is the kurtosis that quantify the asymmetry and sharpness of the distri-
butions, respectively. Figure 1.2 shows examples of skewness S = 0, 0.5, 0.8 and kurtosis k = 1, 0, -1. It

0.5 .
k=1
K=l
0.4t - K=1 |
037 03}
x =
o o
021 0.2t
0.1+~ 0.1 f
0 0
4 4 3 2 1 0 1 2 3 4
X X

Figure 1.2: Hlustration of the distributions for third- (left) and fourth-order (right) cumulants with
examples of skewness S = 0, 0.5, 0.8 and kurtosis k = 1, 0, -1, respectively [2].

is found that the larger the magnitude of the S is the more left-(or right-)skewed the distribution, and
high kurtosis distributions have sharper peaks and wider tails.

In addition to the moments and cumulants, factorial moments and cumulants are used for efficiency
correction which will be addressed in Sec. 3.2. The definition of the nth-order factorial moment f, is
given by

N!
fa=(NXN(N—-1)x---x N(N n—|—1)>—<(N_n)!>. (1.16)

The relationships between factorial moment and factorial cumulant are the same as those between mo-
ments and cumulants:

k1 =C1, ko =—-C1+ Oy, (1.17)
k3 =2C1 —3Cy + C3, kg =—6C1 +11C5 —6C3 +Cy

where k1 is the mean for (anti-)protons. The factorial cumulants can be used to quantify differences from
the Poisson distributions in terms of n-particle correlations [17].
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1.3.2 Properties

For independent random variables X and Y each other, cumulants have additivity as:
Ch(X4+Y)=Ch(X)+ C,(Y), (1.18)

where the C),(X 4+ Y") shows nth-order cumulants of probability distributions for their sum (X +Y). In
the case of a distribution for difference between X and Y, cumulants are given by:

Co(X —Y) = Co(X) + (=1)"Cp(Y), (1.19)

where the odd-order cumulants are given by the difference of them, while even-order cumulants are sum
of them.

Various order cumulants of conserved quantities are expected to be proportional to the correlation
length (£) which diverges near the critical point [24] as:

Cy (ON)%)e = &7, (1.20)
Cy = ((6N)*)e ~ &, (1.21)
Cy = ((6N)he=¢, (1.22)
Cs = ((ON)*)e = €%, (1.23)
Co = ((6N)%), ~ ™2 (1.24)

Since the cumulants have a trivial volume dependence, the ratio between different orders of cumulants
is taken to cancel the volume terms. The products of cumulant ratios, So and ko2 can be directly
compared to ratios of baryon number susceptibilities in theoretical calculation as:

Cs Xg)

2 XB
C (4)

2_ Y4 _ Xp
2 Xs

where ngn) is nth-order thermodynamic susceptibilities for baryons calculated by Lattice QCD [3,25-27].
Susceptibilities are defined by:

(n) 3”(B/T4) - 1 B
Xp = 3(un TP = V73 x C), (1.27)

where the up and T are the finite baryon chemical potential and temperature, respectively, and V is the
volume. The cumulants and their ratios are measured for the distribution of conserved quantities such
as the number of net baryons, charge, and strangeness. Figure 1.3 shows the fourth-order susceptibilities
calculated by Lattice calculations. It is found that a characteristic enhancement is observed near the
critical point. The ratios between the fourth- and second-order fluctuations are shown in Fig. 1.4.
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malized by the number of free quarks. (HRG) model over 100 to 200 MeV.

For the experimental accessibility, it is ensured that the net-proton cumulants can be a proxy of
fluctuation of net-baryon by the theoretical calculations [28].

1.3.3 Statistical baseline

If the protons and antiprotons are distributed as the independent Poisson distributions, net-particles
follow the Skellam distribution:

ma

k/2
F(k;my, mg) = emtme (ml) Ty (2y/mrms), (1.28)

where the m; and ms are the mean of the Poisson distributions for particles 1 and 2, respectively, Iy
is the Bessel function of the first kind. Various moments, M, o, S, and k of Skellam distribution are
expressed as:

mip — Mo 1
M=m;—mgo, o=+vmi+my S=—"—"-"—/""+ K=—"+"—" 1.29
1 2 1 2 (ml + m2)2/3 mi + mo ( )
and their products, So and ko? are written as:
So="T1TM2 52, (1.30)
mi 4+ mo

With the above definition, statistical baselines for odd- and even-order of measured net-proton cumulants,
Codga and Clyepn can be written as:

Codd = Cf - Cf Ceven = Cf + Cf, (131)
where the C7 (?) are mean value of Poisson distributions for (anti-)proton. This leads to the statistical
baseline of cumulant ratios as:

Ce'uen o Cf + Cf Codd o Cf - Cf
C'odd Cf — 0{37 Oeven C:f + Cf

(1.32)

If there are only statistical fluctuations, Cy/Co, C5/C1, and Cg/Cy become unity as a statistical baseline.
Cumulants are measured from the distribution of conserved quantities, while several corrections are
necessary to suppress various experimental artifacts.
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1.4 Experimental results on the QCD phase structure

1.4.1 QCD critical point

It was suggested that higher-order fluctuations of conserved quantities are sensitive to the QCD critical
point [5,24,29]. The fourth-order fluctuations (ko?) of net-proton distributions were then measured at
the STAR experiment in the RHIC BES program, and it was found that the results show non-monotonic
beam energy dependence [4,17] as shown in Fig. 1.5.
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open squares within 0.4 < pp < 2.0 GeV/c and
ly| < 0.5. The statistical and systematic uncer-
tainties are shown in narrow and wide bars, re-
spectively.

Figure 1.6: Upper panel: A sketch of the x4 be-
havior near the critical point predicted by Lattice
QCD. Lower panel: A sketch of the QCD phase
diagram with the curve of freezeout and a possible
mapping for the Ising coordinates t and H [5].

The observed non-monotonic beam energy dependence for the most central Au+Au collisions is qual-
itatively similar to the theoretical prediction incorporating the critical point as shown in Fig. 1.6. The
model expects that the fourth-order moment of the baryon number fluctuations possibly turns negative
values near the QCD critical point from the crossover side. Thus, the results could indicate a possible
signature of the critical point. In addition, at even lower energy 2.4 GeV, the results from the High Ac-
ceptance Di-Electron Spectrometer (HADES) experiment are shown. If the connection of enhancement
at 20-7.7 GeV and the HADES result follows the upper panel of Fig. 1.6, a possibility of the peak at their
gap energy, 2.4-7.7 GeV.

1.4.2 Crossover search

Theoretically, next-to-leading order (NLO) calculation of fifth- and sixth-order cumulants predicts nega-
tive signs at low /T [6]. Lattice QCD predicts that the cumulant ratios, RZ, (T, up) and Rex B(T, up),
turn to negative as shown in Fig. 1.7. The ratio of baryon number fluctuation & /x¥ is expected to
decrease toward negative near the phase transition temperature [30]. Figure 1.8 shows the Polyakov
loop extended Quark Meson (PQM) model calculation of sixth-order fluctuation of net-baryon number
distributions. The results show negative enhancement near the T'/T),. ~ 1 in u,/T = 0, 0.14.
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experimentally, the sixth-order fluctuations have been measured at the STAR experiment as shown
in Fig. 1.9. The results show negative values in central Au+Au collisions at \/syx = 200 GeV [8]. The
negative sign is qualitatively consistent with the theoretical expectations as shown in Fig. 1.7 and 1.8.
Therefore, it could be a signature of smooth crossover at RHIC top energy [30,31].
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Figure 1.9: Number of participants (Nper+) dependence of cumulant ratio Cg/Cs measured in Au+Au
collisions. The red marker shows the results measured in collision energy 200 GeV [8].
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1.5 Indication of QGP droplet in small systems

Evidence for the formation of QGP is observed in the central of the Au+Au collisions. On the other
hand, the QGP formation in the small systems is still unclear. Several studies have been reported in p+p
collisions at LHC in terms of the strangeness enhancement and flow measurements etc [32]. One of the
discussed probes for QGP formation is the enhancement of strangeness in A+A collisions. In the initial
state of high energy collisions, the strange quarks are sufficiently light to be created during the process of
the collisions. Figure 1.10 shows the ratios of the yields for K2, A, Z to the pion yields as a function of
average charged particle density ((dNg,/dn)). The results are compared to p+Pb and Pb+Pb collisions.
In p+p collisions, the results show the enhancement of strange to non-strange hadron production with
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Figure 1.10: pr-integrated yield ratios to pions (77 + 77) as a function of (dNg,/dn) measured in
ly| <0.5 [9]. The error bars show the statistical uncertainty. The empty and dark-shaded boxes are
the systematic uncertainty and the contribution uncorrelated across multiplicity bins, respectively. The
values are compared to calculations from MC models, and results are obtained in p+Pb and Pb+Pb
collisions at the LHC. For Pb+Pb results the ratio 2A/((7+ + 7~) is shown.

10°

increasing multiplicity. Both the values of the ratios and their multiplicity dependence resemble those of
p+Pb collisions at lower energy. At high multiplicity, the ratios reach values similar to those of Pb+Pb
collisions. These results of the yields indicate that from p+p to central Pb+Pb collisions, various systems
are connected in different underlying physics.

On the other hand, results of the flow (v2) measurements have been reported at LHC in /s = 13 TeV
p+p collisions [33]. The v,, characterize the modulation of the azimuthal angle distribution for a single
particle. In A+A collisions, the n = 2 harmonic has been understood to result from an elliptic anisotropy
in the initial state with a non-zero impact parameter. In the magnetic field, elliptic anisotropy of the
viscous pressure tensor is characterized as a feature of QGP. The vs is defined as the second-order Fourier
coefficients of the azimuthal angle distribution written as dN/d¢ = (dN/dp)(1 + " 2v9 cos(2(¢ — ))),
where the bracket is average over azimuthal angles, and ¢ and ¥ are the angle of particles and event
plane, respectively. The values of the v, are obtained by two-particle correlation using charged particles
detected with pseudorapidity separation |An| > 2. In p+p collisions, the results from the CMS and
ATLAS experiments are shown in the right and left-hand sides of Fig. 1.11, respectively. The ATLAS
experiment adopted a template fitting procedure to remove back-to-back non-flow contribution to the
correlation function. In the CMS experiment, the vy is measured as a function of number of pixel tracks

(Neflline) at |n| < 2.4 and 0.3 < pr < 3.0 GeV/c. It is found that the vy measured by CMS shows
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the increasing trend with particle multiplicity. The multiplicity dependence show agreement with the
hydrodynamic model. However, in the ATLAS results, the values do not show significant change over
the multiplicity. These different results of vy indicate that the signal of QGP is very uncertain in p+p

Template fit Low-N,, subtraction
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Figure 1.11: Elliptic flow (v2) as a function of NX§° in the 13 TeV p+p collisions measured by ATLAS (left)
and CMS (right) experiments [10]. They were measured with different methods for 0.5< pr < 5 GeV/c
and 0.3< pt < 3 GeV/c¢, respectively. The red bands show the calculation of superSONIC. The error
bars are statistical uncertainties.

collisions by these measurements.

Therefore, in this thesis, we focus on the fluctuation of conserved quantities to explore the phase
transition signal. This can be achieved by measurement of fifth- and sixth-order fluctuations at high
multiplicity events in p+p collisions.
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1.6 Motivation

The fluctuation measurements in p+p collisions are expected to be a complementary reference study of
physics baseline for Au+Au collisions as shown in Fig. 1.12. The collision energy dependence of So and
ko? are measured in p+p and Au+Au collisions in 2014. However, the uncertainties are large to extract
any physics message due to the insufficient statistics.
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Figure 1.12: Collision energy dependence of the net-proton So, ko?, and (So)/ Skellam for p+p and
Au+Au collisions [11]. Open squares, filled circles, and crosses are for the efficiency corrected results of
70 — 80%, and 0 — 5% Au+Au collisions, and p+p collisions respectively. Skellam baselines for corre-
sponding collision centralities are shown in the top panel. Shaded hatched bands show UrQMD model
calculations. The solid bands in the middle and lower panels are the expectations assumed independent
protons productions. The bandwidth shows the statistical uncertainties. The HRG results for middle
and lower panels are unity. The bars and caps show statistical and systematic uncertainties, respectively.
The values of p+p and Au+Au 70 — 80% are slightly displaced horizontally.

In this analysis, precise measurements are performed with 70 times larger statistics than the previous
study published in 2014. To study the effects of baryon number conservation on cumulants, the rapidity
and transverse momentum acceptance dependence are measured. Furthermore, the large statistics make
the first measurements of the multiplicity dependence of cumulants possible in p+p collisions. This
provides a precise baseline to the fluctuations measured in Au+Au collisions. Simultaneously, connections
between p+p and Au+Au central collisions are explored at the high multiplicity events, which provides
the information on possible phase transition in p+p collisions based on positive/negative signs of fifth-
and sixth-order fluctuation.

The main goal of this thesis is to determine the precise physics baselines of the higher-order fluc-
tuations of net-proton number distributions measured in Au+Au collisions. This can also explore the
question—whether QGP is generated at high multiplicity events— by fluctuation measurements in p+p
collisions.

This thesis is organized as follows. In Chapter 2, experimental circumstances are described. In
Chapter 3, analysis methods are explained to study the effect. In Chapter 4, the results are discussed.
In Chapter 5, the summary and outlook are shown.
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Chapter 2

Experiment

2.1 Relativistic Heavy Ion Collider (RHIC)

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is the world’s
first collider to create hot dense matter by accelerating heavy ions. The RHIC consists of double su-
perconducting rings, called “Yellow” and “Blue” rings, in 3.8 km circumference as shown in Fig. 2.1.
There are six interaction points in the RHIC, and four of them are equipped with detectors, BRAHMS,
PHENIX, PHOBOS, and STAR. The collisions of heavy ions are achieved in the center of mass collision
energy 3.3 < (/syy < 200 GeV.The 1740 superconducting magnets can deflect and focus the stored
large amount of particles with high luminosity, 20x10%6 cm=2s~!. RHIC acceleration system is mainly
composed of three accelerators, Tandem Van de Graaff, booster Synchrotron, and Alternating Gradient
Synchrotron (AGS). Accelerated ions at LINAC with 200 MeV are injected into AGS to polarize protons
to 25 GeV, then only one of the 12 rf buckets is injected into the RHIC. Tandem Van de Graaff can
accelerate gold with 1 MeV per nucleon which strips the electric charge of 31 of 79 electrons from the
gold atom.
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Figure 2.1: The RHIC complex layout [12].

2.2 The STAR Experiment

The Solenoidal Tracker at RHIC (STAR) experiment aims to explore the properties of QGP as one of its
scientific missions. The STAR detector is located at 8 o’clock in the RHIC ring. The structure specializes
in the simultaneous measurements of hadron production with a large angle and uniform acceptance,
which is suitable for the precise fluctuation measurements. The overview of the STAR detector is shown
in Fig. 2.2. The main tracker called Time Projection Chamber (TPC) is centered on the magnet with
several sub-systems as shown in Fig. 2.3. The outermost part of the devices is the cylindrical solenoid
magnet with 7.32 (m) for the diameter of the outer radius, which can produce a near-uniform field along
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Figure 2.3: Cutaway view of the STAR detector.

Figure 2.2: The sketch of the STAR detector.

the beamline over 0.25 < B, < 0.5 (T). Charged tracks bent by the magnet are captured by surrounding
detectors over full azimuthal angle (A¢ = 27) and large pseudo-rapidity coverage (|| < 2). The TPC is
also provided particle identification, momentum, and vertex position. To obtain collisions vertex, Vertex
Position Detectors (VPD) are installed near the beam pipe.The main operating calorimeters are Electro-
Magnetic Calorimeter (EMC) systems located outside the TPC. For the monitoring of collider luminosity,
Zero Degree Calorimeters (ZDC) are used. In this analysis, the TPC is used for proton identification and
measurement of vertex positions. TOF is used to extract protons in the high momentum region where
the protons cannot be identified by the TPC. VPD is used for removing pileup events and triggering
collision events. EMC hits are included in tracking to remove pileup tracks making use of its fast speed
for the estimation of the efficiencies. ZDC is used to measure luminosity.

2.2.1 The Time Projection Chamber (TPC)

The Time Projection Chamber (TPC) is the main tracking device to provide tracking information, particle
identification, momentum, and vertex position. The TPC is designed as shown in Fig. 2.4. The 4.2 m
cylindrical chamber is designed to be concentric with beam pipe over 0.5(2.0) m in the inner(outer)
radius. TPC covers the full azimuthal angle 0 < ¢ < 27 and pseudo-rapidity acceptance |n| < 2. The
charged particles with transverse momentum pr > 0.04 GeV/c and || < 1 can reach the TPC active
volume with radius > 0.5 m due to the relationship between limits of magnetic field and spiral radius
of particles. Electrons released from tracks drift in the P10 gas (90% Ar and 10% CHy) to the endcap
along the electric field 135 V/cm with velocity 5.45 cm/us. The signal of electrons passing through
the P10 gas is received and reconstructed by the readout system. The readout system is based on the
multi-wire proportional chamber which is composed of a pad plane and several wire planes. One of the
readout layers, anode wire, is set perpendicular direction to the radial tracks with the highest pr and the
width is 20 pm. At anode wires, the image charges are generated by an avalanche of drift electrons with
1000 ~ 3000 amplification of the signal. By reading out the induced charge from the avalanche using a
total of 136,000 adjacent pads, the position of the original track can be precisely reconstructed to small
fractions of pad width. The position resolutions are determined by the diffusion of the electrons and their
number. At the gating grid, the entry of drifting electrons into the pad plane is controlled by switching
the voltage on every other wire with 110 V "open” and +£75 V “close”. The positive ions generated
from the wire chamber are also blocked to enter the drift volume by the gating grid with opening time
2.1 us. TPC tracking efficiency is estimated by the tracking performance of embedded particles with
GEANT simulation inside the real events. The momentum resolution, dp/p, is 1-2 %, and resolution on
tracks for total path length is less than 0.5 cm. The tracking systems and capability provide momentum
measurement, particle identification, and vertex reconstruction.
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To reconstruct the position, the coordinates z, y, and z are defined by the measured charges where
the x is along the pad row direction, y is the perpendicular direction to the x, and z is along the beamline
direction, respectively. For simplicity, at a Gaussian distribution on the pads, the = is determined by:

xr = %ln(hg,/hl), (21)

where hy, ho, and h3 are the amplitudes measured by three adjacent pads with the pad hs centered at
y = 0, and o is the width of the signal with pad width w. The relationship between o and w is written by
02 = 22 /In(h3/h1h3). The z is determined by the drift velocity and drift time of the secondary electrons
from the original point to the anodes at the endcap. To calculate the drift time of the cluster of secondary
electrons, the arrival time of electrons in buckets of 100 ns is measured by weighting the average by charge
for each bucket. At the length of the signal arriving at the pad, L, the ionization electrons are diffused
along the beam direction with distance L/tanf where the 6 is the angle between the drift direction and
particle momentum. It is necessary for the conversion of time into position to obtain the drift velocity
of electrons with high precision of 0.1% and to control the timing offset between the first bucket and the
collision. The drift velocity is varied by gas composition and atmospheric pressure, which are minimized
by tuning the cathode voltage and the independent measurements of drift velocity with artificial tracks
by lasers beam. With the drift velocity, the timing offset caused by the trigger delay, time spent of
electron drift, and shaping signal is adjusted. It can be performed by matching the interaction vertex
reconstructed from the half side of the TPC with the vertex found using the data from the other side.
The drift time is related to the interaction rate of collision pileups depending on the luminosity and
vertex resolution. During the drift with 40 usec, events at high luminosity above 2 x 1026 cm=2s~! can
cause overlap for Au + Au collisions, which can be backgrounds at the distance closer to vertex position
than the TPC capability. This pileup study will be discussed later part of the next chapter. The vertex
resolution depends on the number of tracks, which is achieved to be approximately 350 pm with more
than 1000 tracks.

The particle identifications are performed in 0.15 < pt < 30 GeV/c via ionization energy loss (dE/dx)
in the gas. The resolution of dE/dx is limited by the finite length of tracks and ionization fluctuations,
which is optimized to obtain more ionization electrons for statistical improvement. To separate protons
and pions up to 1.2 GeV/¢, a relative dE/dx resolution of 7% is necessary. At high momentum region,
it is hard to separate particle species with above 0.7 GeV/c velocities due to the reduction of mass
dependence of the dF/dx, which can be resolved by using the TOF discussed in the next subsection.
Figure 2.5 shows the momentum dependence of the measured dF/dz in the magnetic field 0.25 T. The
plotted data includes primary and secondary particles. The bands of protons, deuterons, and muons
are generated from secondary interactions in the beam pipe and decay of pions and kaons. The mean
dE/dzx is described by Bethe-Bloch and the deviation from the values defined as no is used for particle
identification.
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Figure 2.5: Momentum dependence of the dE/dx measured by the TPC in the magnetic field 0.25 T [13].

2.2.2 The Time of Flight (TOF)

The Time of Flight (TOF) detector is used to provide the particle identification for the spectra of charged
hadrons. The TOF measures the passing time of charged particles from the primary vertex of collisions.
At a given flight time ¢ and path length L of charged tracks, the velocity 8 and mass m are calculated
by:

g =22 (22)

m? = px(T):pr (2.3)

The resolution of mass is described as:
AM  Ap 9 At AL

—+ — 2.4
M p t+ (2:4)

L

The TOF is located at the cylindrical radius of the TPC with the full azimuthal angle 27 and rapidity
acceptance |n| < 2. Its total time interval resolution (At) of 100 ps provides the capabilities of particle
identification shown in Fig. 2.6. The particle momentum dependence of mass for deuterons, protons,
kaons, and pions are measured as labeled with the path length resolution §L/L = 0.2%, and momentum
resolution dp/p = 1.3%. The solid and dashed lines indicate the tracks near n = 0 and n = 1, respectively.
At n ~ 1, the path length is approximately 50% longer compared to n ~ 0. The pair of upper and lower
lines are shown for momentum dependence of M +AM and M — AM, respectively, where AM is obtained
by Eq. 2.4. In this figure, the maximum momentum at which particles can be identified in “2¢” is shown
by the momentum at which the upper line of the particle intersects the lower line of other particles. It
is found that for tracks near n ~ 0(1), the pion/kaons/protons are identified up to ~ 1.7(1.9) GeV/c
and direct protons/(pions + kaons) are identified up to ~ 2.6(3.1) GeV/c. In the proton identification,
the figure also provides that the pions are the first particles to lead to backgrounds with increasing
momentum.
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Figure 2.6: The particle momentum dependence of mass for deuterons, protons, kaons, and pions are
measured as labeled with the time resolution At = 100 ps, path length resolution deltal/L = 0.2%, and
momentum resolution dp/p = 1.3% [14]. The solid and dashed lines indicate the tracks near n ~ 0 and
7 ~ 1, respectively. The pair of upper and lower lines are shown for momentum dependence of M + AM
and M + AM, respectively.

The TOF system consists of two subsystems, Pseudo Vertex Position Detectors (pVPD) and Time of
Flight Patch (TOFp), for “start” and “stop” detector, respectively [14]. Figure 2.7 shows the positions of
the TOFp and pVPD with respect to the TPC and the RHIC beam pipe. These sub-detectors are based
on the technology of scintillator and phototube. The start timing is given by the two VPDs positioned
along the beam pipe at each 5.7 m away from the center of the TPC. The effective timing resolution is
140 ps in 200 GeV p+p collisions. More details of the VPD are addressed in Sec. 2.2.3. The TOFp is
located outside the barrel of the TPC and inside the magnet. It has 120 aluminum boxes (“trays”) of
1.27 mm-thick and each tray consists of 32 Multi-gap Resistive Plate Chamber (MRPC) modules with
6 readout pads along the azimuthal direction on each module. MRPC is a stack of resistive plates with
float glass of 0.54 mm and five gas gaps of 220 ym. The outer plates of 20 cm length are composed of
graphite electrodes with ~14 kV voltage gap. inner plates for keeping the voltage in avalanches at a
strong electric field. The time resolution to detect particles is less than 80 ps. Detecting efficiency for the
charged particle is above 95% at pr >0.5 GeV/c in a gas of 95% freon and 5% isobutane on the voltage
of 154 kV.
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Figure 2.7: A cutaway drawing of locations of the TOFp and pVPD with the TPC and the beam pipe [14].

2.2.3 Other sub-systems
Vertex Position Detector (VPD)

As described in Sec. 2.2.2, the VPD is used to provide start timing to the TOF detector. The VPD
is composed of two identical detectors installed close to the beam pipe at a distance of |Z| = 5.6 m
and outside the STAR magnet. These equally spaced detectors measure the prompt pulses of photons
produced from the collision vertex. Measuring their arrival time provides the location of the vertex along
the beam pipe. The event start time is determined by the average of two arrival times of the pulses. To
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measure the time interval, stop times are provided by the TOFp detector, and these signals from the
VPDs and TOFp are digitized and interfaced with the STAR data stream. Figure 2.8 shows one of the
two VPD assemblies. The VPD consists of three elements—an aluminum base plate, two faceplates, and
aluminum rails, on each side. They are located at a distance of ~ 5 m from the intersection range. The
design of the VPD read-out system is based on the technology of plastic scintillator by photomultiplier
tubes. The electrons converted from the photons at the scintillator layer provide large PMT signals and
start timing.

PVPD Detector Assembly

\

FEE & TIB box

Figure 2.8: One of the two identical VPD assemblies [14]. The ”FEE & TIB” is the Front End Electronics
and the Threshold Interface Board.

Electro-Magnetic Calorimeter (EMC)

The EMC is used to determine the trigger on the photons, electrons, and decaying hadrons. EMC
systems are composed of Barrel Electro-Magnetic Calorimeter (BEMC) and Endcap Electro-Magnetic
Calorimeter (EEMC). They are located inside the aluminum coil of the solenoid. The coverage of BEMC
and EEMC is |n| < 1 and 1 < 7 < 2, respectively, and full azimuthal acceptance. Figure 2.9 schematically
shows the cross-sectional view of the STAR detector with BEMC. The front of the calorimeter is located at
a radius of 220 cm from and parallel to the beam axis. In the particle momentum range of pr > 0.5 GeV /¢,
the time resolution is less than 80 ps [34]. The design of BEMC consists of 120 calorimeter modules and
they are mounted 60 in ¢ by 2 in 1. The full BEMC is composed of 4800 towers with segmented modules
into 40 towers, 2 in ¢, and 20 in 1. The sampling system is based on lead and plastic scintillators for the
detection of electromagnetic energy. To detect a scintillation light, optical structures with photomultiplier
tubes (PMT) are used. There are 21 scintillation layers in the calorimeter. These layers alternate with
20 layers of lead absorber plates of 5 mm thick. The signal from each tile of the scintillator is read out
by wavelength-shifting fibers. A 2.1 m multi-fiber optical cable carries the light to decoder boxes located
at the outer surface of the magnet. In the decoder, the light from 21 tiles in a single tower is merged into
a single PMT. The mean quantum efficiency of PMT is 13.3% at the wavelength delivered by the fibers
of BEMC.

Magnet Coils

Figure 2.9: Cross-sectional view of STAR detector with the Barrel EMC covering |n| < 1.00
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Zero Degree Calorimeter (ZDC)

The ZDC is used to detect neutrons and measure their total energy of them in the forward direction. The
two identical ZDCs are centered in 0° and polar angle coverage < 2.5 mrad. Since the ZDC coincidence
rate of the two-beam direction is a minimum bias selection in heavy ion collisions, it is used for the
luminosity monitor [35] and event trigger. The ZDCs are located at each side with 18 (m) distance as
shown in the vertical line with “A-A” of Fig. 2.10. After the charged particles are bent by the dipole
magnet, the outgoing neutral particles are detected by the ZDC. The total width of the calorimeters is
designed within 10 cm which is a nuclear interaction length in tungsten.
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Figure 2.10: Side view of the collision region of the ZDC location indicating deflection of protons and
charged fragments with Z/A ~ 1 downstream of the dipole magnet [15].

Generally, the neutrons are emitted from both target and beam nuclei in high energy collisions. They
diverge by < 2 mrad from the beam axis in the RHIC with 100 GeV /nucleon. The neutral beam fragments
are detected in THE “zero-degree” region at less than 44 mrad, where the charged fragments are too
close to the beam trajectory.

The energy resolution is approximately a 10% of 0E/E < 20% at neutron energy F,, = 100 GeV. This
capability is reasonable to resolve the single neutron peak at peripheral nuclear collisions. The technique
of sampling is based on transporting Cherenkov light created by charged shower secondaries in an optical
fiber. Since the light is emitted nearly aligned with the optical fiber axis, the ZDC is most sensitive to
charged particles which cross at around 45° to the fiber axis, which suppresses the lower energy shower
component.

2.3 Beam Energy Scan program

To explore the phase structure, Beam Energy Scan (BES) program has been carried out in the STAR
experiment for Au+Au collisions from 7.7 to 200 GeV. Table 2.1 shows the datasets collected at the
STAR experiment for BES and p+p collisions in 2012.

Table 2.1: Datasets of Beam Energy Scan program Phase 1 at the STAR experiment. Two collision
systems, p+p and Au+Au with energy, statistics, operation year, and pp are shown.

System [ /sxn | Events (10°) | Year [ pug (MeV)
200 238 2010 25
62.4 43 2010 73
54.4 550 2017 83
39 92 2010 112
Au+Au 27 31 2011 156
19.6 14 2011 206
14.5 14 2014 264
11.5 7 2010 315
7.7 2.2 2010 420
ptp [ 200 | 220 [2012] —
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As mentioned in Sec. 1.4.1, the measurements between 2.4 — 7.7 GeV can be focused in the RHIC
BES program phase two (BES-2) expected to achieve the uncertainties shown in the green shaded bands
in Fig. 1.5. The BES-2 is ongoing with the upgrade of several detectors. They provide the better dE/dx
resolution for PID and centrality determination. Table 2.2 shows the collision energy and corresponding
up for BES-2 datasets in Au+Au collisions.

Table 2.2: Datasets for Au+Au collisions of BES-2 at the STAR experiment. The data of 3, 9.2, 11.5,
and 13.7 GeV are obtained fixed target (FXT) mode.

/SNN \ Events (M) \ Year \ up MeV

27 560 2018 56
19.6 582 2019 06
14.6 324 2019 62
11.5 235 2020 16
9.2 162 2020 73
7.7 101 2021 20
3.0 565+ 2018 21
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Chapter 3

Analysis

3.1 Datasets

In this study, 200 million events taken in 2012 for p+p collisions at /s = 200 GeV were analyzed
to measure higher-order cumulants of net-proton distributions. In the STAR experiment, a minimum
bias trigger is determined by a coincidence between the two ZDCs, which provides a minimally-biased
indication of an interaction of heavy ions. The data were collected with the minimum bias events trigger
provided by the VPD.

3.1.1 Event selection

The collision vertex positions are required to be within 30 cm from the center of the TPC along the beam-
line, and within 2 cm in the radial direction from the center of the beamline to remove the background
events due to the interaction with beam pipe, respectively as shown in Fig. 3.1 and Fig. 3.2. During
the long drift time of electrons in the TPC, superimposing of more than single-collision events are called
pileup events. The pileup events can be suppressed by requiring the difference of the vertex positions
along the beamline measured by the TPC and VPD to be within £3 c¢m as shown in Fig. 3.3. The events
are required to have at least one primary track associated with a TOF hit with § > 0.1 to ensure that
the TOF works properly.
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Figure 3.1: Distribution of the z-vertex positions  Figure 3.2: Distribution of the vertex horizontal
(Vz) from the center of the TPC along the beam-  and vertical (V},) positions in the transverse plane
line. The red lines represent the required condi-  at the center of the TPC.

tion of Vz 4+ 30 cm.
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Figure 3.3: Difference between z-vertices positions measured by the VPD and TPC.

The multiplicity (m.p,) is defined by charged tracks excluding protons and antiprotons to suppress
the autocorrelation effects. The detailed definition is listed in Tab. 3.1 with the cuts for (a) charged
particle selection and (b) proton and antiproton rejection, where DCA represents the absolute value of
the distance of closest approach, nHitsFit is the number of the TPC hits, m? means particle squared
mass. The distribution of the multiplicity is shown in Fig. 3.4. Note that the cuts in (a) are looser than
the track cuts for fluctuation analysis. In this study, events with m., > 5 are used for physics analysis.
In the analysis of the heavy-ion collision, multiplicity is used for the centrality determination. The details
are addressed in Section 3.1.4.

£ T I I [
10° = In|<1, all charged particles except protons -
m,, <5 used in physics analysis
7 - 3
c 10 p+p Collisioins | .. e .
o {5=200 Gev | Table 3.1: Definition of multiplicity. The cuts
w 10 04 < b (Ge‘”la S0 ] for (a) charged particle selection and (b) pro-
°r Net-Proton | ton and antiproton rejection are shown.
o [ .
‘ED 10° “... Mean=11.397
ER . \ Variable Cuts
10 B - (a) DT > 0.1 GeV/c
B tdy i
SR | u <10
0% 20 0 60 80 |IDCA| <3 cm
Multiplicity nHitsFit > 10
(b) nop < -3
Figure 3.4: Multiplicity distribution in m? < 0.4 (GeV/c)?

|n] < 1 for all charged particles in track
fitting except for protons and antipro-
tons.

3.1.2 Track selection

Acceptance for protons and antiprotons are shown in Fig. 3.5 with respect to the rapidity and transverse
momentum. The lower limit of pr is set to remove the protons knocked out from the beam pipe. Figure 3.6
shows the distance of closest approach (DCA) distribution with the peak around 0.25 cm. To suppress
secondary particles from A, DCA is required to be less than 1 cm. Figure 3.7 shows the distribution of
the number of hits in the TPC (nHitsFit). To ensure the quality of the tracking, at least 20 hits in the
TPC are required. In addition, 52% hits out of the number of possible hits on tracks are required to
be used in track fitting. At least 5 hits are required to calculate dF/dx. The difference of the results
calculated from the different track cuts will be included in the systematic uncertainties.
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Figure 3.5: Distribution of pr as a function of y of charged particles. The dotted square shows the
kinematic region used for fluctuation analysis.
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3.1.3 Particle identification

Protons and antiprotons are identified by the TPC and/or TOF for 0.4 < pt < 2.0 GeV/c. Fig. 3.8 shows
the momentum dependence of dE/dx of charged tracks measured by the TPC. In 0.4 < pr < 0.8 GeV/c,
protons and antiprotons can be separated from the other particle bands using the sigmatized width
of dE/dx distributions (Jnop| < 2).On the other hand, the identified (anti)protons and other particle
species merge at higher momentum regions, and thus dE/dz alone is insufficient to select (anti)protons
with good purity. Figure 3.9 shows the momentum dependence of squared mass m? measured by the
TOF. It is found that the (anti)proton distributions are separated from other particles. Therefore, a cut
on the m? distribution, 0.6 < m? < 1.2 (GeV/c)?, is additionally applied at 0.8 < pr < 2.0 GeV/c.
These are the cut conditions employed in net-proton fluctuation analysis for Au+Au collisions. It should
be noted that, in this study for p+p collisions, the m? cuts are required for the entire the pr region,
0.4 < pr < 2.0 GeV/c.More details will be discussed in Sec. 3.5.2.
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The event-by-event number of protons (N,,) and antiprotons (Ng) are measured for each multiplicity
as shown in Fig. 3.10. Event-by-event net-proton number (AN,,) distributions are shown in Fig.3.11.
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3.1.4 Event categorization

In heavy-ion collisions, various observables depend on the overlapping region of the two nuclei. Therefore,
it is important to measure the observables divided into several centrality classes. The centrality is defined
by impact parameter b. The b is the distance between the centers of each nucleus in the transverse
direction as shown in Fig. 3.12, while it cannot be directly measured. For the centrality determination,
the measured number of particles depending on b is used. The multiplicity distribution cannot be directly
used due to decreasing of the trigger efficiency in the peripheral collisions. Therefore, multiplicity after
correcting for the trigger efficiency using Monte-Carlo (MC) Glauber simulation is used. Figure 3.13
shows the drawing of a Glauber MC event with b = 6 fm in an Au+Au collision. The Npqr+ is defined by
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the number of nucleons having at least one inelastic collision as shown in the darker disks in the figure.
The N, is defined as the number of inelastic collisions.

-10]

-10 -5 0 5 10
x (fm)

Figure 3.13: An illustration of the Glauber Monte-Carlo simu-
lation in a \/syn = 200 GeV Au+Au collision with the impact
Figure 3.12: Schematic represen- parameter b = 6 fm [16]. Left panel: geometry in the transverse
tation of Glauber Model geometry plane. Right panel: geometry along the beam axis. Darker disks

from the side view of the nucleus- are participants, and lighter disks are spectator nucleons.
nucleus collision.

In this study, cumulants are calculated as a function of multiplicity. Several multiplicity classes are
defined as Fig. 3.14 with Tab. 3.2. Multiplicities 5 < m¢, < 15 are studied bin-by-bin, on the other
hand, the region m.p > 16 is divided into two wide multiplicity bin. The detail of this class definition is
addressed in Sec. 3.5.5.

1% Table 3.2: Definition of multiplicity class for p+p collisions.
T 4 Multiplicities 5 < m.p < 15 are studied bin-by-bin.
*2 108 e f Class | Multiplicity | Number of events (M)
()] ]
> N 5 15
L 3
“— e 6 17
o 0% E 7 17
é ] 8 17
B 9 16
> 2L0 - -19 -
z 1 i OI% o Bin-by-bin 10 15
: 11 13
. i lnnanllenond 12 12
T 10 20 30 40 50 13 10
Multiplicity 14 9
15 7
1-14% 16 < mep, < 27 29
Figure 3.14: Multiplicity distribution 0-1% 27 < mop, < 50 )

with 13 class for p+p collisions.

3.1.5 Run-by-run Quality Assurance (QA)

The data sets analyzed in this study were collected from February 8th to March 12th in 2012. In
the fluctuation measurements, it is very important to ensure that the beam condition and the detector
performance are stable in this long duration of the data taking [36].

The stability of the quality of the data sets has been checked as a function of “run”. The run represents
one unit of the data taking, which is determined by the start/stop buttons in the data acquisition system.
Each run roughly corresponds to 20 minutes in p+p 200 GeV experiment in 2012. Event- and track-wise
variables employed in the check are summarized in Tabs. 3.3 and 3.4. Those variables are averaged over
all events and/or tracks within one run and plotted as a function of the run number in Figure 3.15. We
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Table 3.3: Definitions of event variables checked in QA.

Observable \ Definition Detector
RefMult Number of 7%, K*, p* at || < 0.5 TPC
TofMult RefMult measured in TOF TOF

TofMatched Number of the TOF matching tracks TOF

TofMatchedbeta Number of the TOF matching tracks with 5 > 0.1 TOF
V. Vertex in x-axis TPC

Vy Vertex in y-axis TPC

V. Vertex for the radial direction TPC

V., Vertex positions along the beam line TPC

VPD V, Vertex positions along the beam line VPD

Zdc Coincidence Rate Coincidence rate 7ZDC

first calculate the average value p in each period for each variable, which is shown in the red solid line
in Figs. 3.15 and 3.16. Next, the standard deviation, o, is calculated within the period. The values for
i £ 30 are shown in green dashed lines. Runs outside the p £ 30 lines are then labeled as bad runs
and excluded from the analysis. As mentioned above, the known changes of the beam/trigger/detector
conditions are reflected in the step-like structure in Fig 3.15. Hence the entire runs are divided into 6
periods, and the mean and sigma are evaluated for each period.

<RefMult>

<TofMult>

¥

1{ll|llll|l T[T

Run Index

Figure 3.15: Average of event variables as a function of the run index. The red lines represent mean and
green dotted lines represent i 4+ 30. The bracket represents the average value over the event.

Based on Figs. 3.15 and 3.16, 8 sets of the bad run lists are defined. For each run, 10 event-wise
variables and 8 track-wise variables are scanned. If greater than n variables are outside p + 30, then the
run is labeled as the bad run. The procedures are done for each run and repeated by varying n from 0 to
7. Table A.2 shows the number of bad runs, percentage of bad runs to the total, and available statistics,
for each value of n. To determine the final bad runs for fluctuation analysis, we calculated net-proton
cumulants using the tightest and loosest cuts and found that both the results are consistent with each
other within statistical uncertainties. Therefore, the bad run list for n = 0 was employed to keep as many
statistics as possible, and finally 13 runs were excluded from the analysis.
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Table 3.4: Definitions of track variables checked in QA.

Observable \ Definition
DT Transverse momentum
n Pseudo rapidity
10 Azimuthal angle
[DCA] Absolute value of Distance Closest Approach
nHitsFit Number of the TPC hits
nHitsDedx Number of hits used for dE/dx
DCA,y, DCA in x-y plane
DCA, DCA along the beam line
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Figure 3.16: Average of track variables measured in the TPC as a function of the run index. The red
lines represent mean (u) and blue dotted lines represent p+30. The bracket represents the average value
over the event.

Table 3.5: The information of the n variables, counted the number of bad runs, percentage of bad runs
to the total, and available statistics.

n variables Number of bad run  Bad run fraction(%) Available statistics
> 1 (the tightest) 133 % 207TM
>2 o1 1% 220M
>3 26 0.1% 223M
>4 22 0.1% 223M
>5 18 0.07% 223M
> 6 16 0.001% 223M
> 7 13 0.001% 223M
> 8 (the loosest) 13 0.001% 223M
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3.2 Efficiency correction

Emitted particles from nucleus collisions are missed by detectors with finite probability called efficiency.
Since this imperfect efficiency can affect the shape of the net-proton distributions and their cumulants,
measured cumulants need to be corrected for efficiencies. Correction methods have been developed in
Refs. [37-39] based on the assumption that the efficiencies follow the binomial distribution [28,37,39-44].

AU A (3.1)

Bon(m) = S

where N and n are the numbers of produced and observed particles, respectively. However, it is known
that the computational cost drastically increases if one employs more efficiency bins to take account into
the non-uniformity of the detector efficiencies. To solve the issue, more efficient formulas were proposed
in Ref. [44], which were derived using the factorial cumulants. The correction formulas are given by:

(@)e = {qa1,1))e (3.2)
(@) = <Q(21,1)>c +(q@2,1)e — (222))e (3.3)
Q%) = <Q?1,1)>c + 3(q(1, )22, e T {a3.1))e — 3q3,2))c + 2(q3,3))c (3.4)
(@Ye = (gfi1y)e + 6{a01 1221))e — 6(q01 1)d2.2))e + 4.1 As.0))e + 3(qF1))e + 3(q(a2))e (3.5)

—12(q(1,1)9(3,2)) e + 8(q(1,1)4(3,3)) ¢ — 6{q(2,1)0(2,2)) c{Q(4,1)) e — T(Q(a,2)) e + 12(q(a,3))c — 6<Q(4,4)>c(,3 N
with
M
Urs) = qla”,€*) = (a] /€])n;, (3.7)
i=1

where a is the sign of electric charge (-1 or +1) of the particles and ¢ is efficiency and n is number of
tracks. With Eqgs. 3.2-3.7, corrections are performed based on four efficiency bins defined by the charge
and pr ranges of using detectors as shown in Tab. 3.6. As explained in Chap. 2, the TPC is used for

Table 3.6: Definition of four efficiency bins with two-particle and two pr ranges.

Particle species | pr(GeV/c) range

Proton 0.4 <pr<0.8
0.8 <pr <20

Anti-Proton 0.4 <pr<0.8
0.8 < pr <20

(anti-)proton identification, and the TOF is additionally used at 0.8 < pp < 2.0 GeV/c.

Tracking efficiencies of the TPC are estimated in the embedding simulations. Monte-Carlo tracks of
(anti)protons are embedded into the real data and reconstructed through the STAR-GEANT framework.
The simulation is done for 1 million events. Then the fraction of the number of reconstructed tracks
to embedded particles is used as an efficiency. TOF matching efficiencies are defined by using the
experimental data as:

_|nop| < 2N TOF hit

= 3.8
€TOF ‘TLO'| <9 3 ( )

where the “lnop| < 27 is the number of identified protons reconstructed by the TPC, and ”TOF hit”
is the number of tracks matched to TOF hits. Figure 3.17 shows the pt dependence of the TPC track-
ing efficiencies, TOF matching efficiencies, and total efficiencies obtained by multiplication of the TPC
tracking efficiency and TOF matching efficiency for protons over the entire multiplicity region. The TPC
tracking efficiency is at around 80%, while the TOF matching efficiencies are around 50% and combined
efficiencies show 40 — 50% at high pr. At low pr, they are significantly decreasing with decreasing pr,
since low pr tracks have fewer hits in the TPC and TOF, then the probability to reconstruct them
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becomes small. Multiplicity-dependent corrections of cumulants are performed using the fit functions in
Fig. 3.18. It should be noted that we finally took into account the luminosity dependence of efficiencies
as well, which will be discussed in Sec. 3.5. For the centrality calibration, z-vertex positions are corrected
so that the mean of their distributions becomes consistent among different luminosities.
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Figure 3.17: Transverse momentum pr de- Figure 3.18: Multiplicity dependence of pr
pendence of efficiencies at merged multiplic- integrated efficiencies for protons and an-
ity over 2 to 30. Black dots and blue trian- tiprotons. Black dots show the TPC track-
gles show the TPC and TOF efficiency, re- ing efficiency at 0.4 < pr < 0.8 GeV/ec.
spectively. Red squares show combined ef- Red squares show combined efficiencies of the
ficiency of them which are used at 0.8 < TPC and TOF at 0.8 < pr < 2.0 GeV/c.
pr < 2.0 GeV/c. Red dotted lines show the Solid (open) markers are protons (antipro-
pr = 0.4, 0.8, 2.0 GeV/ec. tons). Blue solid (dotted) lines represent the
second-order polynomial function of fitting
for protons (antiprotons).
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3.3 Centrality Bin Width Correction (CBWC)

Since the initial collision geometry cannot be directly measured, centrality is determined by the number
of charged particles measured by the TPC. This leads to the volume fluctuations which arise from the
variation of the initial geometry within one wide centrality bin (centrality bin width effects). Conse-
quently, values of cumulants are enhanced by the volume fluctuations in heavy-ion collisions. To suppress
the volume fluctuations, Centrality Bin Width Correction (CBWC) [45,46] is applied. This correction is
the weighted average of cumulants for each multiplicity bin with the number of events, which is given by:

CCBWC _ 2i=o wiC(n’i)7 (3.9)
im0 Wi

where w; and C{, ; are weight and cumulants in 7th multiplicity bin, respectively. Figure 3.19 shows
the examples of cumulants in Au+Au collisions up to fourth-order as a function of average number of
participant nucleons (Npari) at /Sy = 62.4 GeV [17]. It is found that the higher-order cumulants
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Figure 3.19: C), of net-proton distribution in

Au + Au collisions at \/syy = 62.4 GeV as
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without CBWC and for nine centrality bins

Figure 3.20: C, of net-proton distribution in
p+p collisions at /s = 200 GeV as a func-
tion of multiplicity. The results of multi-
plicity bin-by-bin are shown in black dots.
The results are shown for 100% (Multiplic-
ity = 5 — 35) and 16% centrality bins with-

gg%?é 5&‘112%1;;572121"%%{}1(; . s éazggig?)ngi out CBWC and for 100%, 20% centrality bins
tainties. with CBWC. The bars are the statistical un-

certainties.
without CBWC in 10% centrality bin width show significant enhancement at central collisions compared

to the results of 5% and 2.5% bin width. On the other hand, the results in finer centrality bins become
closer to the CBWC results. Therefore, the enhancement of cumulants with the wide centrality bin
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width can be interpreted as the effect from the volume fluctuations in heavy-ion collisions, which can be
suppressed by CBWC. In p+p collisions, on the other hand, one expects no initial volume fluctuations
since two protons always participate in the collisions. Figure 3.20 shows the results with and without
CBWC of cumulants as a function of multiplicity in p+p collisions at 200 GeV. It is found that the results
of them almost overlap with multiplicity bin-by-bin cumulants, which indicates there are no effects of
initial volume fluctuation. Consequently, the CBWC in p+p collisions simply means the event average of
cumulants over multiplicity.

3.4 Statistical uncertainties

Several methods such as Delta theorem [47] and Sub-group [48] have been developed to estimate statistical
uncertainties in the fluctuation analysis. A general method that can be applied to correction by detector
efficiencies in cumulant calculations is needed. An effective method is a bootstrap [43,46], which is a
numerical way to determine the statistical uncertainties. In the bootstrap, the original distribution is
randomly sampled to make a new distribution. This procedure is repeated for 100 times, and the variation
of the cumulants over the 100 iterations is taken as the statistical uncertainties.

To check the validity of this method, a toy model simulation is performed for a Skellam distribution
with 100k events generated by two independent Poisson distributions with mean m;=10 and m.=8,
respectively. Figure 3.21 shows 100 independently calculated fourth-order cumulants ((Q*).) with the
statistical uncertainties by bootstrap. It is found that they are around mean ({(Q*). «~ 19), and 62% « 1o

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
L <Q*>.=18,962463 (62 data show agreement B

- il

L L L L | L L L L
0 50 100
Independent Trials

Figure 3.21: Toy model simulation of fourth-order cumulants ({Q%).) with statistical uncertainties calcu-
lated by the bootstrap method. The x-axis is the number of independent trials for (@), calculations up
to 100. Dotted lines show the average value of (Q*). over iteration.

of total results show agreement with the mean within statistical uncertainties, which indicates that the
uncertainties are reasonably estimated by the bootstrap.

42



3.5 Effect of pileup events

Based on Sec. 3.1, to investigate the effects of pileup events, it is necessary to study several observables
in terms of luminosity. In the STAR experiment, the coincidence rate of the ZDC is used as a proxy
of luminosity. It is known that in Au+Au collisions the average multiplicity decreases with increasing
the luminosity as shown in Fig. 3.22. This effect can be interpreted as convolutions two effects in high
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Figure 3.22: Averaged multiplicity as a function of the ZDC coincidence rate (Hz) at —2 < V, < 0 ¢m in
Au+Au collisions. Blue open diamonds indicate uncorrected multiplicity and red open squares show the
corrected results. The red line represents the fitting linear function that is used for the corrections [18].

luminosity events: (1) Increasing of pileup backgrounds. (2) Decreasing of efficiency. It seems, in Au+Au
collisions, the effect of (2) would be more significant compared to (1). To correct these effects, a correction
is performed for each event by using the fit function in the red solid line. On the other hand, the luminosity
dependence of the multiplicity looks opposite in p+p collisions as shown in Fig. 3.23, which could indicate
that the effect (1) is larger than (2). In Au+Au collisions, the luminosity dependence of the multiplicity
can be understood as the decreasing of the detector efficiencies, and hence the effect on cumulants cab
be easily corrected in efficiency correction. On the other hand, the effect of pileup events on cumulants
is not understood very well. In the following section, we have studied the effect of pileup events in some
systematic approaches.

T
15

A [

2 L

o -

S8 10 ]

= L ]

s é 1

Vv 57 1
ol [ ! L L]

0 5 10 15

ZDC Coincidence Rate [kHz]

Figure 3.23: Averaged multiplicity as a function of the ZDC coincidence rate (Hz). Blue open circles
indicate uncorrected multiplicity and red circles show the corrected reference multiplicity. The red line
represents the fitting quadratic function that is used for the corrections.
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3.5.1 Effect of pileup events on cumulants

To understand the effect of luminosity on cumulants, the range of luminosity is divided into high, middle,
and low luminosity as shown in Fig. 3.24. The DCA distributions in these groups are shown in Fig. 3.25.
A longer tail is seen in the high luminosity group as shown in green than those in the lower luminosity
groups, which would indicate the increasing of backgrounds with luminosity. Further, Fig. 3.26 shows
multiplicity dependence of C; for different luminosity groups, which looks different depending on the
multiplicity. Although the lowest luminosity events have the fewest background, the statistics are reduced
by the rejection of the events in higher luminosity regions. Therefore, we use the data in the whole
luminosity region with the tuning of several variables depending on the luminosity. To do this, new
methods of luminosity-dependent corrections of efficiency and multiplicity are needed for efficiencies and
multiplicities.

<ZDC conmdence rate (Hz)

150

| \\““\ ,,,,, i\ ,},\\"\ \'\\‘\\\\\\kk

! !
0 200 400 SOU 800

10000}

Run Index
Figure 3.24: Luminosity grouping in the ZDC coincidence rate as a function of the run. The dotted red
lines show the boundary of grouping.
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Figure 3.25: Distributions of absolute DCA  Figure 3.26: Multiplicity dependence of first-
value in three luminosity groups. order cumulants in three luminosity groups.

3.5.2 Effects of pileup events on TOF matching efficiencies

As discussed in Sec. 3.5.1, the TOF matching efficiencies are estimated in the real data according to
Eq. 3.8. The approach has been employed in Au+Au collisions in the STAR experiment. In p+p
collisions, however, the denominator in Eq. 3.8 includes backgrounds from pileup events inside the TPC,
and hence the TOF matching efficiency cannot be estimated properly. Figure 3.27 shows the TOF
matching efficiencies in low, middle, and high luminosity groups. It is found that they show different
values for each luminosity over the entire pr regions, which can be understood as effects from pileup
events. Therefore, a proper approach is needed to extract the TOF matching efficiencies.
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Figure 3.28: TOF matching efficiencies with
the EMC hits requirement for three luminos-
ity groups in 2 < Reference Multiplicity (Ref-
Mult) < 30. High, middle, low luminosity
groups are shown in green, pink, yellow, re-
spectively.

Figure 3.27: The TOF matching efficiencies
for three luminosity groups in 2 < Reference
Multiplicity (RefMult) < 30. Green, pink,
yellow markers show high, middle, low lumi-
nosity groups, respectively.

To extract the pure efficiency of the TOF, a new definition of the TOF matching efficiency (¢’) has
been introduced, where the tracks are required to have hits in EMC as shown in Eq. 3.10.

, |nop| < 2N TOF hit N EMC hit,
€ =

3.10
|nop| < 2N EMC hit (3:.10)

Figure 3.28 shows the €’ as a function of py for these groups. It is found that the deviations between
different luminosity results are reduced compared to Fig. 3.27, and the values become higher compared
to Fig. 3.27.

3.5.3 Effects of pileup events on (anti)protons

Figure 3.29 shows the ZDC coincidence rate dependence of the average number of protons and antiprotons
used for fluctuation analysis. They are identified using the TPC and TOF in 0.8 < pr < 2.0 GeV /¢, while
only the TPC is used in 0.4 < pr < 0.8 GeV/c. It is found that both of them increase with luminosity,
which can be understood as effects from the pileup events. To suppress the effects, the TOF hits are
required for all py regions as shown in Fig. 3.30. Now (N,) and (N;) seems flat with respect to the ZDC
coincidence rate, and therefore the effects from pileup events on (anti)protons for fluctuation analysis can
be removed by requiring hits in TOF.
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3.5.4 Luminosity correction of multiplicity

To study the luminosity dependence of multiplicity and efficiencies more systematically, ZDC coincidence
rate distribution is divided into 10 groups so that each group has a comparable number of events as shown
in Fig. 3.31. Grouping is performed based on the Tab. 3.7 with 21M events for each group. The (ZdcCo.)
means the average number of ZDC coincidence rate calculated by event weighting from distribution in
Fig. 3.31. The groups are named from lowest to highest as Group #0, #1, ..., #9.
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Figure 3.31: Distribution of the ZDC coincidence rate. Dotted lines represent the boundary line of 10
groups. Solid lines represent the average in each group.

Measured multiplicity distributions are shown in Fig. 3.32 for different luminosity groups.
The distributions show different mean values and shapes depending on the luminosity. To correct
them, two methods of “Mean” and “Shape” corrections are developed.
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Table 3.7: Definition of the grouping of luminosity based on ZDC coincidence rate (ZDCCo.) .

Lumi.No. | Start of ZDCCo. (Hz) End of ZDCCo. (Hz) | (ZdcCo.)

0 0 4530 3311
1 4531 5782 5273
2 o783 6439 6123
3 6440 6984 6708
4 6985 7496 7245
5 7497 8094 7794
6 8095 8726 8396
7 8727 9484 9084
8 9485 10656 10019
9 10657 16000 11800

=

Table 3.8: Mean values of the multiplicity
distributions for each luminosity group.
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S0 0 7.60
< 1 8.78
D104 —Lumi#0—Lumi.#5 5 995
N [ —Lumi#l—Lumi#6 3 557
®. s —Lumi#2 —Lumi#7
glO £ —Lumi#3—Lumi#8 4 9.86
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Multiplicity 7 10.80
8 11.26
Figure 3.32: Distribution of multiplicity for 9 12.09

each luminosity group. Each distribution is
normalized with the number of events.
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Mean correction

For the mean correction, a luminosity-dependent scaling factor is multiplied to the multiplicity event-
by-event. The scaling factor is determined by fitting the Fig. 3.23 using a polynomial function f(z) =
—0.009722 + 0.67z + 5.5. Figure 3.33 shows the uncorrected/corrected results in blue/red markers,
respectively.

L e 2nd-order polynomial fitting
r = Uncorrected

L Corrected

10 - -

15

<Multiplicity>

oL v
0 5 10 15

ZDC Coincidence Rate [kHz]
Figure 3.33: The ZDC coincidence rate dependence of average multiplicity over the events. The blue
circles show uncorrected data. The red circles are mean corrected results by the fitting of blue data as
shown in the red dotted line. The fitting function is second-order polynomial.

Shape correction

A shape correction modifies the multiplicity distribution at #1—#9 so the shape becomes consistent with
that in #0. To do this modification, the subtraction factor d is determined by: d = Multy; — Mult4o,
where Multy; is multiplicity in ¢th luminosity groups. The subtraction factor d is calculated at the
same relative number of events as a difference between two hight-normalized multiplicity distributions at
two luminosities, one from the low (reference) luminosity and another one from the high luminosity as
shown in Fig 3.34 for the luminosity group #9 at a given multiplicity. The factor d increases non-linearly
with increasing the multiplicity as shown in Fig. 3.35. Similarly, the d in luminosity groups #0 — #8
are calculated as shown in black dots in Fig. 3.36. In order to obtain the subtraction factor d for the
different luminosities from #0 to #8, the fitted function “fy(Mult)” for the factor d of luminosity #9 is
rescaled instead of the individual fitting for each luminosity. The scaling constants p(#i) for i = 0 — 8
are obtained by: (d(#4i))/(d(#9)), where bracket represents the average value over multiplicity. As a
results, the function “p(#i)fq(Mult)” of the factor d for all luminosity groups are obtained as shown in
solid color lines in Fig. 3.37. For event-by-event measured luminosity, the values of d are obtained with
respect to the ZDC coincidence rate by the fitting of p(#i) as shown in Fig. 3.37.
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Figure 3.35: Multiplicity dependence of dis-
tance d for luminosity groups #0 and #9,
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groups (“Multy;”) and the lowest luminosity
(“Multy”). The x-axis is the multiplicity
for each luminosity. Solid lines show fitting
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Validity of the method

The results of these two corrections are shown in Fig. 3.38 and 3.39, respectively. It is found that the
mean values are consistent among different luminosity groups, which indicates the mean correction works
well. However, there are visible differences in the tails of the distributions. For the shape correction,
on the other hand, the distributions perfectly match each other. Figure 3.40 shows the multiplicity
dependence of net-proton Cs for different luminosity groups without any correction of multiplicity, which
shows 20 ~ 30% deviation depending on the luminosity. Cumulants as a function of mean and shape
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corrected multiplicity are shown in Fig. 3.41 and 3.42, respectively. It is found for both the methods that
cumulants become closer compared to Fig. 3.40 among luminosity groups after corrections. In order to
quantitatively evaluate the consistency of Cy values among luminosity groups, x? is calculated as follows:

Ci,j _ (oaverage
2= | = ”2 | : (3.11)
\/Umi,j + Un,average

where C3Y¢"8¢ or 0y, average are luminosity averaged results of C), and statistical errors, and CiJ or On,ij
are for the ith multiplicity and jth luminosity. Figures 3.43 and 3.44 show the y? distributions of Cs
with mean and shape corrections, respectively. It is found that the mean correction shows a smaller
value of (x?) compared to the shape correction. Similar studies are performed for the other orders of
cumulants, and resulting (x?) values are summarized in Tab. 3.9. For most orders of cumulants, (x?)
values are smaller for mean correction than shape correction, and therefore we decided to employ the
mean correction.
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Table 3.9: Average (x?) for nth-order cumulants of uncorrected, mean corrected, and shape corrected
multiplicity distributions, respectively.
Cn \ Before correction Mean correction Shape correction

Cy 1.42 0.93 1.17
Cs 6.60 3.48 4.33
Cs 1.01 0.77 0.83
Cy 2.14 1.11 1.31
Cs 0.81 0.67 0.71
Cs 0.90 0.77 0.73
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3.5.5 The necessary number of bins in net-proton distribution

In this analysis, cumulants are calculated in several parts of statistics to measure the multiplicity and
luminosity dependence. Furthermore, a small number of particles in p+p collisions affects the number
of bins in net-proton distributions. In this section, we will discuss the important procedures for the
calculation of cumulants to handle the artificial effects arising from the small number of bins.

The number of bins of the distribution is an important factor for the precise calculation of higher-
order cumulants and their statistical uncertainties. For instance, C7 represents the average value of
the distribution, hence the distribution should have at least one bin. Cj represents the width of the
distribution so at least two bins are necessary. Similarly, one naively expects that n bins are needed in
the distribution to calculate C,,.

Experimentally, the number of bins for net-proton distributions tends to decrease with increasing the
multiplicity due to less event statistics at the tail of the distribution. At m., < 18, the net-proton number
distributions have 6 bins. However, at the higher multiplicity, the 5 bins or fewer distributions appear
in several luminosity groups. Top panels in Fig. 3.45 show the net-proton multiplicity distributions from
one of the bootstrap samplings at m., = 19 for the luminosity group #9, #8, and #2. The distributions
have 5, 6, and 7 bins, respectively. The lower three panels show the distribution of Cg calculated for 100
bootstrap samplings. It is found that the distributions of bootstrap Cg from the distributions having
5 bins show sharp peaks and short tails compared to those calculated from distributions with 6 or more
bins. The width of the distributions are corresponding to statistical uncertainties of Cg, and therefore the
statistical uncertainties of Cs cannot be properly estimated for the distributions having fewer bins than
6. Figure 3.46 shows the relationship between the number of bins of net-proton distribution and mean of
statistical errors in Cg over 18 < m, < 22 and all luminosity data. The smaller errors are obtained in
most 5 bin distributions than the 6 and 7 bin cases. Therefore, the multiplicity distribution is rebinned
for mep, > 18 to keep the number of bins above 6 in any luminosity. More details of net-proton number
distributions and their number of bins are shown in App. D.1.
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tions from upper net-proton distribution with 5, 6, 7 bins
(bottom panels) at m.;, = 19 in luminosity group #9, 8, 7,
respectively.

The multiplicity classes shown in Fig. 3.14 are based on the discussion in this section. The classes
for mean corrected multiplicity distribution are determined as shown in Fig. 3.47 and Tab. 3.10. The
cumulants are calculated based on the 14 multiplicity classes with 3 < m.;, < 15 bin-by-bin and two wide
bin at m¢, > 15.
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3.5.6 Luminosity dependent efficiency correction
Efficiency for each luminosity

Luminosity dependent efficiencies are estimated for the TPC tracking efficiencies and the TOF matching
efficiencies according to the methods discussed in Sec. 3.2. Figure 3.48 shows multiplicity dependence of
the TPC x TOF combined efficiencies for each luminosity group at 0.4 < pr < 0.8 GeV/c. The values
are similar for most luminosity groups except for #0 and #9. Corresponding linear fitting functions are
used for luminosity-dependent efficiency corrections.
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Figure 3.48: Luminosity-dependent efficiencies as a function of multiplicity for proton at low pr. The
solid line represents the linear fitting function.

Efficiency tuning

In the luminosity group #i, the efficiency corrected Cy (C;(4)) should be identical between ¢ = 0 — 9.
However, since the measured Cy(n) still have deviations between different luminosity, efficiencies need to
be tuned. This tuning is based on the Cy(0). Efficiencies € in higher luminosity are then modified with
factor C1(i)/C1(0), where Cy (i) are averaged Cy over multiplicity in ¢th luminosity group. Modification
factors are summarized in Tab. 3.11. Corrected efficiencies can be obtained by € x C1(i)/C4(0), where
luminosity increases with increasing i. Figures 3.49 and 3.50show the ZDC coincidence rate dependence
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of (anti)proton and net-proton cumulants which are efficiency uncorrected, corrected, and corrected with
modified efficiencies. The corrected C; averaged over multiplicity using the modified efficiencies are flat
to the luminosity as shown in blue markers for both results of (anti)proton and net-proton. Since the
efficiency tunings are based on the C; averaged over the multiplicity bin, remaining variations except for
multiplicity dependence of cumulants will be taken into account in systematic uncertainties.

Table 3.11: Modification factor of efficiencies for each luminosity for proton and antiproton at low and
high pr region.

Lumi.No. | p, low pr p, low pr p, high pr p, high pr

0 1 1 1 1
1 0.97 0.98 0.98 0.97
2 0.96 0.97 0.97 0.97
3 0.95 0.96 0.97 0.97
4 0.96 0.97 0.97 0.97
5 0.95 0.96 0.97 0.97
6 0.95 0.96 0.97 0.96
7 0.94 0.95 0.97 0.96
8 0.93 0.95 0.95 0.95
9 0.92 0.95 0.95 0.95
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Figure 3.49: ZDC coincidence rate dependence of (anti)proton cumulants up to Cs. Open and solid
black markers show efficiency uncorrected and corrected cumulants, respectively. Solid blue markers
show cumulants which are corrected by modified efficiencies. Diamond, circle, cross, and square indicate
proton at low pr, antiproton at low pr, proton at high pr, and antiproton at high pr, respectively.
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Figure 3.50: ZDC coincidence rate dependence of net-proton cumulants up to Cs. Open and solid
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3.6 Systematic uncertainties

Systematic uncertainties are estimated by varying the cut conditions for particle identification, track
quality, efficiencies, and luminosity as shown in Tab. 3.12. The systematic calculation includes cut

Table 3.12: Variables and cut parameters for systematic study.

Variable | Default cut Changed cut

Ino] <20 <25,<23,<21,<19,<1.7,<15

DCA(cm) < 1.0 <15,<13,<1.1,<0.9,<0.7,<0.5

Number of the TPC hits > 20 >15,>17,>19,> 21,> 23,> 25

m? 0.6-1.2 0.8-1.4, 0.7-1.3, 0.65-1.25, 0.75-1.35

Efficiency 0% +5%, -5%, -5%(low pr)+5%(high pr), +5%(low pr)-5%(high pr)

. 0- 4530, 4531-5782, 5783-6439, 6440-6984, 69857496,

ZDC coincidence rate (Hz) | 0-16000 7497-8094, 8095-8726, 8727-9484, 9485-10656, 10657-16000

parameters where the net-proton C; values vary from —5% to +5% for the default cut. For each cut
condition on DCA and nHitsFit, efficiencies are estimated using embedding data. For the rest variables,
efficiencies are modified so the C; values become the same as that from the default cut for each cut
condition. The efficiency parameters and relative changes from default are summarized in Tabs. D.1 and
D.2 in App. D.2.1. Systematic uncertainties oy are estimated by following equations with different cuts

on 6 variables:
Ooys = O[> R2, (3.12)
J
C%J Cdef

Cdef
where C2/ and CJ are nth-order cumulants with default cut, and ith cut condition in jth variable,
respectively, and R; represent the contributions for jth variable. The oy are estimated for different
acceptance of pr and rapidity |y| as shown in Tab. 3.13.

(3.13)

Table 3.13: Acceptance for || and pr.

] Rapidity acceptance \ Transverse momentum acceptance

ly| < 0.5
ly] < 0.4
ly| < 0.3 0.4 < pr < 2.0 GeV/c
ly| < 0.2
lyl < 0.1

0.4 <pp <1.7GeV/c
ly| < 0.5 0.4 <ppr <14 GeV/c
04 <pr<1.1GeV/c
0.4 <pr <0.8GeV/c

Figure 3.51 shows an example of the systematic check for Cy/Cs with the different cuts of 6 variables
for averaged value over multiplicity. The results show that four different cuts on efficiency show the
largest variations in the variables. The systematic check for other orders and multiplicity dependence of
cumulants and their ratios are shown in Figs. D.18-D.25 in App. D.2.2. The results in different DCA cuts
show the largest deviations for the lower-orders, while results in different luminosity become dominant
for the higher-orders.
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Figure 3.51: The averaged value of Cy/Cy over multiplicity with each cut condition. Each panels show
different variables, [nop|, DCA, nHitsFit, m?, Efficiency, and Luminosity from top left to bottom right
panel. The squares with different colors are each cut shown in the legends. The black stars show the
C4/C5 with default cuts.
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3.6.1 Barlow check

In order to remove statistical effects from systematic uncertainty, barlow check [49] is performed for each
cut. This method uses the distribution of A/o,. to determine whether the distribution follow Gaussian
or not. A and o, are respectively defined as:

A = Qdefault _ csys (3.14)

Osc = \/ Uﬁefault - Ugys’ (315)

where Cdefault and C$Y% are cumulants or their ratios calculated with the default and different cut con-
dition, respectively, and ogefquis and ogys are statistical uncertainties of Cgef ault and C3Y% | respectively.
Distributions satisfying the three or more conditions in Tab. 3.14 are considered to follow Gaussian, then
the corresponding cut condition “passes” the barlow check. For this case, the cut condition is removed
from the systematic calculations. The number of entries in the A/og. distributions are totally 225 in-

Table 3.14: Four criteria of barlow check.

Variables \ Criteria
Mean < 0.2
RMS <12

Number of entries in |A/os.| <1 | 55 ~ 68%
Number of entries in |A/og| <2 | 80 ~ 95%

cluding 25 multiplicity (5 < m., < 30) and 9 acceptance (5 pr and 4 |n|). Cuts of |no,|, DCA, number
of the TPC hits, m?2, efficiency, and luminosity are investigated with cut conditions in Tab. 3.12. An
example of the distribution of A/o,. for |nop| < 2.1 cuts is shown in Fig. 3.52. The distributions for
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Figure 3.52: Distributions of A/og. for net-proton cumulants up to sixth-order with |nop| < 2.1 cuts.
Black dotted lines show the mean of the distributions. Red and blue dotted lines show 1o and 20 of the
distribution, respectively. For each panel, the results of the 4 criteria, Mean(u), RMS, Prob 1o, Prob
20, and whether they are “Passed” or “Failed” are described, where the Prob 1(2)o is the probability of
entry within g + 1(2)0.

most orders of the cumulants failed Barlow checks except for Cg satisfying three criteria, mean, RMS,
and probability of entry within 20 in the |nop| < 2.1 cuts. The barlow check results for other cuts and
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orders are shown in App. D.2.3. Consequently, 12 and 13 cuts out of 35 cuts of cumulant ratios passed
Barlow check. Then the results of the systematic uncertainties are estimated using those with the barlow
check “failed” cases.

Relative systematic uncertainties and R; for cumulants and their ratios averaged over multiplicity are
summarized in Tab. 3.15. For most orders, the contributions of efficiency and DCA cuts show the largest

Table 3.15: Contributions for systematic uncertainties (R;) of cumulants and their ratios for six variables
at |y| < 0.5 and 0.4 < pp < 2.0 GeV/c. The values of cumulants and their ratios are averaged over
multiplicity.

Order R;x100 (%)
Ino,| DCA nHitsFit m? Efficiency The ZDC co. rate
Ch 0.04 2.47 0.23 0.07 2.79 1.81
Co 0.02 1.23 0.31 0.04 2.46 2.33
Cs 0.18  2.57 0.23 0.07 2.38 1.70
Cy 0.07 1.13 0.20 0.06 2.00 2.10
Cs 298 4.63 0.87 0.57 0.56 5.92
Cs 1.09 1.21 0.91 0.37 2.66 6.17
Cy/Cy | 0.06 1.22 0.23 0.09 0.33 0.37
Cs/Cy | 0.14 137 0.36 0.09 0.12 0.66
Cy4/Cy | 0.04 0.12 0.13 0.02 0.53 0.31
Cs5/Cy | 2.34 1.53 1.10 0.60 3.48 6.48
Cs/Cy | 0.98 149 1.47 0.28 4.56 7.10

R; values in the six variables. The results with different DCA cuts include the effect of the increasing
of secondary particles within a large DCA region. On the other hand, the luminosity contributions are
dominant for the higher-order results. The results of relative uncertainties with different acceptance are
shown in Tab. 3.16. The o4y, of C5 and C5/C; show the larger uncertainties than the case of other orders

Table 3.16: Relative systematic uncertainties o, (%) for cumulants and their ratios for five |y| acceptance
and four pp acceptance. The values of cumulants and their ratios are averaged over multiplicity.

Order ly| < 0.4 <pr<
0.5 0.4 03 02 01 |17GeV/e 14GeV/e 1.1GeV/e 0.8 GeV/c
4 0.06 0.04 0.08 0.08 0.14 0.04 0.04 0.05 0.04
Cy 1.46 1.16 0.85 0.55 0.25 1.43 1.38 1.27 1.01
Cs 3.20 3.13 3.00 232 148 3.25 3.32 3.55 3.26
Cy 288 2.61 214 1.48 0.81 2.93 2.96 2.97 2.67
Cs 20.6 19.7 183 129 7.69 20.7 20.4 21.2 16.8
Ce 13.1 121 997 649 3.43 13.5 13.8 13.8 11.0
02/01 1.25 097 0.67 0.41 0.64 1.23 1.17 1.03 0.75
C3/C2 239 251 260 217 1.59 2.46 2.55 2.88 2.97
Cy/Cy | 1.56 1.54 1.36 0.98 0.57 1.62 1.70 1.80 1.74
Cs/Cy | 19.8° 20.5 18.7 132 7.94 21.5 21.1 21.7 17.3
Ce/Cy | 125 11.7 9.66 6.24 3.27 12.9 13.3 13.3 10.6

for the 9 acceptance. For example, the percentage of uncertainties for C; is the largest when |y| < 1, on
the other hand, for C5 it is largest when |y| < 0.5. The acceptance that shows the largest percentage of
the uncertainties is different for each order.
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Chapter 4

Results

In this chapter, we will discuss the acceptance and multiplicity dependence of cumulants of net-proton
number distribution up to sixth-order and their ratios, Co/C4, C5/Cs, C4/Cs, Cs/Cy, and Cs/Cq in /s =
200 p+p collisions. Effects of pileup events on the multiplicity dependence of cumulants will be discussed
through a toy model. We also tried to require hits in the TOF in addition to the conventional multiplicity
definition to remove the effects from pileup events from the multiplicity dependence of cumulants.

4.1 Acceptance dependence of cumulants

Rapidity acceptance dependence

The results of the rapidity (|y|) acceptance dependence of cumulants and their ratios are shown in
Figs. 4.1 and 4.2, respectively. The plotted values are averaged over multiplicity. The cumulants show
increasing trends with increasing of rapidity acceptance. In the higher-order results, the deviations from
the Skellam baselines increase at large rapidity acceptance. PYTHIA 8 calculations with 100 million
events are also shown for values of each order and Skellam. These PYTHIA 8 calculations are performed
using the SoftQCD:all process with the Lund string fragmentation process for hadronization where color
strings between partons fragment successively into final state hadrons. Baryon number conservation
laws addressed in Sec. 5.2 are followed in PYTHIA 8. For odd-order cumulants, the data show smaller
values than PYTHIA 8 calculations except for C5 and even-order cumulants are larger than PYTHIA 8
calculations. The Skellam and cumulants calculated by PYTHIA 8 show almost identical values in odd-
orders, on the other hand, there are deviations between them in even-orders. The deviations are larger
at large acceptance compared to the case at small acceptance. The trends with acceptance increasing
are qualitatively consistent with experimental data, while the values of PYTHIA 8 can not reproduce
the data. The observed results can contain effects that cannot be explained by the options assumed in
PYTHIA 8.

For the cumulant ratios, most of the orders show the closest values to the Skellam baselines at |y| < 0.1.
The deviations become large with increasing of the rapidity acceptance except for C3/Cy. The C5/Cy
and Cg/Cy show larger decreasing trends compared to those of other orders with increasing of acceptance.
The PYTHIA 8 calculations show The rapidity acceptance dependence of the deviations from the Skellam
baselines can be caused by the effect of baryon number conservation which will be discussed in Sec. 5.2.
In the PYTHIA 8 calculations, they show decreasing with increasing of acceptance except for Cs3/Ca,
while they do not reproduce the observed cumulant ratios. In the case of Cy/Cy, the PYTHIA 8 results
almost overlap with the PYTHIA 8 Skellam baselines.
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Figure 4.1: Rapidity (y) acceptance dependence of cumulants in p+p collisions at /s = 200 GeV for
0.4 < pr < 2.0 GeV/c and |y| < 0.1 — 0.5. The red points are averaged values over multiplicity. The
dotted lines represent the Skellam baselines. The statistical uncertainties are smaller than the size of the
markers. The shaded gray bands show the systematic uncertainties. The light blue bands are PYTHIA 8
calculations. The blue dotted lines represent the Skellam of PYTHIA 8 calculations.
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Figure 4.2: Rapidity (y) acceptance dependence of cumulant ratios in p+p collisions at /s = 200 GeV
for 0.4 < pr < 2.0 GeV/c and |y| < 0.1 — 0.5. The red points are averaged values over multiplicity. The
dotted lines represent Skellam baselines. The statistical uncertainties are smaller than the size of the
markers. The shaded gray bands show the systematic uncertainties. The light blue bands are PYTHIA 8
calculations. The blue dotted lines represent the Skellam of PYTHIA 8 calculations.
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Transverse momentum acceptance dependence

The pr acceptance dependence of cumulants and their ratios are shown in Figs. 4.3 and 4.4. The
cumulants show non-linearly increasing trends with increasing of the pr acceptance. The larger deviations
between data and Skellam baselines are found at the higher-order cumulants. The non-linearly increasing
trends are also shown in PYTHIA 8 calculations. The PYTHIA 8 calculations reproduce the observed Cs,
while for other orders, they show smaller(larger) values compared to observed pr acceptance dependence
in odd-(even-)order.

The results of the cumulant ratios show non-linearly decreasing trends with increasing of pr acceptance
except for C5/Cy. For the higher-order results, the larger deviations between the data and Skellam
baselines are observed. These deviations for the limited pt acceptance can be expected due to the
conservation effect. On the other hand, the PYTHIA 8 calculations show the increasing trends with pr
acceptance increasing for Cs/Cy and Cg/Cs. For other orders, PYTHIA 8 calculations do not reproduce
the acceptance dependence of the data.
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Figure 4.3: pr acceptance dependence of cumulants at /s = 200 GeV p+p collisions in 0.4 < pr <
2.0 GeV/c and |y| < 0.1 — 0.5. The red points are averaged values over multiplicity at 3 < m, < 30.
The dotted lines represent Skellam baselines. The bars indicate the statistical uncertainties. They are
smaller than the size of markers. The shaded bands show the systematic uncertainties. The light blue
bands are PYTHIA 8 calculations.
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4.2 Multiplicity dependence of net-proton cumulants

Figure 4.5 shows the multiplicity dependence of the cumulants up to sixth-order. The values increase as
the multiplicity increases, which is obvious from the trivial volume dependence of cumulants. There are
large deviations for higher orders between observed cumulants and the statistical baselines. The results
of PYTHIA 8 shown in red bands represent the string fragmentation model, so-called color reconnection
(CR). The CR deal with the rearrangement of color fields after initial collisions, where the final step at
the partons before hadronization is considered. The motivation to use this configuration is many color
strings from multiple parton interactions overlap in physical space, which makes the separate identity of
these strings questionable. This CR is implemented to be color connected with the total string length
becomes as short as possible [50]. In the small systems, the observed flow-like patterns [32] in LHC can
be provided an explanation by this CR mechanism [51]. For the average values of PYTHIA 8, Cy with
CR-off, C4 with CR-on, and C5 with CR-on/off reproduce the average value of data. The multiplicity
dependence of the PYTHIA 8 show increasing trends, while the data and PYTHIA 8 are not consistent
except for Cs. The PYTHIA 8 calculations do not reproduce the data in both cases even if the effect of
CR is included.

The multiplicity dependence of the cumulant ratios is measured as shown in Fig. 4.6. The results
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Figure 4.5: Net-proton cumulants up to the sixth-order as a function of multiplicity in p+p collisions at
Vs =200 GeV for 0.4 < pr < 2.0 GeV/c and |y| < 0.1 — 0.5. Red points represent the average over
the multiplicity region 3 < m., < 30. The dotted lines represent Skellam baselines. The bars indicate
the statistical uncertainties. The gray and green shaded bands show the systematic uncertainties for
multiplicity bin and average values. The values at 17 < m., < 30 are calculated in one centrality bin.

of C3/C5 are consistent with the statistical baseline, which would be accidentally caused by a similar
degree of deviations from the statistical baseline for both the second- and third-order cumulants. On the
other hand, for the higher-order results, large deviations are seen from the statistical baselines with the
hierarchy of the deviations Cy/Cs < C5/Cy < Cg/Cs. These deviations of average results for data and
PYTHIA 8 calculations can be considered due to the baryon number conservation effects addressed in
Sec. 5.2. The average values of PYTHIA 8 with CR-off are closer to data compared to CR-on cases except
for Cy/C4, while both CR-on and off can not reproduce the average results of the data. The multiplicity
dependent results of the PYTHIA 8 decrease with increasing the multiplicity except for Cs/Cy, where
the C4/Cs, C5/C4, and Cg/Cs have peaks at me, ~ 7. The higher-order results of PYTHIA 8 at high
multiplicity m., > 15 are overlapping with the data within uncertainties, while they do not reproduce
the trends of the observed cumulant ratios for the entire multiplicity region.
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4.3 Luminosity independent multiplicity

As we discussed in Chapter 3, corrections of multiplicity distributions are applied to the conventional
particles multiplicity to take care of the effects from pileup backgrounds, then cumulants were measured
as a function of the corrected multiplicity. However, it would be best if we can find an observable which
does not depend on the luminosity, and use it instead of the conventional multiplicity. The TOF matched
multiplicity mIOF, is defined by charged particles in |n| < 1.0 and pt > 0.5 GeV/c excluding protons
and antiprotons. The exclusion of proton and antiprotons is done by selecting particles that satisfy
nop < —3 and m? < 0.4. Figure 4.7 shows the ZDC coincidence dependence of average chhOF. The
mE}?F is independent of luminosity by requiring TOF matching, which indicates that the background
tracks from pileup events are suppressed by TOF from the conventional multiplicity shown in Fig. 3.23.
Therefore, the TOF matched multiplicity distributions are consistent among different luminosity groups

as shown in Fig. 4.8.
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Figure 4.7: The ZDC coincidence rate de- Figure 4.8: Distributions of TOF matched

pendence of the averaged number of TOF  multiplicity chhOF measured in different lu-
matched multiplicity mEhOF over events. minosity groups. Mean represents the aver-

age value of the TOF matched multiplicity
distribution for each luminosity group.

Using this luminosity independent multiplicity, ZDC coincidence rate dependence of net-proton cu-
mulants is calculated as shown in Fig. 4.9. Observed average C7 over mEhOF show decreasing trends
with increasing of luminosity for both uncorrected and corrected by luminosity dependent efficiencies.
The degree of the decreasing for efficiency corrected C; are ~ 10% improved compared to the observed
C1 in Fig. 3.50. The tuning of the efficiencies based on C; of (anti)protons is performed as discussed in
Sec. 3.5.6. The deviations of the cumulants among different luminosity groups are reduced at higher-order
by tuning the efficiencies.

The TOF matched multiplicity dependence of cumulants averaged over luminosity is shown in Fig. 4.10
with Skellam and PYTHIA 8 calculations. The increasing trends of the cumulants are shown in both the
observed results and PYTHIA 8. The deviations between the observed cumulants and Skellam are more
pronounced in the higher-order results. In the odd-orders, the PYTHIA 8 calculations without CR are
closer to the observed cumulants compare to those with CR, while in the even-orders, PYTHIA 8 with
CR are closer to the observed cumulants. For the ratios, observed C5/Cy are increasing, while the results
for other orders are decreasing at mLOF < 3 as shown in Fig. 4.11. The values of Cy/C; and C3/Cy
are not consistent with PYTHIA 8 calculations for both with and without CR. On the other hand, the
decreasing trend with the peak at m;FhOF ~ 3 in higher-order ratios are qualitatively consistent with the
PYTHIA 8 calculations. These cumulant results using TOF matched multiplicity are employed for the

final results and comparison with Au+Au collisions discussed in Sec. 5.4.
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Figure 4.9: ZDC coincidence rate dependence of efficiency corrected cumulants up to the sixth-order.
The values are averaged over TOF matched multiplicity.
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Figure 4.10: TOF matched multiplicity dependence of efficiency corrected cumulants up to the sixth-order.
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The relative systematic uncertainties and R; of average cumulants over multiplicity are summarized
in Tab. 4.1. The o4y, of C5 are 2.25% smaller than the results using mean corrected multiplicity as shown
in Tab. 3.15. Systematic uncertainties for each multiplicity are summarized in Tabs. D.3 and D.4 in
App. D.2.3.
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Table 4.1: Relative systematic uncertainty and R; of average cumulants up to sixth-order.

Osys R; x 100 (%)

Order | (%) | |nop] DCA nHitsFit m? Efficiency ZDC co. rate
1 2.00 | 3.48 11.84 2.93 3.12 5.45 0.32
Cy 0.99 | 2.58 7.59 2.49 2.58 4.64 0.07
Cs 1.61 3.31 10.56 2.67 2.74 4.87 0.61
Cy 0.72 2.24 6.54 2.12 2.11 3.94 0.41
Cs 0.73 | 4.53 3.87 0.90 0.58 0.93 5.95
Cs 0.55 | 2.50 2.11 1.22 1.66 1.63 6.10

Cg/Cl 0.15 | 1.09 3.62 0.24 0.27 0.46 0.82

C3/Cy | 0.11 1.46 2.81 0.37 0.17 0.21 0.91

Cy/Cy | 0.02 | 0.40 0.82 0.38 0.45 0.61 0.31

C5/Cy | 1.51 | 4.52 7.48 2.93 2.67 3.85 6.62

Cg/Cy | 1.36 | 3.86 6.55 3.39 4.18 4.59 5.35
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Chapter 5

Discussions

5.1 Effects of pions from A decay on multiplicity

In this subsection, we discuss the self-correlation effects of daughter (anti)protons from A decays on
the higher-order fluctuations of the net-proton. To simulate this, the effects of A decays are studied
by the STAR collaboration [19] with PYTHIA 8 having 20 million CR-off events. Figure 5.1 shows the
multiplicity distributions for the two cases: The label of “refmult3A” is the default multiplicity used in
data and “refmult3B” is multiplicity removed correlation from A decay. In the refmult3B, if a A and A
decays pion and proton, and the proton is selected in the analysis acceptance, the daughter pion from
the same decay is excluded from the multiplicity definition. To observe net-proton cumulants, those
secondary proton needs to be removed. As discussed in Sec. 3.1.2, DCA<1 cm cut works to suppress
the secondary particle to some extent. The residual secondary particles are acceptable in terms of proxy
as net-baryons. The distributions of refmult3A and refmult3B are consistent. The cumulants calculated
up to the fourth-order with the two multiplicity distributions are shown in Fig. 5.2. It is found that
their values of refmult3A and refmult3B show agreement within the uncertainties. Therefore, the effect
of protons due to A decay is negligible.

<
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Figure 5.1: Multiplicity distribution of charged particles calculated by PYTHIA 8 [19]. The black
line shows the default multiplicity as used in data. The blue line shows the multiplicity with
correlation from A decay.
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Figure 5.2: The net-proton cumulant ratios with the refmult3A and the case of correlation from A
decay removed from centrality definition.

5.2 Baryon number conservation

To understand the observed acceptance dependence of cumulant ratios, we consider the effects of baryon
number conservation [52]. To impose baryon number conservation on a system of (anti)baryon following
a Poisson distribution, the finite acceptance is modeled by the binomial distribution [53]. Let us suppose
that NF" baryons are generated in 47 acceptance, and Np baryons come into the experimental acceptance
for fluctuation measurements. In the case of the absence of baryon number conservation, the net-baryon
number distribution follows the Skellam distribution. In this model, the baryon number conservation is
imposed on both observed and unobserved particles. In the absence of correlations between measured
particles and unobserved particles, the distribution of the particles follows a binomial distribution, where
the probability p to observe a baryon is given by the fraction of the average observed baryon number
(Ng) to the average baryon number in the full phase space (N3¥). To calculate for net-protons, the
acceptance factor p is given by:

_(NB) (N
P=INgy 7 INEy

(5.1)

where (IV,) is the average number of observed protons. For simplicity, the same acceptance factor is
assumed for anti-baryons. Based on above assumptions, measured even-order cumulants are written as:

C2 =p(1 =p)(N)c, (5.2)
Cy = C2 +3(p*¢*B? — ¢3) + 6pq(2((NB)(Np))p(1 — p) — Ca), (5.3)
Cs = Cy +4(Cy — C2) — 10(2p(1 — p) + C2)(Cy — Cs) — 30pq(p*¢* B? + K3), (5.4)

where ¢ = 1 —p, and B(= (Np) — (Np)) is an average net-baryon number, and (N)c = (Ng)c + (Ng)c.
In the limit p — 0, where the distribution become close to Skellam, the cumulants are approximated
Cy = Cy = Cs =~ p(N)c in p— 0. In absence of baryon number conservation, since net-proton number
distribution follow the Skellam distribution, cumulants are written as Cy = C§ = C5 = p(N). The
fraction of C5 to the Skellam therefore can be obtained by:

Cy

Skellam =V’ (5.5)
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where the assumption of global baryon number conservation induces correlations between protons and
antiprotons. Based on the Eq. 5.5, the observed deviations of Cs shown in Figs. 4.1 and 4.3 can be
discussed with the effect from the baryon number conservation.

The ALICE experiment at LHC has reported the pseudorapidity dependence of the normalized second-
order net-proton cumulant [54]. The results for small pseudorapidity ranges of An < 0.8 show agreement
with Skellam baseline within uncertainties, which is expected the case of limit p — 0 as discussed above.
The values for An > 0.8 deviate from Skellam and they show agreement with the prediction assuming
global baryon number conservation with 1 — p. This can be understood that the observed deviations for
each acceptance are explained by the assumption of the baryon number conservation effect within the
full phase space.
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Figure 5.3: |y| distributions of (anti)protons  Figure 5.4: |y| distributions of (anti)baryons
by PYTHIA 8 in p+p collisions at /s = by PYTHIA 8 in p+p collisions at /s =
200 GeV with 100 million events in the CR- 200 GeV with 100 million events in the CR-
off configurations. off configurations.

Table 5.1: Values of Cy/Skellam, (N,), (N£¥), p for each rapidity acceptance calculated by PYTHIA 8
in p+p collisions at /s = 200 GeV with 100 million events in the CR-off configurations.

Acceptance [ Ca/Skellam [ (N,) [ (NF) | p

[y < 0.5 0.86 0.093 0.061
ly[< 0.4 0.88 0.075 0.048
ly[< 0.3 0.90 0.056 | 1.53 | 0.036
ly[< 0.2 0.92 0.037 0.024
ly[< 0.1 0.95 0.018 0.012

In this study, to evaluate the rapidity dependence of net-proton Cy/Skellam, the value of p needs
to be obtained by model expectation. PYTHIA 8 calculations having 100 million events with CR-
off configuration are used to calculate variables (Np) and (N#'). Figures 5.3 and 5.4 show the |y]
distributions for (anti)proton and (anti)baryon, respectively. The number of protons and neutrons are
contained in the number of baryons for each rapidity acceptance about half each. For each acceptance,
calculated Cy/Skellam, (N,), (N&¥), and p for each y acceptance calculated by PYTHIA 8 are shown in
Tab. 5.1. The observed Cy/Skellam as a function of the y acceptance with PYTHIA 8 C5/Skellam and
1 — p are shown in Fig. 5.5. The value of Cs/Skellam is below unity and the deviations are increasing
with increasing acceptance. The values are fitted by linear and quadratic functions with intercepting 1.0.
PYTHIA 8 results show the linearly decreasing with increasing acceptance and they do not reproduce
the observed results. The value of 1 — p at |y| < 0.1 reproduces the observed Cs/Skellam, while they
are above data at larger acceptance. The linear fitting function for the data with intercept 1.0 shows
a steeper slope than 1 — p. The quadratic fitting function with 4.8 times better xy?/NDF compared to
the linear fitting is below the line of 1 — p. This deviation between the data and 1 — p can provide an
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Figure 5.5: Data and PYTHIA 8 calculation of y dependence of Cs/Skellam in p+p collisions at
Vs =200 GeV for 0.4 < pr < 2.0 GeV/c and |y| < 0.1 — 0.5. The red points are observed aver-
age values over multiplicity. The solid magenta and blue lines are fitting of the data with linear and
quadratic functions, respectively. The red and light blue bands show C5/Skellam and 1 — p calculated by
PYTHIA 8. The blue and black solid lines are fitting for Cy/Skellam and 1 — p calculated by PYTHIA 8,
respectively. The statistical uncertainties are smaller than the size of the markers and bands. The shaded
gray bands show the systematic uncertainties.
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explanation that the observed fluctuations can contain the effects that are not explained only the baryon
number conservation effects.
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5.3 Pileup model

The pileup events are included in the cumulant calculations. In this subsection, we tried to understand
the effect of pileup events by modeling a “pileup-filter” based on the data. In this model, two(three)
events are randomly picked up from each sub-group with the probability «(3), and they are superimposed
in terms of the (anti)protons and multiplicity. The probability distribution function to find N particles
is given by:

P(N) = (1 —a)P*(N) + aPP"?(N) + BPP"3(N), (5.6)

where the P*(N) and PP (N) are the probabilities for the observed multiplicity distribution in the lowest
luminosity group (true) and the superposition of n single-collisions events, respectively. To describe the
multiplicity distributions for the highest luminosity using the lowest one, the latter event samples are
divided into two sub-groups named “Py(N)” and “Pj(N)” having 10 million events, where subscripts
#n indicate luminosity group numbers. By varying the parameters « and 3, we can determine the “pileup
filter” which describes the multiplicity distributions in higher luminosity groups. Figure 5.6 shows the
distributions for Py (N) and Plg(N), and results of aP;;BQ (N) + BP;‘SS(N) with @=0.89 and $=0.11.
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Figure 5.6: Multiplicity distributions for Figure 5.7: Multiplicity distributions for ex-
experimental data and demonstration of perimental data and demonstration of pileup
pileup filter. The yellow and green data filter. The red and blue data correspond
show the distribution measured in luminos- to pileup filtered distribution QP;EQ(N ) +
ity groups 70 and #9, respectively. The red BP;;'(JJS(N ) and mean corrected distribution,
data is reproduced distribution from the yel-  yegpectively.

low data.

To evaluate the pileup effects on fluctuations, the cumulants are calculated with distributions P;}O(N )

and aPng(N )+ ﬁPg‘Sg(N ). Note that the filter is not applied to the number of (anti)protons. Once the
pileup filter is applied to the number of p/pbar as performed for the multiplicity, the value of C; is doubled
by the construction, but such a significant difference is not observed in the data as shown in Fig. 5.8.
Therefore, the number of protons and antiprotons are randomly picked up from P;&lo (N) and P;EO (N)

with 50% probability for each. The results of cumulants in aP;;gQ (N)+ 5P§33(N ) are shown in Fig. 5.9.
It is found that the Cy values of aP%y*(N) + BPLy* (N )are consistent with that of Pi} (N) within ~ 1o

uncertainties. On the other hand, the Cs of aP;;‘SQ (N)+ BP:ZSS (N) become smaller than that of Py (V)
shown at m., < 10. Furthermore, larger deviations between the lowest and highest luminosity are seen
at C5 than the other orders. These characteristic multiplicity dependencies are qualitatively consistent
with the results measured in real high luminosity data as shown in Fig. 5.8. For the higher-order results,
Cy and Cg show a similar trend with Cy within large uncertainties. As discussed in Sec. 3.5.4, the mean
correction of multiplicity distribution is performed as shown in Fig. 5.7. As a results of mean correction,
cumulants for aPé;‘f(N )+ BP;BB (N) show agreement with that for P} (N) within the uncertainties as
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shown in Fig. 5.10. The agreement of cumulants by mean correction is consistent with the experimental
results as shown in Fig. 5.11. Therefore, the pileup effect on cumulants can be demonstrated by this
simulation up to Cs through the pileup filter.
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Figure 5.8: Multiplicity dependence of cumulants up to the sixth-order measured in the lowest and highest
luminosity groups.
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5.4 Comparison with Au+Au collision

Figure 5.12 shows the multiplicity dependence for cumulant ratios C,/Cs, C5/C1, and Cg/Co, where
the results from Au+4-Au collisions at /syn = 200 GeV are overlaid on top of the results from p+4p
collisions. The values of multiplicity for p+p collisions are converted from the TOF matched multiplicity
in Fig. 4.11 to the TPC multiplicity using Fig. 5.13. Results from the hadron resonance gas model
(HRG) [55], PYTHIA 8 [19], Lattice QCD [31], and the Skellam expectations are also shown. The HRG
model can describe the observed particle generated in heavy-ion collisions based on non-interacting hadron
and the resonance for the degree of freedom. The HRG results provide a baseline for net-baryon number
fluctuations. The details are described in App. C.1. The light blue ticks represent the multiplicity ranges
corresponding to the centrality classes in Au+Au collisions. The average values show the following
relation: C4/Co > C5/Cy > Cg/Cq, which is qualitatively consistent with the hierarchy observed in
Lattice QCD calculations [6,31]. The PYTHIA 8 expectations of average values are closer to the values
of p+p than the results of Au+Au central collisions. Positive signs of C5/C} and Cg/C5 are observed for
p+p collisions at low multiplicity region, while they decrease and show small value at high multiplicity.
It seems that the multiplicity dependence in p+p collisions and the multiplicity dependence of Au+Au
shown in the triangular marker are connected. On the other hand, Au+Au results show negative signs at
central collisions. The observed negative sign is qualitatively consistent with Lattice QCD calculations.
The Lattice calculations imply chiral phase transition in the thermalized QCD matter.
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Figure 5.12: Charged multiplicity dependence of the net-proton cumulant ratios, Cy/Co, C5/Cy and
Cs/Co, from /s = 200 GeV p+p and Au+Au collisions are shown as circles and triangles, respectively.
The multiplicity ranges corresponding to the centrality classes in Au+Au collisions are also indicated in
the plots. In p+p collisions, the bars and bands are statistical and systematic uncertainties. The red,
gold bands, and long-dashed lines indicate the calculations of Lattice QCD, PYTHIA 8, and Hadron
Resonance Gas (HRG) models. In the PYTHIA 8, the option of color reconnection is off.
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We conclude that our measurements could indicate that the scenario applies to Au+Au central col-
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lisions at /sy = 200 GeV, while not to p+p collisions at low multiplicity and average results over
multiplicity. However, results in p+p collisions show decreasing trends and significantly small values at
high multiplicity.
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Chapter 6

Summary

Understanding the phase structure of the QCD matter and the nature of the phase transitions is one
of the ultimate goals of high-energy physics. Higher-order cumulants of conserved charges are powerful
tools to study the QCD phase structure. Several hints on the crossover transition and the QCD critical
point have been obtained through the measurements for Au+Au collisions in the BES program at RHIC-
STAR. In this study, higher-order cumulants of net-proton multiplicity distributions have been measured
for p+p 200 GeV collisions to determine the precise baselines to be compared to the results from Au+Au
collisions. Through this measurement, we can also test the possibility that the QGP could be formed in
high-multiplicity events in p+p collisions.

The most difficult issue in p+p collisions was significant fractions of backgrounds from pileup events,
which is generally negligible in Au+Au collisions. To understand the effects of pileup events on higher-
order cumulants, several variables on particle multiplicity and detector efficiencies were studied as a
function of the luminosity. Luminosity dependent corrections on those variables were then newly devel-
oped to handle the effects on higher-order cumulants.

The multiplicity dependence of cumulants has been measured in two ways. We first apply corrections
to the conventional particles multiplicity to take care of the effects from pileup backgrounds, then cu-
mulants were measured as a function of the corrected multiplicity. The other way is that we defined a
new luminosity-independent quantity. Most orders of cumulant ratios in the former way show increasing
with multiplicity increasing, while Cy/Cs, C5/C1, and Cg/Cy in the latter way show decreasing with
increasing of the particle multiplicity, which is qualitatively consistent with the PYTHIA 8 calculations.
Given the consistent shape of the particle multiplicity distributions and cumulant values among different
levels of pileup fractions, we finally employed the latter way to measure the multiplicity dependence of
cumulants.

The rapidity and transverse momentum acceptance dependence of net-proton cumulants has been
also measured with proper weights for each particle multiplicity bin. It is found that the deviations
from statistical baselines increase with increasing the rapidity and transverse momentum acceptance. To
understand the deviations with the assumption of baryon number conservation within full phase space,
the y acceptance dependence of observed Cs/Skellam and PYTHIA 8 C5/Skellam are studied. The
observed Cs/Skellam are below unity and the deviations are increasing with increasing y acceptance.
PYTHIA 8 results show the linearly decreasing with increasing acceptance and they do not reproduce
the observed results. The value of 1 — p at |y| < 0.1 overlap with the observed Cs/Skellam, which is
expected by the limit p — 0, where the observed net-proton distribution become close to Skellam, while
they are above data at larger acceptance. Furthermore, the quadratic function performs better fitting the
observed results compared to the linear fitting. These results can explain that the observed fluctuations
can contain effects that are not explained only by the baryon number conservation effects.

The results of sixth-order cumulant were found to stay positive in multiplicity less than 8, while
the values decrease and show the possibility of the negative sign at higher multiplicity region within
systematic uncertainties. PYTHIA 8 calculations show decreasing trends and results of C5/Cy with CR-
off show the possibility of negative value at high multiplicity within uncertainties. The results thus do
not reflect the sign of phase transition at low multiplicity, while they can indicate the possibility of phase
transition at high multiplicity in p+p collisions. Furthermore, the results from p+p collisions fit into
the centrality dependence of Au+Au collisions at the same energy. The measurements provide precise
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baselines of net-proton higher-order cumulants for the hadronic matter to be compared to the results from
the Au+Au collisions. For Au+Au central collisions, observed results show C5/Cy < 0 and Cs/Cs < 0,
which is understood by Lattice calculations implying chiral phase transition in the thermalized QCD
matter. This is not the case in /s = 200 GeV p+p collisions for low multiplicity events, while the values
show decreasing trends and small values at high multiplicity.
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Appendix A

Event and track selection

A.1 Run-by-run QA

Some variables have step-like structures, e.g., Run Index is 100 for (RefMult), due to the change of the
trigger, detector, or beam conditions.
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Figure A.1: Run division based on the vertex and phase information.

The criteria of division is based on following run information.
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Table A.1: The definition of period for run-by-run QA of event variables (top) and track variables

(bottom).
Run number Condition
13045056 TOF and HVIOC issue
<V,> 13058008 BEMC and EEMC issue
13063009 BEMC issue
13066101 FMS, QT1, QT2, QT3, QT4 issue
Run number Condition
<é> 13046118 High FMS trigger, High threshold
13053021 Orbit correction, High luminosity
13068017 Removing of FMS trigger
Run number Condition
13056004 beam issue, very high background
<n> 13058047 High TPX rate
13059035 TOF buch ID errors
13063070 TPC back on, End of FMS run
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Figure A.2: Histograms for event of the entries defined by the number of run with number of event weight
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for determination of mean and 3¢ range in run-by-run QA.
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Figure A.3: Histograms for track of the entries which is the number of run with number of event weight
for determination of mean and 3¢ range in run-by-run QA.

The QA is performed based on the mean value (1) +30 of averaged variables as a function of run
index. Mean and 30 lines were obtained by the distribution of each variables with event weight.

Table A.2: Definition of badrun in different condition and statistics.
Number of variables Number of run  Number of events

Total run

16 856 223234814
Number of variables Number of badrun  Badrun(%) Number of events
> 1 (the tightest) 133 ™% 207M
>2 o1 1% 220M
>3 26 0.1% 223M
Beyond 30 >4 22 0.1% 223M
) 18 0.07% 223M
> 6 16 0.001% 223M
>7 13 0.001% 223M
> 8 (the loosest) 13 0.001% 223M
Number of variables Number of badrun  Badrun(%) Number of events
> 1 (the tightest) 353 29% 158M
>2 203 12% 195M
>3 131 ™% 20™
Beyond 20 >4 94 5% 212M
>5 69 3.3% 215M
>6 55 2.5% 217
>7 43 1.4% 220M
> 8 (the loosest) 32 0.9% 221M
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Figure A.4:
QA.

Figure A.5: Comparison of the cumulant ratios in the tightest (open red markers) and the loosest (solid
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Since the C,, in different 2 level QA are consistent within the statistical uncertainty, the loosest
condition of QA can be applied. Totally 13 bad runs were removed.
A.2 Luminosity dependence of event and track variables

Figure A.6 shows the several events and track observables measured in three luminosity region—high,
middle, and low. Each distribution is normalized based on the distribution of middle luminosity region.
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The grouping is defined by Fig. 3.24 in Sec. 3.5.1.
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Appendix B

Efficiency

B.1 Mixed cumulants in efficiency correction
(4(r,5)q(t,u))c are mixed cumulants, which are defined by:

g o
mpnay = 9% g, g : B.1
<m1 m2 > ag'ilg 8032 ( 1 2) 61—6s—0 ( )

where K (61, 602) is cumulant generating function. The calculation of mixed cumulants are written as:

0o 0

<m1m2>c = 87918792 In G(91,92) br—tu (B2)
91 0G(0,6)
T 001 G(01.02) 902 |, _p o (B.3)
- 1 9G(6:,02) OG(61,05) 1 92G(61,6,)
- _G2(91,92) 004 00, + G2(01,05) 06100, 0,=0,=0 B4
= —(ma)(mz) + (m1ma) (B.5)
(mima)e = 2(m1)*(ma) — (m7)(ma) — 2(m1)(mima) + (mimy) (B.6)
(mim3)e = 2(m1)(ma)? — 2(ma)(mymy) — (my)(m3) + (mym3) (B.7)
o 0 0
<m1m2m3>c = 679187928793 In G(@l, 92,93) b2—0st—0 (B8)
90 1 9G(6y,0,65)
~ 36 30, GO 6.0 T oo (B.9)
0 1 0G 0G 1 0%G
= 90~ a0 By s (B.10)
= 2(m1)(ma)(ms) — (m1ma)(msz) — (m2)(mimz) — (m1)(mams)(mimams) (B.11)
92 9 0
(m3mams). = 926, 56, 50, InG (01,02, 05) oo (B.12)
= —6(mq)*(m2)(ms) + 2(mima)(ms) + 4(m1)(mima)(ms) 4+ 4(m1)(mz) (myms) (B.13)
— (mima)(mg) — 2(mima) (mims) — (ma)(mims) (B.14)
+2(m1)*(mamg) — (m7)(mama) — 2(m1)(mimams) + (mimoms) (B.15)
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B.2 Multiplicity dependence of TOF matching efficiencies

Figure B.1 shows the pr dependence of efficiencies of the TPC, TOF with the EMC, and combination of
them for protons at the entire multiplicity region. It is found that the TOF matching efficiencies with
the EMC are 80% and combined show around 70% which is 20% higher than in Fig. 3.17 and 3.18.
Multiplicity dependence of the pr integrated efficiencies are shown in Fig. B.2.
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Figure B.1: Transverse momentum pr de- Figure B.2: Multiplicity dependence of pr

pendence of efficiencies of the TPC, TOF
with the EMC, and combination of them

integrated efficiencies for the combination of
the TPC and TOF with the EMC for protons

for protons at merged multiplicity over 2
to 30. Black dots show the TPC tracking
efficiency. Green triangles show the TOF
matching efficiency with the EMC hit re-
quirement. Yellow squares show combined
efficiencies of them. Red dotted lines repre-
sent pr = 0.4, 0.8, 2.0 GeV/c.

and antiprotons. Black dots and red squares
are shown region 0.4 < pr < 0.8 GeV/c
and 0.8 < pr < 2.0 GeV/e, respectively.
Solid (open) markers are protons (antipro-
tons). Blue solid (dotted) lines represent the
linear function of fitting for protons (antipro-
tons).

B.3 Multiplicity and luminosity dependence of efficiencies

Table B.1: TOF matching efficiencies in different luminosity groups for proton and anti-proton.

proton antiproton
Lumi.No. | 0.4 < pr < 0.8 GeV/c 0.8 <pr <2.0GeV/c | 0.4 <pr <08 GeV/e 0.8 < pr <2.0GeV/c
0 0.815 0.795 0.811 0.800
1 0.809 0.792 0.807 0.796
2 0.801 0.792 0.808 0.796
3 0.805 0.790 0.805 0.796
4 0.804 0.791 0.805 0.793
5 0.803 0.790 0.804 0.794
6 0.799 0.788 0.803 0.793
7 0.804 0.786 0.801 0.792
8 0.797 0.787 0.801 0.791
9 0.795 0.785 0.800 0.789
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Appendix C

Theoretical model

C.1 Hadron resonance gas (HRG) model

The baryon number susceptibility with Boltzmann approximation are written by:

o?n(P/T*) m; m;
32722 N2 T2 ; T Ty 1
X2n 8NAB2n—1 — (gl T ) 2 T ) X COSh(/J/B + Qz/-//Q + Sz/f’fS) (C )

, where m; is hadron mass, g; is the degeneracy factor for m;, yp is up/T with q= B, Q, S represent-
ing baryon, electric charge and strangeness, respectively. This leads the ratios of the baryon number
susceptibility as:

B
Xeven
Xeven _ C.2
X&ven ©2
B
Xoad _ 4 (C.3)
Xodd
Xod. _ g1/ T C4
o = tanh(pp/T)|ug +ns=0 (C4)
(C.5)

, where the pup is the baryon chemical potential and T is temperature. From Eq. C.5, the relationship
between M, o, and k are written as:

Mp
g = Sq0q = tanh(ps/T)|pg+ps=0 (C.6)

KBOH (C.7)

C.2 Multiplicity distribution of PYTHIA 8

For comparison between the measured multiplicity dependence of cumulants in Fig. 4.6 and PYTHIA 8
calculations, the mean of the multiplicity distributions of PYTHIA 8 are tuned. Figure C.1 shows the
multiplicity distributions for measured in the luminosity group #0 and PYTHIA 8.
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Figure C.1: Multiplicity distributions of experimental data and PYTHIA 8. The blue data shows
the PYTHIA 8 with color reconnection. The yellow data represents the measured data of luminosity
groups #0 with mean correction.
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Appendix D

Analysis

D.1 Number of bins in net-proton distributions

The number of bins in net-proton distributions are investigated for each TOF matched multiplicity and
each luminosity groups as shown in Figs. D.1-D.10.
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Figure D.1: Net-proton distributions for each Tofmatched in luminosity group #O0.
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Figure D.5: Net-proton distributions for each Tofmatched in luminosity group #4.
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Figure D.7: Net-proton distributions for each Tofmatched in luminosity group #6.
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Figure D.9: Net-proton distributions for each Tofmatched in luminosity group #S8.
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Figure D.10: Net-proton distributions for each Tofmatched in luminosity group #9.
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Figure D.11: Net-proton distributions for each Tofmatched in all luminosity group.
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D.1.1 Multiplicity and luminosity dependence of cumulants
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Figure D.12: Multiplicity dependence of cumulants in different luminosity groups.
average over luminosity. Multiplicity 27 < m, < 50 are merged.
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Figure D.13: Shape corrected multiplicity dependence of cumulants in different luminosity groups. The
black square show average over luminosity. Shape corrected multiplicity 25 < m., < 40 are merged.
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D.2 Systematic study
D.2.1 Efficiency for DCA and nHitsFit

Cumulants are corrected by efficiency estimated in each cut for DCA, number of the TPC hits by em-
bedding data. Since the embedding simulation cannot give precise information of |no,| and m?2, they are
corrected by original efficiencies as shown in Fig. 3.48 and efficiency modifications are applied.

Fig. D.14 and D.15 show pr integrated efficiencies for proton at 0.4 < pr < 0.8 GeV/c in the lowest
luminosity group as a function of multiplicity by combined the TPC and TOF with EMC in different
cuts of DCA and number of the TPC, respectively.
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Figure D.14: Mean corrected multiplicity de-
pendence of pr integrated efficiencies for pro-
ton at 0.4 < pr < 0.8 GeV/c in the lowest
luminosity group as a function of multiplicity
by combined the TPC and TOF with EMC
in different cuts of DCA .
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Figure D.16: Tofmatched dependence of pr
integrated efficiencies for proton at 0.4 <
pr < 0.8 GeV/c in the lowest luminosity
group as a function of multiplicity by com-
bined the TPC and TOF with EMC in dif-
ferent cuts of DCA .
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Figure D.15: Mean corrected multiplicity de-
pendence of pr integrated efficiencies for pro-
ton at 0.4 < pr < 0.8 GeV/c in the lowest
luminosity group as a function of multiplicity
by combined the TPC and TOF with EMC
in different cuts of number of the TPC.
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Figure D.17: Tofmatched dependence of pr
integrated efficiencies for proton at 0.4 <
pr < 0.8 GeV/c in the lowest luminosity
group as a function of multiplicity by com-
bined the TPC and TOF with EMC in dif-
ferent cuts of number of the TPC.



It is found that the variation of DCA with different cuts show lager than that of number of the TPC
hits (nHitsFit).

Averaged efficiency values and relative changes of efficiency respect to the default cut for proton at
low pr, antiproton at low pr, proton at high pr, antiproton at high pt are shown in Tab. D.1 for DCA
and number of the TPC hits.

Table D.1: Efficiency value and relative change of efficiency respect to the default cut for proton at low
pr, antiproton at low pr, proton at high pr, antiproton at high pr for different cuts of DCA and number
of the TPC hits. Efficiency values are averaged over multiplicity.

Cut Efficiency value Relative change of efficiency
DCA< 1.5cm 0.72, 0.72, 0.69, 0.69 -3.89, -4.15, -1.91, -1.99
DCA< 1.3cm 0.71, 0.71, 0.69, 0.69 -2.83, -3.08, -1.34, -1.37
DCA< 1.1cm 0.70, 0.70, 0.68, 0.68 -1.22, -1.37, -0.53, -0.53
DCA< 0.9cm 0.68, 0.68, 0.67, 0.67 +1.81, +1.80, 4-0.63, +0.60
DCA< 0.7cm 0.64, 0.64, 0.66, 0.66  +7.88, +8.02, +2.54, +2.36
DCA< 0.5cm 0.54, 0.54, 0.64, 0.64 +21.1, +21.2, +6.17, +5.77

Number of the TPC hits> 15 0.70, 0.70, 0.69, 0.69  -1.75, -1.81, -1.36, -1.48
the Number of the TPC hits> 17 0.70, 0.70, 0.69, 0.68  -1.13, -1.21, -0.86, -0.93
the Number of the TPC hits> 19 0.69, 0.69, 0.68, 0.68  -0.32, -0.43, -0.28, -0.28
the Number of the TPC hits> 21 0.69, 0.69, 0.68, 0.67  +0.48, +0.45, +0.31, +0.32
the Number of the TPC hits> 23 0.68, 0.68, 0.67, 0.67 +1.76, +1.87, +1.17, +1.19
the Number of the TPC hits> 25  0.66, 0.66, 0.66, 0.66  +4.24, +4.34, +2.45, +2.38

The value of C and modification factor of them for (anti-)protons and net-protons for |y| < 0.5 and
0.4 < pr (GeV/c)< 2.0 are summarized in Tab. D.2.
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Table D.2: Averaged C; and modification factor(%) for protons at low pr, antiprotons at low pr, protons

at high pr, antiprotons at high pr, net-proton at low pt respect to the default cut.

Variable Changed cuts Modification [%)]

p, plow pr), p, p(high pr)  net-p(%)
<25 +3.46, +3.70, +3.12, +3.21 +2.86
<23 1956, +2.73, 42.29, 42.37  +2.10

Ino| <21 T1.06, +1.11, 10.95, 10.97  10.87
<19 1.28, -1.34, -1.16, -1.16 1.09

<17 479, -5.03, -4.32, -4.38 116

<15 2971, -10.1, -8.82, -8.08 847

<15 1547, 4372, 1245, 4219 4723

<13 13775, 1258, +1.74, +1.58  +4.87

DCA (cm) <11 F1.41, 10.96, +0.71, 10.66  +1.85
< 0.9 -1.53, -1.22, -0.92, -0.86 -1.90

<07 5.61, -4.25, -3.57, -3.45 77.02

< 0.5 -11.1, -8.34, -8.66, -8.26 -14.8

<15 20.60, -0.69, -0.00, -0.09 20.03

<17 -0.32, -0.44, +0.03, -0.02 +0.04

Number of the TPC hit <19 20.05, -0.17, -0.04, -0.04 10.10
<921 10.14, 10.12, 10.00, 10.00 _ 10.11

<93 70.34, 1048, -0.19, 0.22 __-0.05

<% 10.65, +0.74, -0.82, 10.79 _ -0.16

08 <m?< 14 1.27, -1.32, -6.50, -7.20 261

m? 0.7 <m? <13 20.14, -0.12, -0.52, -0.58 0.27
0.65 < m? < 1.25 -0.04, -0.03, -0.13, -0.14 -0.06

0.75 <m? < 1.35 -0.34, -0.30, -1.79, -2.00 -0.76

5% Z4.76, -4.76, -4.77, 4.77 “4.75

Efficiency 5% 15.26, +5.26, 15.25. +5.25  +5.24
5% (low pr)+5%(bigh pr) | +5.26, +5.25, -4.78, -4.76 _ +1.06

5% (low pr)-5%(Iigh pr) | -4.75, -4.76, +5.24, 1525 -0.52

0 ~ 4530 $0.09, +0.15, 10.14, 4026 -0.03

4531 ~ 5782 +0.08, +0.16, 4+-0.13, +0.24 -0.00

5783 ~ 6439 10.08, +0.14, 10.16, 4024 10.05

6440 ~ 6934 0.09, +0.15, 10.16, +0.26 _ -0.08

ZDC coincidence rate(Hz) 6985 ~ 7496 40.09, 40.14, 4+0.13, +0.25 +0.05
7497 ~ 8094 10.08, 40.18, 40.15, 4027 40.03

8095 ~ 8726 +0.08, +0.16, +-0.14, +0.22 -0.03

8727 ~ 0484 70.10, 10.13, +0.14, 1021 -0.03

9485 ~ 10656 +0.07, +0.17, +0.15, +0.25 -0.06

10657 ~ 16000 +0.09, +-0.16, +0.15, +0.26 +0.03
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D.2.2 Cumulants with different cut conditions

Figures D.18 and D.19 show mean corrected multiplicity dependence of nth-order cumulants with different
cuts for systematic study. The variables, [no,|, DCA, number of the TPC hits ("nHitsFit”), m?, efficiency,
luminosity are checked at |y| < 0.5, 0.4 < pp (GeV/c) < 2.0. For each cuts, luminosity dependent values
are calculated and the average over luminosity are employed to calculate the deviation from default cut.
The DCA cuts show the largest deviations for the lower-order cumulants, while the luminosity become
dominant for the higher-order. Since the number of events are divided into 10 groups, the cumulants in
different luminosity show the largest statistical uncertainties. Figures D.20 and D.21 show the results of
cumulant ratios. The value of Cy/C; with different DCA cuts show significantly large deviations. For
the higher-order ratios, results in different luminosity show the largest deviations. Figures D.22-D.25
show the average cumulants and ratios over multiplicity. The results for cumulants and the ratios with
different DCA cuts show the largest deviations for most orders.
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Figure D.18: Multiplicity dependence of net-proton cumulants with different cut.

D.2.3 Barlow check in systematic study

A/og. distributions of cumulants and their ratios are studied for different cuts with variables: no, DCA,
nHitsFit, m?2, efficiency, luminosity. To create the distributions, the A/og. calculated in 9 multiplicity
bins for 9 acceptance are used. The results of A/o,. for cumulants and their ratios using TOF matched
multiplicity are shown in Figs. D.26-D.35 and Figs. D.36-D.45, respectively. For each orders and cuts,
the mean(u), RMS, probabilities of entry within p + 1o (“Prob 16”7) and p & 20 (“Prob 207), and the
results of barlow check of the distributions are shown. As a results, cumulants failed the barlow check
except for the C5 with DCA< 7 ¢cm amd Cs/Cy with nHitsFit> 21 cm. Relative systematic uncertainties
of C; for each TOF matched multiplicity are summarized in the Tabs. D.3 and D.4.
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Figure D.19: Multiplicity dependence of net-proton cumulants with different cut.
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Figure D.20: Multiplicity dependence of net-proton cumulant ratios with different cut.
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Figure D.21: Multiplicity dependence of net-proton cumulant ratios with different cut.
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Figure D.22: Average cumulants with different luminosity.

104



Average Net-Proton Cumulants

Net-Proton Cumulant Ratios

et T T T T T T T
012-C4 g + + n ]
. ®
u * L egm,t .
o5 E W Em mwm ] . l mm LA 1 mm L] ]
- | ]
0.11p - + -+ d
s A R A T . : :
0012 -C5 4 + 1 ]
| ]
0.011f 4 1 1 1
' I
oo "HmEE B = EE I "magpy 1 =a. " * |+.
0.009 1 T + * <4
et R L I L I B L e + t
<25 u<l5 = >15 = 0814 = 0105 ¥Average
o <23 m <13 m>17 m 0%0.95 #O WS
BICTE - R O O A B L oo | 71 w8 ]
=49 =09 = 0.65-1.25 B D105 0n, /095 T M8 =0
u<l5 5 <05 u>25 50.75-1.35 w w9 + +
[N ] R E—— EmEEw am [} ] . + +
00sf E - E u + E
e ety T et ety . .
no DCA(cm) nHitsFit m2(GeV/c?) Efficiency Luminosity
Cut Condition
Figure D.23: Average cumulants with different luminosity.
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Figure D.24: Average cumulant ratios with different luminosity.
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Figure D.25: Average cumulant ratios with different luminosity.
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Figure D.26: A/o. distributions of cumulants up to sixth-order for different no cuts. The black lines
show mean values of the distributions. The red and blue dotted lines show p+ 10 and p+20, respectively.
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Figure D.27: A/og. distributions of cumulants up to sixth-order for different no cuts.
show mean values of the distributions. The red and blue dotted lines show g+ 10 and p+20, respectively.
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Figure D.28: A/o. distributions of cumulants up to sixth-order for different DCA cuts. The black lines
show mean values of the distributions. The red and blue dotted lines show p 410 and =420, respectively.
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Figure D.29: A/o. distributions of cumulants up to sixth-order for different DCA cuts. The black lines
show mean values of the distributions. The red and blue dotted lines show u+ 10 and u=+ 20, respectively.
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Figure D.31: A/o,. distributions of cumulants up to sixth-order for different nHitsFit cuts. The black
lines show mean values of the distributions. The red and blue dotted lines show p 4+ 1o and p + 20,
respectively.
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Figure D.32: A/o,,. distributions of cumulants up to sixth-order for different m? cuts. The black lines
show mean values of the distributions. The red and blue dotted lines show p+ 10 and p+20, respectively.
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Figure D.33: A/o. distributions of cumulants up to sixth-order for different efficiencies. The black lines
show mean values of the distributions. The red and blue dotted lines show u+ 10 and u=+20, respectively.
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Figure D.37: A/o,. distributions of cumulant ratios for different no cuts. The black lines show mean
values of the distributions. The red and blue dotted lines show p + 1o and p £ 20, respectively.
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Figure D.38: A/og. distributions of cumulant ratios for different DCA cuts. The black lines show mean
values of the distributions. The red and blue dotted lines show p + 1o and p £ 20, respectively.
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Figure D.39: A/o. distributions of cumulant ratios for different DCA cuts. The black lines show mean
values of the distributions. The red and blue dotted lines show p + 1o and p £ 20, respectively.
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Figure D.40: A/og. distributions of cumulant ratios for different nHitsFit cuts. The black lines show
mean values of the distributions. The red and blue dotted lines show p 4+ 1o and p =+ 20, respectively.
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Figure D.41: A/og. distributions of cumulant ratios for different nHitsFit cuts. The black lines show
mean values of the distributions. The red and blue dotted lines show p 4+ 1o and p + 20, respectively.
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Figure D.42: A/o,. distributions of cumulant ratios for different m?
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The black lines show mean
values of the distributions. The red and blue dotted lines show p + 1o and p £ 20, respectively.
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Figure D.43: A/o. distributions of cumulant ratios for different efficiencies. The black lines show mean
values of the distributions. The red and blue dotted lines show p + 1o and p £ 20, respectively.
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Figure D.44: A/og. distributions of cumulant ratios for different luminosity groups. The black lines show
mean values of the distributions. The red and blue dotted lines show p + 1o and u £ 20, respectively.
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Figure D.45: A/o,. distributions of cumulant ratios for different luminosity groups. The black lines show
mean values of the distributions. The red and blue dotted lines show p £ 1o and p £ 20, respectively.
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Figure D.46: Systematic study for C;, Cs, and C3 as a function of TOF matched multiplicity.

116



03 T T T T T T T T T T T T
C4 [na| DCA(cm) nHitsFit m? Efficiency Luminosity
. ! . . ] ‘
0.2} + T T T T ‘e 1
. . .
L | ' . . [] ¢
. [} L) . [] el
. [] . . [} -
. [] . . [} -
01 e L T «° T «° T o T ™ ]
i) t t } } } } } } } } } }
[
© C
= 5
S 0.02} + + + + + E
3 “
[} ¢ ‘ ' ' . ' . ) ' . () . ' ]
g 001F 4 T a . ) T o T o T 1
=
(@)
p—
o ok 1 [ 1 1 1 i
& é . t } - t } - t t t } t t -+
efaul Default Default Default
Q M 25 e<it ° 515 M ngiuz ° 0°1.05 serage
Z ,15[C. <2 [ <13 [ o517 [  0.8-1. [ o 0%0.95 1 1 o6 ]
R Bt = soma Fidenael &
: <17 : <0.7 : >23 0.65-1.25 ® Coun .08t a0
. <15 . <05 e >25  0.75-1.35 ot
0.1 T T+ T+ T+ T+ E
. . .
* * . L] st . .* . * . o* .
T T T T Yy |
0 1 1 1 1 1 1 1 1 1 1 1
5 10 5 10 10 10 5 10 5 10

TOF Matched Multiplicity

Figure D.47: Systematic study for Cy, Cs, and Cg as a function of TOF matched multiplicity.
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Figure D.48: Systematic study for Cy/C1, C5/Cs, and Cy/Cs as a function of TOF matched multiplicity.
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Table D.3: Relative systematic uncertainty and R; of cumulants up to sixth-order.

Osys RleOO (%)
Order | m5°F | (%) | |no,| DCA nHitsFit m? Efficiency ZDC co. rate
2 2.42 3.56  13.17 2.98 3.23 5.95 2.47
3 2.22 3.56  12.50 2.89 3.12 5.49 2.12
4 1.89 343 11.34 2.89 3.06 5.35 1.41
Ch 5 1.80 3.50  10.79 3.11 3.16 5.46 1.43
6 1.75 3.32  10.49 3.02 3.04 5.47 2.33
7 1.66 3.06 10.36 2.65 2.71 5.08 3.09
8 1.87 2.82 9.84 2.46 2.48 5.10 6.61
9-20 1.78 2.97 9.21 2.79 2.93 5.28 6.31
2 0.95 2.63 7.30 2.33 2.62 4.77 0.44
3 0.97 2.68 7.39 2.48 2.55 4.76 0.33
4 0.98 2.59 7.52 2.51 2.51 4.75 0.17
Cy 5 1.01 2.57 7.72 2.62 2.51 4.63 0.59
6 1.04 2.54 7.82 2.74 2.60 4.65 1.00
7 1.02 2.39 7.81 2.64 2.45 4.50 1.36
8 1.12 2.55 8.06 291 2.65 4.60 2.06
9-20 1.07 2.27 8.18 2.67 2.46 4.34 1.66
2 2.03 3.69 11.96 2.84 2.86 4.93 2.37
3 1.84 3.43 11.30 2.71 2.78 4.74 2.64
4 1.60 3.29 10.44 2.70 2.79 4.87 1.06
Cs ) 1.52 3.24 9.82 2.71 2.65 4.75 2.79
6 1.30 2.68 9.11 2.22 2.27 4.33 3.34
7 1.31 2.83 8.78 2.01 2.06 4.16 4.46
8 1.70 2.28 7.21 1.82 2.06 4.49 9.21
9 -20 1.30 3.19 6.41 1.73 1.62 3.94 7.60
2 0.77 2.43 6.60 2.16 2.37 4.12 0.37
3 0.77 2.36 6.56 2.21 2.24 4.21 0.70
4 0.76 2.28 6.60 2.18 2.18 4.11 0.90
Cy ) 0.75 2.26 6.61 2.18 2.04 3.91 1.36
6 0.70 2.24 6.40 2.14 2.01 3.75 1.33
7 0.62 1.91 6.06 1.76 1.65 3.44 2.08
8 0.73 1.78 5.75 1.51 1.60 3.00 4.81
9-20 0.66 1.72 6.36 1.80 1.82 3.12 2.47
2 2.68 5.52 8.22 0.89 0.97 1.42 12.88
3 2.07 3.72 5.61 2.27 2.52 2.63 11.95
4 2.11 2.72 3.39 1.51 2.88 2.20 13.29
Cs ) 4.71 4.80 4.94 0.87 1.08 0.51 20.54
6 17.37 6.63 6.10 7.60 7.49 5.54 38.88
7 66.32 10.35 10.22 5.24 7.19 6.44 79.37
8 211.56 | 17.70 27.23 13.88 17.14 11.00 139.62
9-20 | 265.64 | 26.67 35.99 21.09 25.42 20.14 151.86
2 1.09 1.62 1.83 0.48 0.55 0.69 10.10
3 0.50 1.49 2.58 0.26 0.25 0.85 6.35
4 1.44 2.14 1.40 0.78 1.07 1.11 11.60
Cs 5 2.37 1.66 1.72 0.39 1.10 1.72 15.06
6 6.28 3.50 6.59 2.38 2.54 4.29 23.27
7 29.96 | 13.16 13.78 9.13 10.74 9.63 48.39
8 199.13 | 19.40 21.61 13.71 7.58 16.16 136.25
9-20 | 107.09 | 1247 17.76 14.59 9.12 20.28 97.63
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Table D.4: Relative systematic uncertainty and R; of cumulant ratios.

- R; <100 (%)
Order | mIOY | (%) Ino,| DCA  nHitsFit m? Efficiency ZDC co. rate
2 0.27 1.43 4.30 0.53 0.60 0.61 2.23
3 0.20 1.24 3.77 0.42 0.49 0.61 1.87
4 0.13 1.16 2.94 0.47 0.50 0.61 1.39
Cy/Cy 5 0.11 1.29 2.41 0.54 0.57 0.61 1.46
6 0.09 1.09 2.09 0.41 0.47 0.71 1.68
7 0.12 0.96 1.91 0.39 0.37 0.49 2.54
8 0.35 0.94 1.74 0.64 0.22 0.68 5.51
9-20 0.32 0.98 1.03 0.58 0.68 0.79 5.37
2 0.23 1.68 3.88 0.48 0.28 0.22 2.13
3 0.19 1.46 3.24 0.40 0.31 0.13 2.43
4 0.08 1.18 2.33 0.36 0.28 0.24 1.10
C3/Cy 5 0.15 1.48 1.89 0.40 0.27 0.16 2.94
6 0.11 1.12 1.28 0.65 0.26 0.22 2.77
7 0.25 1.43 1.31 1.04 0.44 0.36 4.45
8 0.70 1.80 1.47 1.17 0.65 0.33 7.94
9-20 0.51 1.57 1.84 1.28 0.95 0.45 6.51
2 0.02 0.43 0.71 0.38 0.44 0.61 0.33
3 0.01 0.36 0.64 0.31 0.33 0.52 0.53
4 0.02 0.39 0.86 0.34 0.42 0.55 0.84
04/02 5 0.03 0.31 0.89 0.38 0.46 0.63 1.04
6 0.03 0.34 1.21 0.53 0.51 0.74 0.80
7 0.05 0.69 1.42 0.79 0.69 0.89 0.97
8 0.18 0.70 1.55 1.04 0.74 1.12 3.47
9-20 0.07 0.79 1.51 0.89 0.64 1.07 1.38
2 2.24 4.61 5.86 2.83 2.59 3.57 11.88
3 1.63 3.42 5.72 1.18 0.61 2.56 10.51
4 2.79 3.06 6.86 2.62 1.60 2.95 14.30
C5/Cy 5 5.33 4.95 6.37 3.13 4.21 4.72 20.44
6 19.25 8.66 11.88 10.23 10.07 8.52 37.82
7 70.66 | 10.93 9.95 7.60 9.01 9.84 81.31
8 216.55 | 17.84 29.26 14.74 18.19 11.56 140.71
9-20 | 252.57 | 25.33 34.43 22.42 26.31 20.43 147.71
2 1.76 3.65 5.33 2.87 3.27 4.29 9.84
3 0.91 3.06 4.20 2.41 2.72 3.64 6.16
4 2.30 3.31 6.97 3.26 3.53 3.70 11.59
Cs/Co 5 3.01 1.85 6.15 2.68 3.39 4.81 14.77
6 7.97 3.33 11.81 5.18 4.99 7.24 23.29
7 32.22 14.41 16.66 11.12 12.60 11.43 48.20
8 185.89 | 19.99 22.57 15.27 9.25 16.72 130.70
9-20 | 108.13 | 13.50 20.54 16.72 10.93 20.51 96.90
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D.3 Luminosity independent multiplicity

To check the consistency of event sample with Fig. 4.6, the average value of cumulant ratios in Figs. 4.11

and 4.6 are compared as shown in Fig. D.51.

It should be note that the range used for average is

0< m;rhOF < 20 and 0 < my, < 30, respectively to make the event sample consistent. The values of

TOF

m,;,”" are consistent with data using mean corrected multiplicity.
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Figure D.50: TOF matched multiplicity dependence of efficiency corrected cumulants up to the sixth-

order.
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Figure D.51: Average cumulants for TOF matched multiplicity and multiplicity. The values are not
corrected by efficiency. The red and blue squares represent TOF matched multiplicity and mean corrected
multiplicity, respectively. The range of averaging is 0 < chhOF < 20 and 0 < mgp < 30, respectively.
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Figure D.52: Comparison of cumulants up to sixth-order with/without luminosity grouping.
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Figure D.53: Comparison of cumulant ratios up to sixth-order with/without luminosity grouping.
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D.4 TOF matched multiplicity in Au+Au collisions
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Figure D.54: ZDC coincidence rate dependence of average multiplicity measured in Au+Au collisions at
VSN = 200 GeV. The blue circles are raw multiplicity and red circles are mean corrected multiplicity.
The green circles are TOF matched multiplicity. The solid lines are linear fitting function.
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