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abstract

Protons and neutrons which are the constituent of atoms are composed of quarks and gluons,
fundamental elements of nuclear matter. Quarks and gluons are confined in the hadrons by the
strong interaction and they cannot live apart. However, at the extremely high temperature and
density, quarks and gluons (partons) are de-confined from a hadron and fly freely like a plasma.
The new state is called Quark-Gluon Plasma (QGP). QGP is expected to exist in the early stage
of universe or high-density neutron star. Therefore, it is important to understand the properties
of QGP because it is a clue to understand the properties of early stage of the universe or neutron
star. Experimentally, relativistic heavy-ion collisions is a unique tool to create QGP on earth.

Partons can scatter with large momentum transfer in the early stage of high-energy nuclear
collisions. The hard scattered partons are created back-to-back and fragment into di-jet pairs.
The partons lose their energies in the hot and dense matter and observed as jets. Thus, jets
are a good probe to study energy-loss mechanisms of hard-scattered partons in the QGP. Two-
particle correlations with high-py particles as proxies for the jets are established-robust method to
investigate energy loss of jets. The effect of partonic energy loss has been observed for residual high-
pr correlated yield after background subtraction in central collisions. On the other hand, correlation
shapes with intermediate-pr particles in heavy-ion collisions are rather modified compared with
p+p collisions; near-side correlation shapes are broadened into longitudinal direction and away-side
structures are double peaked.

Two-particle correlations with trigger angle ¢, selections with respect to the second-order event
plane lead to difference of path length in the medium. Path-length dependent suppression of high-pp
correlated yield and modification of correlation shapes with intermediate-py particles are observed
with event-plane dependent correlations in 20-60 % centrality by the previous study at RHIC.
Especially for intermediate-pr correlations, double-peaked structures have been observed with mid-
plane to out-of-plane trigger selections even after v, v3 and v4 contributions are subtracted by the
STAR experiment.

In this thesis, two-particle correlations with trigger angle selections with respect to the second-
order event plane have been performed in /syn = 200 GeV Au+Au collision data taken by the
RHIC-STAR experiment. Difference of correlation shapes between in-plane and out-of-plane is en-
hanced in mid-central collisions compared with central and peripheral collisions where the difference
of path length is large. The integrated yields are small at mid-plane triggers and are large at out-
of-plane trigger, which is observed with lower trigger and associate pp from central to mid-central
collisions. With selecting higher associate pr in mid-central to peripheral collisions, the integrated
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yields increase with long path length, which indicates the contribution of re-distribution is dominant
in this region. The integrated yields with selecting higher associate pr are enhanced with long path
length, which indicates the contribution of re-distribution is dominant. Integrated yields are plotted
as a function of simple path length calculated by Glauber Monte-Carlo. The integrated yields do
not scale well in 0.5-2 GeV/c associate pr, while the integrated yields scale in 2-4 GeV/c associate
pr comapred with lower associate ppr. This is because path-length dependent enhancement or sup-
pression cannot be described by simple path length in lower associate pr. The azimuthal anisotropy

of integrated yield have been calculated and compared with that of single particle. The v;/ T and

v};’co” decrease with increasing pJ., The v;/ T are larger than single particle vy with 0.5-2 (GeV/c)
pr on the near side for all centrality bins, and they are also larger than single particle v9 in 2-4
(GeV/c¢) pr from central to mid-central collisions. The v;/ U increases with increasing p§. with 2-4
(GeV/c) trigger particles on the away side in mid-central collisions. Near-side peaks with two in-
plane trigger bins shift to in-plane direction. This result support the view that jets emitted from the
short path-length direction with less energy loss. Near-side peaks with out-of-plane lower pr trigger
particles shift to out-of-plane trigger direction. This result suggests that low-pr particles emitted
from the long path-length direction are associated with energy re-distributed particles. Away side
yield with higher trigger and associate particles composing jets are emitted more towards shorter
path length direction. In addition, azimuthal correlations are compared with AMPT model with
including string melting and quenching model and the roughly reproduce the away-side shape of
the experimental data from mid-central to peripheral collisions. However, near-side peak in AMPT
is much smaller than real data.

As a new approach of event selections to determine the collision geometry, the length of flow
vector g9 which is proportional to vy are selected and the measurement of two-particle correlations
has been performed. In the real experiment, participant eccentricity cannot be directly selected,
and thus the length of flow vectors have been used to restrict the initial eccentricity. The wvo
increases linearly with increasing ¢o in all centrality bins, and therefore go selections works as global
event characterization. Correlation shapes are modified by trigger angle ¢s and ¢o selections in
mid-central collisions especially for in-plane and out-of-plane trigger bins. The ¢2 dependence of
integrated yield is observed for in-plane and out-of-plane trigger slices where the difference of path
length is caused by g3 selections; the integrated yields are enhanced with increasing go, which means
that the integrated yield of the out-of-plane trigger is enhanced with increasing path length and the
integrated yield of the in-plane trigger is enhanced with decreasing path length. While the integrated
yield are suppressed with increasing ¢ (corresponding to increasing path length), the yield in the
in-plane trigger slice are suppressed with increasing path length and the yield in the out-of-plane
trigger slice are enhanced with increasing path length. This observation could be interpreted as
follows: the effect of jet penetration is dominant in the in-plane direction, and the effect of energy
re-distribution is dominant in the out-of-plane direction. Therefore, collective expansion could be
thought to have effect on the jet-like particle productions.

We point out that correlated yield cannot scale with simple path length and collective expansion
could be thought to have effect on the jet-like particle productions.
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Chapter 1

Introduction

It is well known that the matter around us consists of atoms. The atoms are the smallest
constituent that has the chemical element and they have nuclei in the center which consists of
nucleus and electrons. Nucleus consists of protons and neutrons. Moreover, protons and neutrons
consist of three quarks. Thus, the matter has a hierarchical structure. At present, the elementary
particles are categorized into Fermion and Boson which is summarized in Fig.1.1 [1]. The fermion
composes the matter and follows Fermi-Dirac statistics. Moreover, quarks and leptons are recognized
as a fermion by Standard Model of particle physics. It is known that there are six type of quarks
and six types of leptons, and quarks have intrinsic properties which include electric charge, mass,
color charge and spin. The boson is categorized into gauge bosons which meditate the interactions
between particles and Higgs boson which gives a mass to the particles and have been discovered in
July 2012. Ordinarily, quarks and gluons are confined in hadrons and cannot move freely. With
extremely high temperature, quarks and gluons could move freely just like a “plasma” state of
quarks and gluons. That state is called Quark-Gluon Plasma (QGP). QGP is expected to exist in
the early stage of universe or high-density neutron star. Therefore, it is important to understand
the properties of QGP because it is a clue to understand the properties of early stage of the universe
or neutron star.

In this chapter, we introduce Quantum Chromodynamics (QCD) theory and the relativistic
heavy-ion collisions.

1.1 Quantum Chromodynamics

The strong interaction between quarks and gluons is described by Quantum Chromodynamics
(QCD) which is a gauge field theory. Quarks are elemental building blocks of the matter and
carry the quantum number which is called color charge, which is analogous to the electric charge in
Quantum Electrodynamics (QED). In QED, photons meditate the electromagnetic interaction. On
the other hand in QCD, gluons meditate the strong interaction. While photons carry no electric
charge and do not interact with each other, gluons carry color charges and interact with other color
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Figure 1.1: Elementary particles included in Standard Model [1]

charges. The QCD Lagrangian density is given as

Ny
L= qi(in" Dy —mp)qs — Lt (1.1)
f

where f is a flavor of quarks (f = 1, 2, 3), ¢ is the quark field of flavor f, 4* is a Dirac matrix,
my is an invariant mass. Fj, is the gluon-field strength tensor with color index a (a = 1-8) and
defined as,

Ff, = 6, A% — 6,A% + g fapc AL AS, (1.2)
where A7, is the gluon field and g is the dimensionless strength of quark-gluon and gluon-gluon
interaction defined as g = /4wy, and fup. is the structure constant of SU(3). The parameter s is
the coupling constant of strong interaction which can be calculated by perturbative QCD (pQCD)
2] as

1

2y
as(Q7) = GO/’ (1.3)

where A is the QCD scale parameter. Here, 3y is given by

_33-2fy

fo 127

(1.4)
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where Ny is the number of active quark flavors. The covariant derivative D), of QCD is defined as,
. )\a a
D, =46,+ zg?Al,, (1.5)

where A, is the eight Gell-Mann matrices. The running coupling constant for the strong interaction
becomes small at a short distance between color charges by the anti-screening feature of the color
charge because the gluons are not neutral in color. This behavior is called asymptotic freedom,
because the quarks and gluons act as free particles at shorter distances. Because of this QCD
behavior, pQCD calculation can only be performed only in interactions with a large momentum
transfer (Q). As seen in Fig.1.2, the summary of measurements of running coupling constant are
very good agreement with the calculation by pQCD up to large momentum transfer region.

October 2015

v T decays (N3LO)
a DIS jets (NLO)
Heavy Quarkonia (NLO)
e'e jets & shapes (res. NNLO) |
e.w. precision fits (NNLO)
pp —> jets (NLO)

pp —> tt NNLO)

o (Q%)

o

03+

4 4 @ O

0.1}

QCD o(M,) = 0.1181 £ 0.0013
' 100 1000

" QGev]

Figure 1.2: Summary of measurements of coupling constant a, as a function of the energy scale @
[3].

On the other hand, the fact that the strength of coupling rises up at larger distances could
suggest a possibility of confinement of quarks. However, the perturbative theory is invalid at this
point. The correct form of the quark-(anti)quark potential are tried to derive either from pure QCD
or its combination with other theory [4]. Conversely, the theory that quarks are always bound into
colorless matter would be valid because they are never observed as free particles. Therefore, the
quark potential is assumed to have the empirical form within framework of string model [5, 6] as,

Vstrong(r) = —57 + kr. (16)

The first term of Eq.(1.6) is analogous to Coulomb potential that is dominant at small distances.
The second term is dominant at large distances. According to [5, 6], when a high energy “string”
is created between two quarks, energy density rises up with the distance between quarks increasing
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until the distance reaches a certain critical distance 7., where the energy density between the quarks
is extremely high to create a new quark-anti-quark pair. The new quarks immediately interact with
the original quarks and reduce the potential and once again form colorless objects.

1.1.1 Quark-Gluon Plasma

Lattice QCD calculations are one of the powerful method that has non-perturbative method. The
lattice QCD calculations on thermodynamic behavior of quarks and gluons at finite temperature
and density predict a phase transition phenomena of nuclear matter at a high temperature and
density that is a release of quarks and gluons from hadron’s confinement [7]. Fig.1.3 shows energy
density ¢ and 3 times the pressure 3p over biquadrate of temperature 7% as a function of temperature
T. According to the Lattice QCD calculation, ¢/T* and 3p/T* rise rapidly at the vertical band
(185—195 MeV). Since the term /7% corresponds to the number of degrees of freedom, this large
jump indicates that a phase transition to the new state of matter called Quark-Gluon Plasma

(QGP).

0.4 0.6 0.8 1 1.2
18 ' ' ' Trg ' e T"
1+ et
12
10 pd =
3pr4 asqtad e
& pd
& asqtad
4
2
T [MeV]
o . h .

100 150 200 250 300 350 400 450 500 550

Figure 1.3: The energy density and three times the pressure divided by biquadrate temperature 7%
calculated by Lattice QCD as a function of temperature 7' [7].

1.2 Relativistic heavy-ion collisions

As introduced in Sect.1.1, the phase transition to the QGP is predicted at the extremely high
temperature and density. Experimentally, relativistic heavy-ion collision is a unique tool to achieve
such a state of matter on earth. Two heavy-ions such as Cu, Au or Pb are accelerated to nearly
speed of light and collided at the high energy. In theory of relativity, the energy of four-vector,
a term of time, is not invariant with respect to the Lorentz transformation, and thus the energy
observed from a certain inertial frame of reference and that from other one is different. Here, the
parameter s which is invariant to Lorentz transformation is defined by four-momenta of two nucleons
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p1 and po as

s = (p1+p2)%, (1.7)

where /s correspond to the total energy of two nucleons observed from the center of gravity frame.
Thus, /s is defined as collision energy. Furthermore, the collision energy per nucleon-nucleon
pair is expressed as ,/syn. Currently, several experiments of relativistic heavy-ion collisions have
been carried out at Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC)
Table.1.1. While the experiments in Alternating Gradient Synchrotron (AGS) and Super Proton
Synchrotron (SPS) were carried out with fixed-target mode, the experiments in RHIC and LHC
have been carried out with collider-mode at top collision energy. Since each colliding nucleus has
an energy moving to opposite direction, the maximum collision energy become higher in collider
mode than in fixed-target mode. RHIC is the first heavy-ion collider of the world and located at
Brookhaven National Laboratory (BNL). LHC is the largest heavy-ion collider of the world and
located at the European Organization for Nuclear Research (CERN) in Switzerland. The previous
experiments are summarized in 1.1.



Table 1.1: Summary of relativistic heavy ion collisions at AGS, SPS, RHIC and LHC

CHAPTER 1. INTRODUCTION

Year Accelerators Location Species Collision Energy(GeV)
1986 AGS BNL 160, 285i 5.4
1992 197 Ay 4.8
1986 SPS CERN 160y, 329 19.4
1994 208pp, 17.4
2000 RHIC BNL 197 Au 130
2001 197 Au 200
2003 d-197Au 200
2003-2004 197 Ay 200, 62.4
2005 63Cu 200, 62.4, 22.4
2007 2004y 200
2008 d-97Au 200, 62.4
2010 97 Ay 200, 62.4, 39, 11.5, 7.7
2011 97 Ay 200, 19.6, 27
2012 287 193
2012 63Cu-197Au 200
2014 197 Au 200, 14.6
2014 3He-197Au 200
2015 p-197Au 200
2015 p-197Al 200
2016 B7Ay 200
2016 d-197Au 200, 62.4, 19.6, 39
2017 7 Ay 54
2018 967y 200
2018 9Ru 200
2018 197 Ay 27
2010 LHC CERN 208pp, 2760
2011 208pp, 2760
2013 p-208Ph 5020
2015 208py, 5020
2016 p-2%pPDb 5020, 8160
2017 129X e 5440
2018 208py, 5440
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1.2.1 Collision geometry

Fig.1.4 shows a schematic picture of participant-spectator picture before (left) and after (right)
collision. The longitudinal length of colliding nuclei accelerate to nearly speed of light deflate to
2R/~ (Lorentz contraction), where R is a radius of the nucleus and ~ is Lorentz factor. Here, b is
an impact parameter, which is the distance between the centers of two nuclei. In case of collision
with b > 0, the collision is called peripheral collisions. The degree of overlapping region is named
“centrality”, which can be determined by multiplicity in the experiment. In peripheral collisions,
the collision can be explained by participant-spectator picture. The region participating in the
collision is called “participant” and the rest part is called “spectator”. The following statements
are the characteristics of the picture:

e Since the de Broglie wavelength of a nucleon is much shorter than the size of nucleus, the
relativistic heavy-ion collisions can be described by nucleon-nucleon collisions.

e The mean free path of the nucleon-nucleon collisions is shorter than the radius of the colliding

nuclei.

e Since the velocity of nuclei is much faster than the Fermi motion of nucleons in the nuclei,
the move of nucleons by Fermi motion during the crossing of nuclei is negligible.

spectators

v participants

befare collision after collision

Figure 1.4: A schematic picture of participant-spectator picture before (left) and after collision
(right) [8]. Impact parameter b is defined as the distance between the centers of two colliding
nuclei.

The number of participant nucleons Np.+ and the number of nucleon-nucleon collisions in an
event N, can be determined by impact parameter based on Glauber Model [9]. The following
statements are assumption of Glauber Model:

e Nucleons travel straight lines and do not change its orbit.

e Nucleus-nucleus collision happens from individual inelastic nucleon-nucleon interactions.
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e Cross-section of the inelastic nucleon-nucleon interaction is independent of the number of
nucleon-nucleon collisions Ny;.

Wood-Saxon potential p4 of nucleons which has a mass number A based on Glauber Model is
defined as
PA
palr) =5 +exp((r — Ra)/aa)’ (18)
where R4 is radius of nucleus, a4 a diffusion parameter and p4 ¢ is a normalization factor to satisfy
i d3rpa(r) = A. For example, the parameters in Au+Au collision at /3NN = 200 GeV are A = 197,
R4 =6.38 fm and a4 = 0.54 fm and the cross section og of p+p collisions at /syN = 200 GeV is
0o = 42 mb [3]. The nuclear thickness function T4(x,y) is defined as

Ta(z,y) = /OO dzpa(z,y,z). (1.9)

—00

The density function of the number of participants ny,q+(z,y;b) in a nucleus collision is given by

B
npart(x7y§ b) = TA(JE + b/2,y) {1 — [1 _ UOTB(Q?B— b/27y):| }
Tl 4 b/2,y) {1 oo otate b/2,y>r} o)

where A and B are mass number of colliding nuclei. Thus, the number of participants Np,, as a
function of impact parameter b can be obtained by the integral of np4,¢ in z-y plane as

Npart(b) = /dmdynpart(ma Y; b) (111)

The density function of the number of binary collisions n.y; is given by the product of g, T4 and
Tg as

Neott (%, Y3 0) = ooTa(x + b/2,y)Tp(x + b/2,y). (1.12)

Thus, the number of binary collisions N, is obtained as

Nyort®) = | dodynca(z.3:0). (1.13)

Fig.1.5 shows the Glauber Monte-Carlo simulation in Au+4Au collisions performed by the PHOBOS
experiment [10]. In this study, centrality is determined by Glauber Model by Monte-Carlo approach.

1.2.2 Space-time evolution

In this subsection, space-time evolution of the created system is described with separating the
time scale which is supposed by Bjorken [11]. Fig.1.6 shows a schematic picture of space-time
evolution of relativistic heavy-ion collisions which can be divided in three stages: parton cascade
(pre-equilibrium), QGP phase, freeze out. The “space” in the longitudinal direction corresponds to
the horizontal axis and the “time” corresponds to the vertical axis, and two nuclei collide at t =0
and z = 0.
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Figure 1.5: The PHOBOS Glauber Monte-Carlo simulation in /sy = 200 GeV Au+Au collisions
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Figure 1.6: Space-time evolution
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Parton Cascade stage (Pre-equilibrium)

Parton-parton scatterings occur in the initial stage of nucleon collisions. The mechanics are
described by several models, such as the color-string models [12], the color glass condensate (CGC)
[13, 14], and the pQCD models [2], but the mechanics have not been understood well. The entropy
increases with multiple scattering of partons that is called parton cascade and QCD matter reaches
local thermal equilibrium at a certain time 79 and QGP phase is formed. Typical time 75 at RHIC
top energy is 1 fm/c or less, which is expected by calculation with hydrodynamical models [15].

QGP phase

QGP expands toward transverse and longitudinal directions due to the internal pressure. Once
the QCD matter reaches the local thermal equilibrium, the evolution of the system can be described
by the relativistic hydrodynamics. In the relativistic hydrodynamics, energy-momentum tensor 1+
and the baryon number current ji; are given by

T = (e + P)utu” — g"" P, (1.14)

J = nput, (1.15)

where ¢ is the local energy density, P is the pressure, u* is a fluid four-velocity which is defined as
ut = (1, ug, uy, u,) and np is the baryon number. Here, T"” and jk are conserved as

6, T" =0, (1.16)
6udl = 0. (1.17)

The system cools down and the phase transition from QGP phase to hadron phase occur at critical
temperature 7.

Freeze out

The hadron-gas system expands with inelastic scattering between hadrons and the temperature
drops down. After the hadron-hadron interactions ends at a certain temperature, the species of
hadrons no longer change, which is called chemical freeze-out. The elastic scattering of hadrons
ends finally, which is called kinetic freeze-out, and after that particles enter into detectors.

1.3 Experimental observables

In this section, the experimental observables which is related to this study are presented. Before
moving on the introduction, rapidity y is defined as follows:

1 E 1 t
y=—1In R R N , (1.18)
2 E—p, 2 t—=z
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where the second and third formula can be connected with the following relation : 8, = p,/E = z/t.
FE, p., transverse mass my and ¢t and z can be written as

E = my coshy, (1.19)
pr = /P2 + D2, (1.20)
p. = mysinhy, (1.21)
mr = \/E? —p2 = \[ph+ mi, (1.22)
t = Tcoshy, (1.23)
z = Tsinhy, (1.24)
T =Vt — 22, (1.25)

where 7 is the formation time.

1.3.1 Energy density
The energy density achieved in the experiment si given by Bjorken formula [11] as
1 dEr

C_ - 1.26
£Bj TR2T dy ’ ( )

where R is the radius of nucleus in Wood-Saxon model and E7 is the transverse energy. Fig.1.7
shows the Bjorken energy density measured as a function of Ny, estimated by Glauber Monte-
Carlo in three different collision energies [16]. In the most central collisions at /syny = 200 GeV,
ep;T reaches above 5 GeVfm~2¢~!. If the typical value 7 = 1 fm/c, the estimated Bjorken energy
density is larger than the critical energy density predicted by lattice QCD calculations, and the

created matter in Au+Au collisions at RHIC top energy reaches to QGP phase.

1.3.2 Radial flow

Transverse momentum distribution (pr spectra) is important because transverse momenta are
generated after collisions. By seeing pr spectra, we can obtain the information of the the condition in
the late stage and entire information of space-time evolution of the system. Transverse momentum
(mass) distribution can be written with invariant cross-section as

3 1 2
o _ do (1.27)
dp? 27pr dprdy
1 d?o
= 1.28
2mmy dmpdy ( )
x exp(—%) (1.29)

where T is the inverse slope parameter which is interpreted as the temperature of the system at
the kinetic freeze-out. Fig.1.8 shows transverse mass distribution in Au+Au collisions [17]. In
high energy p+p and p+A collisions, the inverse slope parameters T in various particle species,
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Figure 1.7: Bjorken Energy density multiplied by the formation time 7 measured by the PHENIX
experiment[16].
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Figure 1.8: Invariant yield as function of transverse mass for 7+, K*, and inclusive p and p at
mid-rapidity (Jy| < 0.1) for pp (bottom) and Au+Au events from 70-80% (second bottom) to the
0-5% centrality (top) [17]. Open markers represent positive particles and solid markers represent
negative particles.
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which is known as my scaling [18]. This fact suggests that the inverse slopes in different hadrons
would have similar values. Fig.1.9 shows the inverse slopes as a function of hadron mass in three
different centrality classes [19]. The inverse slopes increase with increasing particle masses and myp
scaling hold. This result indicates the radial collective expansion of the system, which means all the
produced particles have common velocity in transverse direction. The inverse slope is represented
as

T =T+ %m (B)?, (1.30)

where 3 is radial flow velocity and T is the freeze-out temperature. The estimated Ty is ~ 177
MeV in most central collisions. The blast-wave model which is phenomenological hydrodynamical
model can describe the effect of radial flow of the mass spectra in low mq region [20]].

30_6 LI I T 1T T I L I T 1 7T I T 1 7T I T LI I L I L I L I T 1 7T I T
S | e Central (0-5%)
& 0.5 O Mid-central (40-50%) |
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g | .
Soa4r ¢ 1 -
n
& o o
a>: 0.3 PS T . .
c | B = - S | B A
02r R T -
+ + T - - o)
0-1 1 1 | I 1 1 1 I 11 1 I 1 1 | I 1 1 | I 1 1 1 | I 11 1 I 11 1 I 11 1 I 1 1 | I 1
0 02 04 06 08 10 02 04 06 08 1
Mass [GeV/cz] Mass [GeV/cz]

Figure 1.9: Mass and centrality dependence of inverse slope parameters 1" in mp spectra for positive
(left) and negative (right) particles [20].

1.3.3 Azimuthal anisotropy

Azimuthal anisotropy of emitted particles in momentum space has been studied because it is
expected to be sensitive to the early stage of collisions. In non-central heavy-ion collisions, the
overlapping region of two nuclei has spatial anisotropy like an almond depicted in Fig.1.10. The
reaction plane is defined as the plane formed by the beam direction and the vector of impact
parameter. Moreover, since the number of participants is finite in nucleus-nucleus collisions, the
shape of participant region fluctuates event-by-event due to the fluctuations of nucleons and can
form a m-sided polygon. The spatial deformation is converted into a momentum space by the
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Figure 1.10: Image of non-central nucleus-nucleus collisions (left) and collective flow of the medium
toward the direction of reaction plane in momentum space (right).

collective flow of the QGP and higher-order harmonic flow is observed. The eccentricity of the
participant region ¢, and n-th order participant plane WX¥ is given by [10, 21] as

(72 Cos(npart)? + (12 5in(2pare))?
) ’
\IlrIjP _ %tan_l <<T‘2 sin(n¢part)>> 7 (132)

(1.31)

Ep =

(r2 cos(ndpart))

where ¢4+ is an azimuthal angle of participant nucleon. Here, \Ilﬁ P represents the long axis which
initial shape of the system is diagnosed as n-sided polygon. Fig.1.11 shows initial eccentricity ¢ as a
function of Npq,+ simulated by Glauber Monte-Carlo in Au+Au collisions at /sny = 200 GeV. The
average eccentricity represented by lack data point become larger with smaller Ny, (peripheral
collisions).

The azimuthal distribution of emitted particles can be written by Fourier series expansion as

dN
& =1+ Z 2v, cos[n(¢p — U,)], (1.33)

where ¢ is the azimuthal angle of emitted particles in a laboratory frame and V,, is the azimuthal
angle of the event plane which corresponds to the direction with most emitted particles are observed.
In the real experiment, the second-order event plane Wy is often measured instead of reaction plane
but their directions are not necessarily the same because of participant density fluctuations. Fourier
coefficients v, denote the magnitude of flow which defined as

vy, = (cos[n(op — ¥,)]) . (1.34)

Model calculations have done to explain vy and v3 as a function of Np,,¢ by different setup and
compared with the results from the PHENIX experiment [22]. Initial conditions and shear viscosity
over entropy density 7/s in hydrodynamical calculations are combined with MC-KLN+47n/s = 2,
Glauber+4mn/s =1 (1) [23] and (2) [24] and UrQMD+47n/s = 0 [25]. For the results of vg, all the
model calculations shown in Fig.1.12 almost reproduce the experimental results. Glauber model
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Figure 1.11: The second-order participant eccentricity €3 as a function of Ny, in Au+Au collisions
[10].

reproduce also vs. However, vs by MC-KLN do not reproduce the experimental results in spite of
the same parameter as that for vo. Thus, the measurements of v,, can constrain the initial condition
and the degree of viscosity of the system.
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Figure 1.12: vy and v3 as a function of Njq for two different pr ranges in Au+Au collisions at
VSNN = 200 GeV by the PHENIX experiment [22]. The results are compared with theoretical
models.

1.4 Jets and parton energy loss

In earlier stage in the high energy nuclear collisions, parton pairs with high momentum are
produced in a back-to-back direction by hard scattering of partons in the nucleons. The recoiled
partons radiate gluon bremsstrahlung into small angles in the original trajectory and the gluons
radiate another gluon again or produce qq pairs. When the distance between created ¢ pair become
larger than ~ 1 fm, the energy flux tube between the quarks become high, which is sufficient to
create a new ¢q pair. The created quark paris combine with the rest of free quarks. Thus, the shower
of hadrons which is called jets is created in the same direction as initial hard scattered partons. In
heavy-ion collisions, partons interact with the hot and dense matter and lose their energy, which
is called jet quenching. The image of hard scattering is shown in Fig.1.13. Investigation of the
modification of high-pr hadrons will help us to understand the energy loss mechanism in the QGP.

1.4.1 Experimental results of jet quenching

In this subsection, several results about high-pr particles is presented.
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Figure 1.13: Image of hard scattering in vacuum (p+p collisions) and parton energy loss in the
QGP (A+A collisions).

Nuclear modification factor : R44

The nuclear modification factor R 44 is the ratio of particle yields in heavy-ion collisions to that
in p+p collisions which is scaled by N.,; as

d>NA4 [ dppdn
NcolldQNpp/dedn’

Raa = (1.35)
where N44 and NPP are the number of particles in A+A collisions and p+p collisions, respectively.
R 44 is one of the probes to quantify the suppression of particle yields due to the energy loss in the
QGP. [26] shows Ra4 of 70, i and direct photon measured by the PHENIX experiment [26, 27]. Left
figure of Fig.1.14 shows R4 with different particle species in central Au+Au collisions. R4 of 7°
and 7 is smaller than 1 (around 0.2), which means that the yields in Au+Au collisions are strongly
suppressed compared with p+p collisions. On the other hand, R4a of high-pr direct photons is
consistent with unity within statistical and systematic uncertainties though high-pr direct photons
are produced in hard scattering processes. This is because direct photons do not have color charge
and do not interact with QGP. Right figure of Fig.1.14 shows Ra4 of 7¥ in five different centrality
classes and minimum bias. The more peripheral the centrality becomes, the less suppression of 7°
yield, which means the existence of path length dependent energy loss.

Two-particle correlations

While Ry4 gives information about single particle (jet) suppression, two-particle correlations
give information about recoil particles (jets) with respect to the leading jets. Two-particle cor-
relations are obtained by measuring the relative azimuthal and pseudorapidity n = — In(tan(6/2))
position of associated particles with respect to that of trigger particles. In order to obtain correlated-
yield distribution, subtraction of combinatorial background which mainly comes from collective flow
is needed. Fig.1.15 shows high-pr triggered and high-pr associated di-hadron correlations after
background subtraction in p+p, d4+Au and central Au+Au collisions at /sy = 200 GeV by the
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Figure 1.14: R4, with different particle species, direct photon, 7% and 7, in Au+Au central collisions
[26] (Left) Raq of 7¥ in various centrality bins in Au+Au collisions at /sy = 200 GeV by the
PHENIX experiment [27] (Right).

STAR experiment [28]. The clear two peaks is observed in d+Au and p+p collisions in A¢p = 0
(near side) and A¢p = 7 (away side) which is the typical dijet topology as observed in Panel (b).
Therefore, no jet quenching effect can be observed in minimum bias d+Au collisions. However, in
Au+Au collisions, clear peak is observed in the near side, but the away-side peak is disappeared
due to jet modification in the QGP.

According to the energy loss model, parton energy loss in the QGP is affected by the particle
types and the properties of the QGP, such as running coupling constant, temperature and in-medium
path length [29]. The model reproduces the results of dN/dn, pr spectra and azimuthal jet-like
di-hadron correlations.

The STAR experiment has measured di-hadron correlations with various pr combinations.
Fig.1.17 shows trigger pr and centrality and trigger pr dependence of di-hadron correlations [30].
Fig.1.17 shows centrality dependence of azimuthal distributions of correlated yield with 2.5-3, 3-4,
4-6, 6-10 (GeV/c) trigger and 1-2.5 (GeV/c) associate particles in 0-12, 20-40, 40-60 and 60-80
%. In 60-80 % centrality, the yield in Au+Au collisions is almost similar to that in d4+Au mini-
mum bias collisions and is enhanced with higher trigger pr in both near side and away side due
to the effect of parton fragmentation. In more central collisions, significant increase of correlated
yield is observed both in near side and away side compared to d+Au collisions and the relative
increase is larger with lower trigger py. While correlations with higher pr triggers are dominated
by the component of jet fragmentation, those with lower pr triggers are contributed from coales-
cence quark from bulk partonic matter [31, 32], shower thermal coalescence [33] or re-heating of the
medium by the passage of high-energy partons [34]. In peripheral collisions, near-side yield with
full acceptance is similar with that in |An| < 0.7 and d4+Au collisions, which indicates that the
near-side long range correlations called “ridge” [35] decreases with peripheral collisions as shown in
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Figure 1.15: Azimuthal di-hadron correlations in minimum bias d+Au (a) and in p+p and central
Au+Au collisions (b) at /sy = 200 GeV by the STAR experiment [28]. Trigger and associate pp
ranges are 4 < pb. < 6 (GeV/c) and 2 < p% < pk. (GeV /c), respectively.
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Fig.1.16 because an effect of jet fragmentation is expected in small An range. In central collisions,
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Figure 1.16: Azimuthal di-hadron correlations with 3< p,tlfig <4 (GeV/c) trigger and 2< pgfig < ppEe

(GeV/c) associate in central in Au+Au collisions at /syn = 200 GeV by the STAR experiment
[35].

double-peaked structures are observed with lower triggear pr, which was indicated in [36]. Some
models are suggested to explain the double-peaked structures : Mach-cone shock wave [37], QCD
Cherenkov radiations [38], 3D hydrodynamical calculation simulated with local density fluctuations
in the initial state [39]. Here, the background contributions considered for Au+Au collisions in [30]
is only the second-order harmonic flow. Azimuthal di-hadron correlations with subtracting wve, vs
and vs have been measured at the PHENIX [40]. According to the thesis [40], correlations with
intermediate trigger pr (pr < 4 GeV/c) show suppression or broadening of away-side structure in
0-10 % and double-peaked structure in 10-50 % centrality by at most 1o significance.
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Figure 1.17: Azimuthal di-hadron correlations with 2.5-3, 3-4, 4-6 and 6-10 (GeV/c) trigger (from
left to right) and 1-2.5 (GeV/c) associate in 60-80, 40-60, 20-40 and 0-12 % centrality (from top to
bottom) in Au+Au collisions (blue : full acceptance, red : |An| < 0.7) and in minimum bias d+Au
collisions (open black) at /sy = 200 GeV by the STAR experiment [30].
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1.4.2 Path-length dependent jet modification

The path length of jets in the medium can be controlled by selecting the direction of emitted
particles with respect to the event plane due to the deformation of initial collision geometry. Longer
(shorter) path length is expected for out-of-plane (in-plane) direction. The high-pr two-particle
correlations have been measured with scanning the trigger angle direction with respect to the
second-order event plane ¢5 = ¢' — ¥y performed by the PHENIX experiment [41]. Fig.1.18 shows
144 which is the ratio of correlated yield in heavy-ion collisions to that in p+p collisions. In this
measurement, contributions from ve and vy {Ws} have been subtracted. Near-side yields are almost
consistent with unity within statistical and systematic uncertainties and independent of trigger
angle. On the other hand, away-side yields are more suppressed with increasing trigger particle’s
direction with respect to the second-order event plane (in-medium path length).
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Figure 1.18: pr and trigger angle dependence of nuclear jet suppression factor x4 in 20-60 %
Au+Au collisions performed by the PHENIX experiment[41].
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Figure 1.19: Di-hadron correlations with trigger angle selections with respect to the second-order
event plane Wy with 3-4®1-2 (GeV/c) in Au+Au collisions (Red) and in d+Au minimum bias as a
reference (Green) at /syn = 200 GeV by the STAR experiment [42].

The STAR experiment has also measured an event-plane dependent di-hadron correlations in
intermediate-pr range where near-side ridge is observed [42]. Fig.1.19 shows long-range (|An| > 0.7)
azimuthal distributions of di-hadron correlations with trigger angle selections with respect to the
second-order event plane with 3-4®1-2 (GeV/c) in 20-60 % Au+Au collisions and those without
trigger angle selections in minimum bias d+Au collisions. In this measurement, contributions from
va, v3, v4{W4} and vy {P¥y} are subtracted. Trigger-angle-dependent jet modification is observed
compared with d4+Au collisions. Near-side ridge yields are suppressed more with out-of-plane trigger
in Au+Au collisions and also suppressed in d4+Au collisions. On the other hand, the away-side
ridge yields become lower and broadened with more out-of-plane trigger and shows double-peaked

structure.

1.5 Event Shape Engineering

In order to study evolution of the system more detailedly, further constraint of initial geometry
is needed because initial geometry is related to shape of evolution. In general, the initial collision
shape is determined by centrality which is strongly related to impact parameter. However, the
event-by-event eccentricity largely fluctuates in a fixed centrality bin as shown in Fig.1.11 and
that results in event-by-event fluctuations of v,. Fig.1.20 shows probability distribution of wvo, vs
and v4 in Pb-Pb collisions at \/syn = 2.76 TeV measured with the ATLAS detectors [43]. Large
fluctuations of v, are observed in a fixed centrality bin and the fluctuation is larger with peripheral

collisions.

Recently, Event Shape Engineering (ESE) technique was proposed as a new tool to control
event-by-event fluctuating vy, [44]. The method of ESE technique is to select the initial shape with
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Figure 1.20: The probability distribution of va (left), v (middle) and v4 (right) in various centrality
bins in Pb-Pb collisions at /sy = 2.76 TeV by the ATLAS experiment [43].

flow vector g,, which is given in the same way as initial eccentricity,

M
Qna =Y cos(ngy), (1.36)
M
Qny = Y _sin(ng;), (1.37)
V@ + @2,
Gn = T (1.38)

where M is the multiplicity of a subsystem, ¢; is the azimuthal angle of the particle. The strong
point of ESE technique is possibility to extract effect of difference of the event shape with fixing
the system size. Ref.[44] has pointed out that ESE will have an important role on investigation
of double-bump strutcutre in jet-like di-hadron correlations, measurement of azimuthally sensitive
femtoscopy and an estimate of the background effects in chiral magnetic effect (CME) studies.
Azimuthal sensitive HBT measurements with go and ¢3 selections as ESE have been performed by
Ref.[45] and ALICE have also applied g2 selections as ESE to charge-dependent two- or three-particle
correlations to investigate vy dependence of Chiral Magnetic Effect signal [46]. Recent studies with
ESE are introduced in the following paragraphs.

Fig.1.21 shows v as a function of pr with gs selection in various subsystems in Pb-Pb collisions
at \/sSNN = 2.76 eV with the ALICE detectors [47]. If the ¢y is selected so as to be the same
ratio of vy in ESE-selected events to the g unbiased events between various gy selections, the pp
dependence of the ratio is almost nothing as seen in bottom panel. Large ¢o selected events have
larger vo and small g9 selected events have smaller vy events than ¢o unbiased events. This result
suggests that non-flow contributions do not affect on ppr dependence because pseudo-rapidity gap
is quite different between VOC (—3.7 < n < —1.7) and TPC (|An| = 0.1 for g selection and vy
measurements). Fig.1.5 shows the ratio of pp spectra of identified charged hadrons in top (Left)
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and bottom (Right) 10 % g2 selected events to those in g unbiased events. pp spectra are enhanced
(suppressed) with large (small) ¢y selections and the enhancement (suppression) become stronger
with higher pr. The ratio of the spectra is fitted by blast-wave function [48] and the parameter of
boost velocity is extracted. The boost velocity is larger (smaller) with large (small) g2 selections,
which suggests that radial flow also changes with g2 selections.
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Figure 1.21: vy as a function of py with ¢y selections at various subsystems (top) and the ratio of vy
with go selection to the g2 unbiased events (bottom) in Pb-Pb 30-40 % centrality at /sxy = 2.76
TeV by the ALICE experiment [47].

The correlations between flow harmonics have been measured by the ATLAS experiments in
order to study how initial geometry effects affect final-state azimuthal anisotropy [49]. Fig.1.23
shows correlation between v, at lower pr (0.5< pr < 2 GeV/c) and v, at higher pr (3< pr <4
GeV/c) with selecting g, in 5 % centrality intervals measured by the ATLAS experiment [49]. Going
from central collisions to peripheral collisions, v,, first increases and then decreases along both axes,
which reflects the characteristic centrality dependence of v,. The rate of decrease is larger at
higher pr, which result in “boomerang-like” structure. This centrality dependence at higher-pr
regions do not conflict with viscous-damping effects on v, expected by hydrodynamic calculations
[50]. Fig.1.24 shows the correlation between vy and vs with selecting gy, in 5 % centrality intervals
measured by the ATLAS experiment [49]. The ve and v3 are always anticorrelated with each other
within given centrality while they are positively correlated with centrality. The boomerang-like
structure in this case results from weak centrality dependence of vs3. The e5-¢3 correlations calculated
via MC Glauber model [51] and MC-KLN model [52] are almost consistent with experimental data,
which reveals the vo-v3 anticorrelation originates from initial geometry effects.
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Figure 1.22: Identified charged hadron spectra ratio with large (left) small (right) g2 selections in
Pb-Pb 30-40 % centrality at \/sxn = 2.76 TeV by the ALICE experiment [47].
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Figure 1.23: The correlation between v, at lower pr (0.5< pr < 2 GeV/c) and v, at higher pp
(3< pr <4 GeV/c) with selecting ¢, in 5 % centrality intervals measured by the ATLAS experiment
[49].
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Figure 1.24: The correlation between vy and vs with selecting ¢, in 5 % centrality intervals measured
by the ATLAS experiment [49].

1.6 Motivation of this thesis

Information of partonic energy loss or that of bulk response to the traverse of high energy
partons are provided by the measurements of di-hadron correlations with various py combinations.
According to the previous studies, event-plane dependence of near-side and away-side structure
has been measured, which suggests that the effect of jet penetration and energy re-distribution is
strongly affected by in-medium path length of jets. However, in the previous studies, event-plane
dependent di-hadron correlations have been measured in wide centrality steps, specifically in 0-20
and 20-60 % centrality. Therefore, those measurements with fine centrality bins are important
to understand how jet modification and their energy re-distributions to the medium are related
to the initial energy density and in-medium path length of initial partons. In this study, event-
plane dependent two-particle correlations have been measured with fine centrality bins with higher
statistics data taken in 2011 by the STAR detectors.

We can determine the centrality based on the event multiplicity because they are well correlated.
Centrality is one of the probes to determine initial collision geometry. However, when centrality is
changed from central to peripheral collisions, not only the the shape of the system but also the size of
the system. Moreoever, initial geometry can fluctuate in a fixed centrality bin because of event-by-
event participant fluctuations. We can separate the volume effect and shape effect by length of flow
vector (g,) selections as an event-shape engineering (ESE) technique; recently provided new tool.
In addition to measurements of two-particle correlations with fine centrality bin, ¢o selections have
been performed, which can constrain the initial eccentricity with average multiplicity fixed. The
length of the second-order flow vector g2 correspond to the amplitude of the second-order azimuthal
anisotropy we. Thus, initial eccentricity selection can be translated into final-state elliptic flow
selections. Therefore, we can study the relations between medium response to the passage of jets
and collective expansion of the medium. Better experimental discrimination is expected for the
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relation of two-particle-correlaiton shape and yield to initial density, path length and elliptic flow.
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Chapter 2

Experimental setup

2.1 Relativistic Heavy Ion Collider (RHIC)

Relativistic Heavy Ion Collider (RHIC, Fig.2.1) located in Brookhaven National Laboratory
(BNL)[53] in Upton, New York, is the only one of the dedicated collider for the experiment of
heavy-ion collisions [54]. RHIC consists of two concentric accelerator rings, called “Blue Ring”
(clockwise beam direction) and “Yellow Ring” (counter-clockwise beam direction), whose circum-
ferential length is approximately 3.834 km. RHIC can accelerate various type of nuclear species

Figure 2.1: An aerial view of accelerators [55]

from A=1 (proton) to A=238 (Uranium) and can do independently in Blue Ring and Yellow Ring
because RHIC contains 1,700 superconducting magnets. Before injecting beams into the RHIC,
five accelerators, Electron Beam Ion Source (EBIS), Radio Frequency Quadrupole (RFQ), Linear
accelerator (LINAC), the Booster Synchrotron and the Alternating Gradient Synchrotrons (AGS),
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are used to accelerate gradually to the relativistic velocity. Fig.2.2 shows the procedure of acceler-
ation of Au beam. There are six intersection of two rings at RHIC and four collaboration locate
the detectors in different four points, PHENIX (8 o’clock) [56], STAR (6 o’clock) [57], PHOBOS
(10 o’clock) [58] and BRAHMS (2 o’clock) [59]. PHENIX, PHOBOS and BRAHMS have been
completed their operation and only STAR continues to running at RHIC.

EBIS
A ﬂ 17 keViu 3.4x 10° ions
RFQ 90%
A ﬁ 300 keV/u 3.0 x 10° ions
Linac 90%
A ﬂ 2 MeViu 2.7 x 10 ions
BOOSTER 85%
Au2' ﬂ 70 MeV/u 2.3 x 10° ions
————— STRIPPER FOIL 60%
Au ﬂ 70 MeV/u 1.4 x 10° ions
AGS 90%
AuT ﬂ 9 GeV/u 1.2 x 10° ions
——  STRIPPER FOIL
100%
TO+
Au ﬂ 9 GeV/u 1.2 x 10° ions

Figure 2.2: Injection step of beam [60].

2.2 Solenoidal Tracker At RHIC (STAR)

Solenoidal Tracker At RHIC (STAR) is the experiment group operating now located at 6 o’clock
position in the RHIC. In 2019, the STAR Collaboration is composed of 65 institutes from 14
countries, with total of 652 collaborators. One of the main purpose of the experiment is to search
Quark-Gluon Plasma (QGP) and to investigate the QCD phase diagram. At the STAR experiment,



2.2. SOLENOIDAL TRACKER AT RHIC (STAR) 31

polarized p+p and d+A collisions have been held in order to study parton distribution function
inside the nuclei and for the reference as A+A collisions. Low-momentum particles are measured
in order to investigate temperature of phase transition, dynamical collectivity and the effect of
chiral condensation and so on. High-momentum particles are measured in order to study nuclear
modification and the energy loss of colliding partons. Stopping factor of nuclear and baryon chemical
potential of source of the particles can be determined by measurement of py spectra of baryon and
anti-baryon.

STAR detectors have excellent at tracking accuracy, determination of momentum and particle
identification at mid-rapidity (0 < |¢| < 27 and || < 1.8) in order to measure large number of
hadrons emitted by collisions. Fig.2.3 shows overview of STAR detectors.

Figure 2.3: Overview of STAR detectors

2.2.1 Beam Energy Scan (BES) Program

Expoloring and understanding the nature of phase transition have been a long-standing challenge
for high-energy nuclear and particle physics. Proposal of Beam Energy Scan (BES) program was
published in 2010 [61]. The main goal of the BES program is to map out the QCD phase diagram
by searching for the turn-off of QGP signatures, signals of QCD phase boundary and existence of a
critical point in the QCD phase diagram. Beam Energy Scan I (BES-I) has been carried out from
2010 to 2014 by colliding Au-nuclei from 7.7 to 200 GeV at RHIC. It is important that physics
observables are measured with various collision energies, because pp can be controlled by scanning
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the beam energy. In order to analyze better statistics, Beam Energy Scan II (BES-II) is scheduled
from 2019 to 2021 in five collision energies /sy from 7.7 to 19.6 GeV in collider mode and in eight
collision energies /snyN from 3.0 to 7.7 GeV in fixed-target mode.

2.2.2 Time Projection Chamber (TPC)

Time Projection Chamber (TPC) is a heart of the STAR detector and installed at the center
of the STAR in order to record the tracks of particles, to measure their momenta and to identify
particle species with energy loss by ionization in the TPC [62]. Fig.2.4 shows the schematic view of
TPC. The size of is 4.2 m along beam direction which corresponds to the pseudorapidity coverage of

Figure 2.4: Schematic view of TPC [57]

+1.8. Outer and inner diameter of drift volumes are 4 m and 1 m, respectively. TPC is separated by
the thin Central Membrane (CM) and cathode at the center along the beam direction. The empty
volume is filled with P10 gas ( 10 % methane and 90% argon ) by 2 mbar atmospheric pressure and
applied uniform electric field by 135 V/cm which is required to drift the ionized electrons toward
the endcap-readout pads. The readout systems at the end cap is based on Multi-Wire Proportional
Chamber (MWPC). The electron avalanche occurs at the anode wires and amplified by 1000 to
3000 gains. The ionized positive ions which is created in the avalanche induce a temporary image
charge on the pads. The image charge is measured by 136,608 readout pads.

The z position of a space point is determined by the average of drift velocity and the drift time
of ionized electrons from the original space point to the endcap anodes by electric field along the z
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coordinate. The drift time depends on the drift velocity. But it can change by the slight change of
the atmospheric pressure and the composition ratio of gasses. Thus, the effect should be minimized
by two ways; change the cathode voltage corresponding to the peak in the drift velocity curve and
the calibration by artificial tracks created by laser beams.

For reconstruction of tracks, space points are associated to form tracks as a first step, and the
points are fitted by track model by algorithms. The signal of electron cluster is induced only on
three pads for typical tracks. The x position and its width ¢ is given by

o? h3
2
2 w
- — 2.2
7 T (k2 hihs) (2:2)

where hq, ho and hz are amplitudes on each three pad and w is the pad width for the case of ho
centered at y = 0. In this approach, the signals are assumed to distribute according to Gaussian
distribution. The position uncertainty due to electronics noise in this method is given by

2 2 _ 2 1622 2\ 2 (02
Ap=20o J2Y o w160 exp (~25) + (1422 ) exp mhL ) (23)
he 2w " o2 w2 w2 w o2

where Ah is the noise, h. is the signal amplitude under the center pad. When the signal to noise

ratio is 20:1, the noise contribution is small. Helix is initial track model and the deviation from
helix due to the energy loss in the gas is secondary one. The tracking efficiency depends on the
electronics and the separation capability of close two hits. The two-hit resolution is 0.8 cm (in the
transverse plane) and 2.7 cm (along the beam axis) in the inner sector and 1.3 cm (in the transverse
plane) and 3.2 cm (along the beam axis) in the outer sector. The track merging effect due to
sharing the adjacent pads by two tracks is reduced by requiring the minimum number of pad rows
but cannot be completely rejected. There is 4% inefficient region due to the spaces between sectors.
A fiducial cut, ignorance of any space points that fall on the last two pads by the software in order
to avoid position errors and and distortion of the drift field, reduces the total acceptance to 94 %.
The primary vertex is reconstructed by averaging the origins of all the tracks of charged particles.
Fig.2.5 shows the resolution of primary vertex which is calculated by reconstructing primary vertex
separately by each side of the TPC. We expect the resolution of 350 pm with more than 1,000
tracks.

The transverse momentum pr, is determined by fitting the curve in the transverse (x —y) plane
of the vertex and the space points along the track. The momentum p is calculated by the radius
of curvature and the angle of the track with respect to the beam (z) axis. This calculation works
for all the primary tracks (the tracks coming from primary vertex). Fig.2.6 shows the momentum
resolution of 7~ and anti-protons which is simulated by embedding method. The embedding method
is to embed a known track into the real data and to see how the track is reconstructed. The best
relative momentum is about 2 % at pp ~ 400 MeV /¢ for pions.

Particle identification is capable with utilizing energy loss in the TPC gas especially for low
momentum particles. Particles with v > 0.7c velocities are hard separate particle species because
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Figure 2.5: Vertex resolution of the TPC [62]
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Figure 2.6: Momentum resolution of charged particles reconstructed by TPC [62]
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the energy loss become mass-independent. The energy loss dF/dx is calculated by the hit points
up to 45 pad rows. The accurate average dE/dx cannot be calculated because particles lose rarely
hundreds of eV while usual energy loss is a few tens of eV. Thus, the typically 30 % truncated
mean of the energy loss is measured by removing the cluster with the largest signal. Fig.2.7 shows
the dE/dx in the TPC as a function of momentum of particle in the magnetic field 0.25 T. The
resolution is 8 % for track which crosses 40 pad rows. The resolution become better in 0.5 T

magnetic field because the transverse diffusion is smaller.

dE/dx Vs. P

12

dE/dx (keV/cm)

P (GeVic)

Figure 2.7: dE/dzx as a function of momentum p [62]

2.2.3 Time-of-Flight (TOF)

Time-of-Flight (TOF) has been installed for particle identification utilizing differences of time
of flight [63]. TOF system is constructed by Multi-gap Resistive Plate Chamber (MRPC). Fig.2.8
shows a side (upper) and end (lower) view of MRPC for TOF system. The MRPC for STAR
consists of a stack of resistive plates with six gas gaps by 220 um in between them. The resistive
plate (~ 10'3Q/cm volume and 10°Q2 surface, respectively) is made of float glass and the thickness
of glass is 0.54 mm. High voltages ~ 14 kV are applied between two electrodes. During operation,
the MRPCs are set in the gas 90-95% Freon R-134a and additional mixture of isobutane and SF6
for the reduction of the streamers. The stop time resolution is ~ 80 ps achieved in Au+Au collisions
at RHIC top energy. The number of TOF tray is 120 and they installed for full azimuthal coverage
with |n]| < 0.9 for pseudorapidity coverage around the TPC.

As shown in the Fig.2.7, the particle identification is capable in p < 0.7 GeV /c for pion and kaon
and in p < 1 GeV/c for pion and proton with TPC. The momentum range for particle identification
is extended to higher momentum by utilizing additional information from TOF system. TOF
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Figure 2.8: TOF view from side and end [63]
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measures the time when charged particle pass through the detector after a collision occurs. The

m2:p2{<z>2—1}, (2.4)

where L is the distance between the TOF detector and the collision vertex and ¢ is the time difference

mass is given by,

between start time and stop time. The start time is measured with VPD systems which is explained
in the following subsection. Fig.2.9 shows the inverse of § as a function of momentum of charged
particles determined by TPC. It can be confirmed that separation between pion, kaon and proton
is extended to higher momentum than dE/dx by TPC.

pVPD + MRPC TOFr

1B
IIIlfllllfl[llflfll[lfllflf
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o
o -
(4]
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Figure 2.9: § as a function of p [63]

2.2.4 Vertex Position Detector (VPD)

Vertex position detector (VPD) has been installed as the detector which is used for start counter
of TOF detector and for minimum bias trigger [64]. In the experiment, tens to hundreds of photons
from neutral pion decays are emitted from the collision vertex toward close to the beam pipe. VPD
measures these photons to obtain the information of event triggering. Two identical assemblies are
located one on each side of the STAR, east and west. The coverage of pseudorapidity region is
424 <n <5.1. Each VPD assembly consists of nineteen detection units (Fig.2.11) and measures
a time up to nineteen times at the maximum in each event. The primary vertex position along
the beam line, Z,;, is determined by the times from each VPD assemblies T¢qs and Topest and the
speed of light ¢ as,

Loty = C(Teast - Twest)/2- (25)
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Figure 2.10: Schematic view of VPD [64]
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Figure 2.11: A front view of VPD [64]



2.2. SOLENOIDAL TRACKER AT RHIC (STAR) 39
The event “start time” for Time-of-Flight (TOF) detector to perform particle identification at
mid-rapidity is given by,

Tstart = (Teast + Twest)/2 - L/C, (26)

where L is the distance between two assemblies and the center of the STAR along the beam direction.
Timing resolution can be improved like 1/ V/N, where N is the number of channels on each side
which detects prompt particles. By taking the average of all the channels which detect prompt
particles in an event, the resolution of Z,;, is given by,

0(Zua) = (¢/2oar = (¢/V2)osr = (¢/V2ao/VN,

(2.7)

where T' is a measured time Tpqst O Tipest, AT 18 the resolution of the time difference Teqst — Thpest,
o is the resolution of T.qs or Tyest, and og is the time resolution of a single readout detector.
Fig.2.12 shows the channel dependence of the resolution of single detector oy which is performed

in several beam energies. This result confirms that the time resolution become better with increase
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Figure 2.12: Resolutions of single detector [64].

of beam energy. VPD is doing multiple-particle timing and that makes the single detector resolution
better. Thus, the resolution become better if beam energy are increased. In Au+Au collisions at
top energy at RHIC (/syny = 200 GeV, the start-time resolution is 20-30 ps by averaging all the
channels which detect the particles, which is negligible compared with the stop time resolution of
the TOF detectors (~ 80 ps).

The resolution of primary-vertex position by VPD (

and ZLP¢

ZVPD

VPD
vtz Z

) is determined by comparison of Z ;..

which is reconstructed by the primary tracks of the TPC. Fig.2.13 shows correlation
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Au+Au collisions.

g [ ptp510GeV, Run-13 e [ AutAu200 GeV, Run-10
2 40 & 40
a > I Jf: a b L
> - & = L
N 20+ N 20F
0_— 0_—
i 4000 G(AZEMcm i el oZ)y05m
20F p 250 {4 -20(- sk fl
P , =
i 1000} | I A
3 500 “\‘_ 3 4 10000F )
-401- 3105 0 300 1 -40- S e AT
L | 1 1 AZ fcm) L | | | 1 AZ {cm)
-40 -20 0 20 40 -40 -20 0 20 40
Z3$ (cm) ZC (cm)

Figure 2.13: Primary vertex position determined by VPD with respect to TPC [64].

2.2.5 Zero Degree Calorimeter (ZDC)

The Zero Degree Calorimeter (ZDC) has been installed with three modules in each side by 18
m from nominal collision point of the STAR along the beam line which correspond to # < 4 mrad
(Fig.2.14) [65]. The role of ZDC is to measure the deposited energy of neutrons of spectator in a
collision. As shown in Fig.2.15 ZDC is a sampling hadron calorimeter which consists of tungsten
plate, layers of undoped optical fibers and photo multiplier tubes. The dipole magnet is located
in front of ZDC for the purpose bending all charged particles and separating neutrons and other
neutral particles. ZDC measures Cherenkov light produced by electron shower in a fiber. The
coincidence between ZDC and VPD is used for minimum bias trigger.
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Figure 2.14: A) Location of ZDC along a beam axis. B) The degree of deflections for neutrons,
protons, and Au ions by DX magnet. [65]
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Figure 2.15: ZDC modules [65]
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Chapter 3

Data analysis

Analysis methods and analytical formulae are written in this section.

3.1 Data set

The data used in this study is Au+Au collisions at /syn = 200 GeV collected by the STAR
detector system in 2011. The number of events is about 500 million events before run and event

selections.

3.1.1 Quality assurance

Run-by-run quality assurance (Run QA) was done by checking mean value of event and track
variables. Firstly, bad trigger which has large fluctuations run-by-run mean value for (Vz), (Vr)
and (n) and are excluded from the analysis. The remaining runs which has outlier value +30 from
mean value of each trigger conditions are excluded from the analysis (Fig.3.1).

3.1.2 Event and track selection

The event and track selections used in this study are summarized in Table.3.1. The difference
between z position of vertex determined by TPC (V.I7¢) and that by VPD (V.Y F'P) is required less
than 3 cm in order to remove pile-up events. Additional cut for rejection of pile-up events is applied
base on RefMult (reference multiplicity in |n| < 0.5) and the number of tracks matched on TOF
detector with requiring # > 0.1 in |n| < 1. The tracks from a primary vertex are selected with DCA
< 1.0 cm and good reconstruction quality by requiring NHitsFit > 20 and NHitsFit/NHitsPos >
0.52. The acceptance of tracks are limited in || < 1. At the very low momentum region (pr <
0.2 GeV/c), the tracks which have pr < 0.2 (GeV/c) are not used in this study because of tracking

efficiency is quite low.
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Figure 3.1: Run by run QA for Au+Au /snny = 200 GeV taken in 2011 data.



3.2. CENTRALITY DETERMINATION 45

Table 3.1: Event and track selections

event selections
V2| < 30 cm
“/"ZTPC’ _ ‘/ZVPD| < 3cm
tofmatched > RefMult x 0.46 —11
track selections
NHitsFit > 20
NHitsFit/NHitsPos | > 0.52
DCA <lcm
7| <1
T > 0.2 (GeV/c)

3.2 Centrality determination

Centrality is a good probe for determination of initial geometry. The definition of centrality is
the degree of overlapping region of two colliding nuclei in heavy-ion collisions. Centrality is defined
by RefMult which is the multiplicity of charged particles measured by TPC within |n| < 0.5.
RefMult has V, and luminosity dependence, and therefore that is corrected (named RefMultCorr).
After those corrections, RefMultCorr is fitted by the simulation of Glauber Monte-Carlo and the
simulated distribution is divided into centrality bins because measured multiplicity distribution
cannot be directly used for centrality determination due to drop of trigger efficiency in peripheral
collisions. Fig.3.2 shows centrality divided RefMultCorr distribution.

3.3 Higher-Order Azimuthal Anisotropy and Event Plane

In this section, the higher-order azimuthal anisotropy of emitted particles and the Fourier ex-
pansion of azimuthal distribution with respect to the event plane are introduced. The analysis
method of measurement of higher-order azimuthal anisotropy and reconstruction of event plane are
also written in this section.

3.3.1 Azimuthal Anisotropy

Azimuthal distributions of emitted particles (dN/d¢) can be written by the Fourier number
series with considering periodic boundary condition as follows,

dN o

W% = ot % > {xn cos(ng) + yn sin(ng)} (3.1)

n=1

- 0 ﬁCosn y—nsinn .
- %{H;[% (ng) + 2 <¢>>H, (3:2)
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Figure 3.2: V, and luminosity dependence corrected RefMult (RefMultCorr) distribution for each
centrality bin in \/sxn = 200 GeV. (Color online) red is 0-5%, orange is 5-10 %, yellow is 10-20 %,
light green is 20-30 %, green is 30-40 %, light blue is 40-50 %, blue is 50-60 %, magenta is 60-70 %,

violet is 70-80 %.
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where the r and ¢ represent the azimuthal distribution and azimuthal the angle of emitted particles.
The Fourier coefficient x,, and y,, can be determined by integration as follows,

2m dN
Ty = / d(b— cos(no) (3.3)
0 d¢
2m dN
Yn = / dp—— sin(ng). 3.4
[ o' sinno) (3.4)
These integration are translated into the summation of all the particles detected in subevents as
follows,
2m dN
dgb— cos(ng) = Z wj cos(ng;) = Qy (3.5)
2
/ qb— sin(ng) = sz sin(ng;) = Qy (3.6)
0

where 7 represent the index of all particles up to the multiplicity M of the detector, ¢; is azimuthal
angle of i-th particles and w; is the weighting factor, for example pp, multiplicity and ADC value.
The w; is necessary in order to obtain better resolution of the event plane. A vector Q = (Qx, Qy)
is called “flow (Q) vector” and used for event plane determination in the experimental way. Here,
W, is defined as n-th order event plane and correspond to the minor axis of the n-th order polygon,

1 2
U, = Etanfl(yn/wn), 0<V¥, < % (3.7)

Then, the azimuthal distribution dN/d¢ can be re-written with event planes W,, as follows,

Cclli;)] = 3 {1 + Z [ cos(ng) + — sm(n¢)] } (3.8)

To

—<1 n - v, , .
o { + Z_jl [vn cos{n(¢ )H} (39)
where v, is the amplitude of azimuthal anisotropy of each harmonics. v, is defined as

/2 2
Up = ‘T’;:% (3.10)

xo =M (w) (3.11)

In the experimental case, the measured azimuthal distribution of particles r(measured)(¢) can
be written as

r(¢) = o {1 + Z [ b5 cos{n(¢p — \If"bs)}} } ) (3.12)

The azimuthal angle of the event plane is experimentally determined by flow vector event-by-
event. The azimuthal angle of the event plane W9 which is measured in the experiment has different
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angle from that of real event plane U7, Therefore, U9 can be written as a sum of the real event
plane ¥¢% and the difference from the real event plane AW,, as U2 = ¥real - A¥, . When plenty
of number of events exist, the real anisotropy v, can written by using the measured anisotropy v,

vobs <cos(n \I/f;bs])> (3.13)
= (cos(nl(é — W) — (W3 — w,)]) ) (3.14)

= (cos(n[(¢ — Wn)]cos(n[AW,)])) + (sin(n[(¢ — Vn)]sin(n[AVy)])) (3.15)
(cos(n[(¢ — Wy)]) {cos(n[AW,)])) (3.16)

= vy (cos(n[A¥,)])) (3.17)

U = v (3.18)

(cos(n[AW,]))

where sine terms should be zero because we consider symmetric distribution with respect to the
event planes in the experiment and with the assumption that ¢ — ¥,, and AWV, are independent
with each other. The denominator of Eq.(3.18) ({cos(n[A¥,]))) is defined as “resolution” of the
event plane.

3.3.2 Calibration of event plane

The angle of event plane is reconstructed in event-by-event basis. In the real experiment, the
azimuthal distributions of event planes should be flat because we cannot control the reaction plane
of two colliding nuclei by control the ion beam. The event planes are reconstructed with charged
particles reconstructed by the TPC by utilizing flow vector as follows,

raw Zz wi COS(TL(bZ')

== ‘ 3.19
B (3.19)
;a;f _ >, wisin(ng;) (3.20)
7 V2o Wi
1 :Law
Yrow — — tan~! <y) : (3.21)

where 7 is an index of the tracks w; is an pp (for pr > 2.0, w; = 2.0) and ¢; is an azimuthal angle
of the charged particle.

In the experiment, the azimuthal distribution of event plane is not flat ( shown by the black
line in Fig.3.3) because of non-uniform acceptance due to the difference of tracking efficiency or the
beam conditions. The non-uniform distribution of event planes should be corrected by two steps.

Re-centering Calibration

As a first step, “Re-centering calibration” are applied. The mean value of the flow vector should
be 0 and the width of projected onto the x axis and y axis should be same. Re-centering Calibration
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Figure 3.3: The second-order-harmonic event-plane distributions determined by the charged parti-
cles reconstructed by the TPC at —1 < n < —0.5 in 0-5 % centrality, for the no correction, after
Re-centering Calibration and after Re-centering and Flattening Calibration.
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can correct the observed x or y component of the flow vector respectively as follows,

raw __ Qraw
e = > Qi) (3:22)
n,xr
ny — (@)
ny = T ny ’ (3.23)
1 Tec
V=~ tan~! <”y) : (3.24)
n,xr

The Fig.3.4 shows the before Re-centering Calibration (left) and the after calibration (right). The
mean is 0 and width is the same both for x and y component. The azimuthal distribution of the
event plane shown by the red marker in the Fig.3.3 is almost corrected compared to the observed
event plane distribution.

Flattening Calibration

As a second step, “Flattening Calibration” (shifting calibration) is applied. The Re-centering
Calibration can almost correct the effect of the detector bias and the beam shifting as mentioned
in the previous. But higher moments cannot be corrected by Re-centering Calibration. Flattening
Calibration forces event plane distribution to be shifted with Fourier number series as follows,

nWflt = pure L pAwre (3.25)
N

nAU© = Y {Agcos (kn¥;*) + Bysin (kn¥;)} (3.26)
k

where A, and By, are the Fourier coefficients of event plane distributions. Fourier coefficients for
cosine term can be determined by considering AV,, is enough small case as

<cos knA\Illet> = (cos (knU;* + knAY,,)) (3.27)
= (cos knV,% cos knAV,) — (sin knV¥,° sin knAV,,) (3.28)
(cos kn¥re%) — (sin kn¥I ¢ - knAW,,) (3.29)
= (cos knW;)

N
—(sin kn¥7% - k Z (A cos (kn¥;°°) 4+ By sin (kn¥;€))) (3.30)

k
= (cosknV; ) — kBj <sin2 kn W) (3.31)
= (cosknV %) — kBy, - % (3.32)
= 0 (3.33)
B, = % (cos knAWTe) . (3.34)
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Figure 3.4: 2D (top) and projected (bottom) flow vector distributions before and after re-centering
calibration in 0-5 % centrality.
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Here, product of sine and cosine of different harmonics are zero because they are orthonormal. For
sine term, we can calculate as

<sin lmmfg“> = (sin (knT7° + knAD,,)) (3.35)
= (sinknV,*cos knAV,) — (cos kn¥, sin knAV,,) (3.36)
(sin knWre) + (cos knW e - knAW,,) (3.37)
= (sinkn¥;)

N
+(cos knWU ¢ - k Z (A, cos (kn¥;°) + By sin (kn¥;°°))) (3.38)

k
= (sin knW. ) + kAy, (cos® kn¥7e) (3.39)
— (sinkn07) + kAj - % (3.40)
= 0 (3.41)
A, = —% (sin kn AW . (3.42)

Flattening Calibration was done up to 8th order Fourier coefficients. The blue marker on the Fig.3.3
shows flattened event plane distribution.

3.3.3 Event Plane Resolution

In the real experiment, the event plane U5, fluctuates with respect to the real event plane
\If’,"f“l because of the real event plane because the emitted particles from nucleus-nucleus collisions
are finite. The analytical formula of the observed event plane distributions with respect to the real
event plane is given by [66] as

dN
d {kn (W™ — Wpeah)}

1
- \/;Xn cos kn {\11;’3’8 - \If:fal} : (3.44)

where x,, = v,vV2M and erf(z) is the error function. The resolution of the event plane is written as

2 2
obs real ﬁ —x2 X X
<COSU€”(‘I’n -, )]> = ﬁXne X/ [I(k:—l)/? <4> + I(k11)/2 <4>} ) (3.45)

where [j, is the modified Bessel function of the first kind [67]. This estimation is used when the
following assumptions is met,

_ %ex%ﬂ {1 + 2/ [1 + erf(z)] eZQ} (3.43)

e emitted particles in the different rapidity window has no correlation with each other,

e the number of particles to be used for reconstruction of the event plane is enough larger than
L,

e the amplitude of the flow does not fluctuate in the same centrality class.
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The cosine term of correlation of event planes is expanded as follows,
(cos (n [UA — WB])) = <cos <n :\IJfL‘ - \Ilge“l: ) - (n [\1/5” - \1;;“”} )> (3.46)
= (oos (n [ w30 - w])) Ceos (m |27 - w3 )
+ <sin (n [qfﬁ - \If;wl} )> <sin (n [\Df - qz;e“l] )> (3.47)
~ <cos (n :\Ilﬁ - \If:fal: )> <cos (n [\Iff - \Ifrfal} )> (3.48)

= Res{Us} Res {TF}, (3.49)

where Res{\I!;?} and Res{lllf} are the resolution of event plane A and B, respectively. Here, sin
term should be 0 because the observed event planes with respect to the real event plane should are
symmetric. When the detector A and B cover symmetric rapidity range and have the equivalent
multiplicity, the event plane resolutions of two detectors ¥4 and W2 can be written as follows,

\/(cos (n ¥4 — ¥B])) = Res {\IJ;?} = Res {05} (3.50)

This method is called “two-subevent method”. In another method, the resolution of detector A (¥4)

can be determined with correlations of three event planes, \I/f and ¥¢

., as follows with assuming

common real event plane over all the subevents,

Res(04} \/ (cos {n(W;t — WE)}) (cos {n(¥G — W)}) 3.5)

(cos {n(¥f — ¥T)})

The resolutions of detector B and C are also by the same way. This method is called “three=subevent
method”. In this study, event planes are reconstructed with charged particles in three pseudorapidity
region of the TPC, —1 < n < —0.5 (TPCe : ¥&) 0.5 < n < 1 (TPCw : ¥¥¢") and |n| < 0.2
(TPCm : ¥™4d) and their resolutions are estimated by three-subevent method. Fig.3.5 shows
correlations of event plane. The resolution of event planes are shown in the later section.
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Figure 3.5: Correlations of event plane of {cos[kn (V4 — W2)]) and (sin[kn(¥# — ¥2)]) as a function
of centrality. Solid markers represent cosine term and open markers represent sine term.

3.4 Event Shape Engineering (ESE)

Event Shape Engineering (ESE) is the method to select the flow amplitude which fluctuates

event-by-event by selecting a length of flow vector [44]. ESE technique is described in this section.
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3.4.1 Event Shape Engineering

The modified flow vector is used for Event Shape Engineering in order to reduce multiplicity
bias in an each centrality bin as follows,

M=) w (3.52)
1=0

2_i—q Wi cos(ng;)
VM

_ > i Wi sin(ng;)

QTL,y - \/M

In =/ Qho T+ @y (3.55)

where ¢, is the magnitude of n-th harmonic flow vector. In this study, higher-order-harmonic

Qna = (3.53)

(3.54)

flow is measured in order to study how two-particle correlations are affected by ¢s selections. The
selectivity of go depends on w9, the multiplicity in the pseudorapidity and the performance of the
detector which means angular resolution for the second order harmonics and the linearity of the
response to the multiplicity in the pseudorapidity where the detector locates. STAR has installed
Beam Beam Counter (BBC) in forward and backward pseudorapidity (3.4 < |n| < 5, [68]), but the
vg and the multiplicity at BBC region is small (System Size, Energy, Pseudorapidity, and Centrality
Dependence of Elliptic Flow, PHOBOS). Thus, ¢ is selected at mid-rapidity detector TPC with
taking rapidity gap from the region for measurements of di-hadron correlations and azimuthal
anisotropy.

For the flow vector selection, integrated flow vector distributions are fitted by spline functions
which is shown in Fig.3.6. Fig.3.7 shows the distribution of magnitude of flow vector of TPCe in
0-5% centrality with 20% steps ¢o selections. From larger go bin, each bin is named ¢5 : 0-20 %
(top), g2 : 20-40 %, g2 : 40-60 %, g2 : 60-80 %, g2 : 80-100 % (bottom).

3.4.2 Event Plane Resolution with ¢, selections

Fig.3.8 shows event plane resolutions of TPCe, TPCw and TPCm. The resolutions of the
second-order event plane in ¢o selected events are strongly biased because ESE is calibrated with
itself. But for the third and the fourth order, resolutions are not strongly affected by ¢o selections.
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3.5 Measurement of two-particle correlations

Two-particle correlations have been used to study jet-like yield and azimuthal anisotropy. The
two-particle spatial-proportional distribution function can be written in the ratio of distributions
of two particle possibility over the product of single particle probability distributions as follows,

P(¢t’ ¢a’ nt7 /r]a)
P(¢',n')P(6%,1%)’

where ¢ and n>® are azimuthal angle and pseudo-rapidity of trigger and associate particles, and

C(A¢, An) = (3.56)

A¢ = ¢* — ¢t and An = n® — nt are relative angle of trigger and associate particles. In case of real
data analysis, numerator means that both trigger and associate particles exist in relative angles A¢
and A7 in the same event, and the meaning of denominator is that trigger particle and associate
particle exist in relative angles A¢ and An mutually independently. We can measure only pair yield
in relative angles experimentally, probability P is written in the following formula,

P(¢', 0% n',n®) = Y (Ag, An). (3.57)

Npair

Then, NP¥" is the number of all pairs. Therefore correlation function can be written as follows,

Npair Ypair(A¢, An)

mir ~ real

Npair Ypair(A¢’ An)

real *mix

C(A¢, An) = . (3.58)

This formula can be understood as follows. In the real experiment, event mixing means that

pooli pool2 pool3

Real pair

Figure 3.9: Image of taking real pairs and mixed pairs.

extracting physics signal by dividing real events which has physics signals and acceptance effects of
detectors by mixed events which have only acceptance limitation effects. In order to reduce effects of
collision vertex and difference of multiplicities, manually similar events are needed to make mixed
events. Mixed events are calculated in the following centrality class and vertex-z class and the
second-order event-plane class in order to estimate an acceptance effect,



3.5. MEASUREMENT OF TWO-PARTICLE CORRELATIONS 59

e centrality : 5 % steps
o V. : 6cm steps
o Uy : /8 (rad) steps.

Two-particle correlations are measured with various pr combinations as shown in the following list
in order to comprehensively understand path-length dependence of jet modification and medium
response to traverse of high momentum particles.

e trigger particles : 2-4 and 4-10 (GeV/c)
e associate particles : 0.5-1, 1-2, and 2-4 (GeV/¢)

Fig.3.10 shows azimuthal relative angle distributions of real and mixed events and correlation func-
tion. As seen in the figure, the acceptance effect is corrected after divided by mixed-event pairs.
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Figure 3.10: (Top) azimuthal distributions of real (black) and mixed events (red). (Bottom) Cor-
relation function C'(A¢) after divided by mixed pairs.
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3.5.1 Rejection of merged and split tracks

In this subsection, how to reject inefficiency of pair reconstructions.

Two track resolution

In the real experiment, sometimes very close two tracks can be reconstructed as a single track
(track merging) and single track can be reconstructed as two tracks (track splitting). The signal
of two-particle correlations around A¢ = 0 and An = 0 are smeared due to track merging and
splitting effect. As seen in Fig.3.11, track merging effect can observed when two tracks share the
same pads in one track crossing the other track, and track splitting effect can observed when two
tracks which have very similar momentum run in parallel.

merged track | real track
real track1 k] ghost track1
real track2 *" ghost track2

Figure 3.11: Image of track merging (left) and splitting (right).

Fig.3.12 shows unlike-sign(trig ® asso = + ® — and + ® —) and like-sign(trig ® asso = + ® +
and — ® —) correlation functions. As seen in Fig.3.12, dips are observed due to track-merging effect
and the region depends on charge combination of two tracks. The dip region also depends on a

2-3® 0.5-1 (GeV/c)

Ap Ap Ao

Figure 3.12: 2D correlation functions around (A¢,An)=(0,0) with positive®positive,
negative®negative, positive®negative and negative®positive. Momentum ranges are 2-3 (GeV/c)
for trigger particles and 0.5-1 (GeV/c) for associate particles.

magnetic field and momenta of two tracks because the orbit and curvature depend on the vector of
Lorentz force and curvature of the particles, respectively.
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Rejection of merged and split tracks

In this subsection, how to reject merged and split tracks is introduced. In a magnetic field B,
charged particles move by being subject to Lorentz force as Fig.3.13. Let V be a primary vertex

original track direction
N .
A .-~ benttrack direction

VT

®

magnetic field

Figure 3.13: Image of movement of a charged particle in a magnetic field.

of the collision, O be a centre of the circular motion of the particle and let A be a position of the

charged particle ¢ second after. Equation of motion of the charged particle can be written as follows,

2
qurB = T (3.59)
T

where ¢is the charge of the particle, vr is the velocity of the particle, B is a magnitude of magnetic
field, m is a mass of the particle, r is the radius of a circular motion. If you solve the equation for

r,

- jfj (- mop = pr)(CT/(I/(m/s))) (3.60)
1 ¢B
= 03 (eT/(GeV/c)). (3.61)

Because AOVA in Fig.3.13 is a isosceles triangle, the relative angle ¢4 between initial vector of the
particle and the line segment VA can be written as follows,

¢1 = (7 — ¢o)/2 (3.62)
b1+ 61 = 7)2 (3.63)
C.oA = ¢0/2, (3.64)



62 CHAPTER 3. DATA ANALYSIS

where ¢g is £ AOV and ¢, is £ OVA. If you apply the Cosine theorem to AOVA, the length of the
line segment VA, R, can be written as

R? = r? + 1% 4+ 2r% cos(¢y) (3.65)
2
cos(cp) = 1 — QRTQ (3.66)
R2
cos(2¢4) =1 — 22 (3.67)
2 R
1 —2sin*(¢a) =1 — 22 (3.68)
sin(¢a) = ; (3.69)
.1 (R
oA = sin (27“) (3.70)

Therefore, moving direction of the charged particle in a transverse plane at a certain distance from
the primary vertex can be expressed with Eq.(3.61) and Eq.(3.70) as,

03-¢-B R

o) (3.71)

¢* = ¢ —sin!(

When transverse momenta of two tracks (ptT and p%.) are different, two close tracks cross at a
different radius in the TPC. In this study, in order not to reject truly identified pair, a relative

trig

asso

Figure 3.14: Schematic view of A¢* between two particles at certain radius R.

moving direction A¢* (image is shown in Fig.3.14) is calculated at the several radii (r = 0.60, 0.75,
0.90, 1.05, 1.20, 1.35, 1.50, 1.65, 1.80, 1.95 (m)). When track merging and splitting is observed, two
tracks cross or their distance become very close. The minimum value A¢} . is estimated with A¢*
in several radii as seen in Fig.3.16. As seen in Fig.3.16, the dip is gathered into A¢} . = 0. The two-
dimensional distributions are projected to A¢7 . and An within |An| < 0.05 and |A¢},,,| < 0.05
respectively and fitted by Gaussian functions Fig.3.17. The cut regions are determined by 3o of
fitting parameter which is shown in Fig.3.18.
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Figure 3.15: 2D A¢*-An correlations with 2-3 (GeV/c) positively charged trigger particles and 0.5-1
(left column), 1.5-2 (middle column) and 2-3 (right column) positively charged associate particles
in 7 = 0.60 (top row), r = 1.20 (middle row) and r = 1.95 (m) (bottom row).

2-3®0.5-1 (GeVce), + ® + 2-3® 1.5-2 (GeVce), + ® + 2-3®2-3 (GeVc), +® +

Figure 3.16: 2D A¢},,;,,-An correlations with 2-3 (GeV/c) positively charged trigger particles and

0.5-1 (left column), 1.5-2 (middle column) and 2-3 (right column) positively charged associate
particles.
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Figure 3.17: Projected A¢* . and An correlations fitted by Gaussian functions. Projected regions

min
are |An| < 0.05 for projection to A¢F . and |A¢F . | < 0.05 for projection to An.

*
min

3.5.2 Two-particle correlations with respect to the event plane

Event plane is measured in n < —0.5(n > 0.5), and correlations with respect to event plane is
analyzed in n > 0 (n < 0) in order to reduce auto-correlation effect for reconstruction of event plane
as shown in Fig.3.19. Relative angle of trigger particle with respect to event plane is defined as
¢s = ¢ — Wy as shown in Fig.3.20.

3.6 Subtraction of low background

In heavy-ion collisions, a large number of combinatorial background exist as an underlying event.
In order to extract jet-correlated yield, uncorrelated background contributions from higher-order-
harmonic collective flow should be subtracted from measured correlations. In this section, the
method of determination of a background shape and how to subtract it are presented.
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(top) and An (bottom) as a function of p$. with 2-3 (red),
3-4 (blue) and 4-10 (GeV/c) trigger particles.
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Figure 3.19: Subevent division for event plane reconstructions and measurements of two-particle
correlations. Pseudorapidity gap between subevents are 0.5 in order to reduce auto-correlation.
Case (a) and case (b) are averaged after checking their consistency.
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out-of-plane ®

associate/A@

4) in-plane

Figure 3.20: Schematic picture of trigger angle binning with respect to the second-order event
plane. A¢p = ¢% — ¢! is the relative angle of associate particle with respect to the trigger particle.
¢s = ¢' — Uy represents the relative angle of trigger particle with respect to the second order event

plane.

3.6.1 Flow distributions of azimuthal pair correlations

In case of single-particle flow is written as Eq.(3.1), and then in the case of two-particle corre-

lation, flow distributions can be written as,

dNta B 2 dqthM dN¢
d(A¢) 0 det do®

x /d¢t{1+22u,§cosk(¢t—\pk)}{1+2Zvﬁcos1(¢a—\p,)}. (3.73)
k

l

(3.72)

where N is the number of pairs, Ap = ¢* — ¢! is a relative angle between trigger and associate
particles, N* and N® are the number of trigger and associated particles, ¢! and ¢® are azimuthal
angle of the trigger and associate particles, vi and v’ are the amplitude of azimuthal anisotropy,
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respectively. Eq:3.73 can be written without ¢ by substituting as ¢* = A¢ + ¢,

daEJZ::) x /d¢t{1+2zk:vicosk(¢t—‘1’k)}{1+QZUZCLCOSZ(¢t+A¢_‘I’Z)} (3.74)

l

= /dcpt{l + 221}}; cos k(o' — Uy,) + QZU? cosl(¢' + Ap — U)
k !
—1—42 Zv,tcvla cos k(¢! — W) cos (¢! + Ap — ‘I/l)}
kool
= /dqﬁt{l + 221}}2 cos k(¢! — W) + QZvlacosl(qbt +A¢ — )
k l
+2Z Zv,@vf{ [(k+1)¢" — kU — 19, + IAQ]
kool
+ [(k—1)¢" — kT + 10, — 1A¢]}}

— /d¢t{1 +2) vjog cos(kAgb)} (3.75)
k
o+ [ docosns =) (3.76)

where by is a normalization factor. Therefore, distribution of two-particle correlations (F(A¢)) can
be written as follows

F(A¢) =bo {1 + Z [20], - v% cosn(Ag)] } (3.77)
n=1
3.6.2 Determination of Flow-Background shape via Data-Driven Monte-Carlo
simulation

In this study, the real-event pair distributions are normalized by mixed-event ones with event
plane aligned. In this case, the analytical formula is difficult to describe but reconstruction via
Monte-Carlo simulation is not difficult because it can be analyzed as same way as experimental
way. Additionally, we can easily input non-linear correlation terms such as correlation between
different-order flow harmonics and ¥, aligned mixing into flow simulation by the Monte-Carlo
method. The following is analysis procedure of low Monte-Carlo simulations.

1. Generation of Event Plane
The 2nd (¥3) and the 3rd (¥3) order event plane is generated at first at random because Wo
and V3 do not correlated with each other. It is found that the fourth-order event plane ¥, is
correlated with Wq [reference]. So Wy is smeared from Wy as following to the ratio of v4{ Wy}
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to va{Wy4}.

v{ W2} = (cosd[(¢ — U3)]) (
= (cosd[(¢ — Wy) + (V4 — U3))) (
= v{W4} (cosd[(¥s — Us)]) (3.80
" (cosd[(Wy — Wa)]) = va{Wa}/va{VWs}. (

The amplitude of correlation (cos4[(V4 — Wq)]) is converted into y42 parameter by Eq.(3.82)
as,

2 2
(cosfauet = wgee]) = Ve [z(k 1)/2<X )+1<k+1)/2 (X)] (3.82)

Fig.3.21 is centrality dependence of the ratio v4{Ws}/v4{W¥,}. Therefore, ¥, is determined
by \Ilreal \Ilreal + AWy and the angle \IJ"bS is determined as

g = el L ADy (3.83)
= Wl L AU + ATy, (3.84)

2. Determination of single-particle distributions

Azimuthal distributions of single particle can be determined because event planes are gener-
ated in 1st step and amplitude of v, in each pp bins are already known.

3. Generation particles

Particles are generated from the distributions at random.

4. Calculation of a relative angle between two particles

Two-particle correlations are calculated by particles generated as a 3rd step.

Analytical formula is difficult to describe in event plane dependent correlations because the reso-

lution of event plane is not ideal value. However, in Monte-Carlo simulations, calculations of flow

background are not so difficult. Flow Monte carlo simulation is done as follows.

1. Generation of particles

From the 1st to 3rd step of upper description are the same as upper description.

2. Smearing of event plane

Event-plane angle is smeared from real event plane \Ilgeal along to the probability distribution
function of \I'Sme‘”’ed with respect to \1172"6‘” shown by Fig.3.22.

3. Calculation of a relative angle between two particles

two-particle correlations are analyzed by particles generated at the 3rd step with trigger
selecting trigger particle’s angle with respect to smeared event plane Wsmeared,
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Figure 3.21: (cos4[(¥4 — Us)]) as a function of centrality in each gy bin.
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Figure 3.22: Probability distributions of observed event plane with respect to the real event plane

in some typical x values.
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3.6.3 Zero Yield At Minimum (ZYAM)

Measured correlation function C(A¢) is assumed to compose of two component, jet-like yield
signal J(A¢) and flow background F(A¢). In addition, the signal J(A¢) on the near side and
away side is assumed to be completely separated. With those assumption, the determined flow
backgrounds are subtracted with Zero Yield At Minimum (ZYAM) assumption: the yield should be
zero at the smallest yield point. Therefore, flow subtracted jet distribution (J(A¢)) can be written
as

J(A¢) = C(Ad) — F(Ag), (3.85)

here, by correspond to a background level which is explained in the following section.

Fig.3.23 shows inclusive-trigger correlations with background fitted to the experimental data.
Fig.3.24 shows event-plane dependent correlations with respect to the event plane shown with
fitted background distributions. The background distributions reproduce the shape without around
A¢ =0 and A¢ = 7 where remaining jet-correlated yield can be observed.

—_ T T L L | L | L | L T T
3 1.3- | s
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Figure 3.23: Inclusive-triggered correlation function with background fitted by ZYAM assumption.
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Figure 3.24: Correlation functions and simulated background distributions with trigger angle selec-
tions with respect to the second-order event plane with 2-4®2-4 (GeV/c) in each centrality bin.
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3.7 Azimuthal distribution of pair yield per trigger particles
Azimuthal distribution of pair yield per trigger particle (Y (A¢)) is calculated as follows,

_1dN™ 1 Nte
 NtdA¢y 2mea Nt

Y (A9) T(Ag) (3.86)

where €% is efficiency of associated particles, N*® is the number of pairs in the acceptance where
correlations are projected, and N? is the number of trigger particles. The reason why only associ-
ated particles are corrected by efficiencies is the factor of efficiency of trigger particles is cancelled
out. Fig.3.25 shows correlated yield distribution after background subtraction, normalization and
efficiency correction. As seen in Fig.3.25, the minimum value is zero. Fig.3.26 shows jet-correlated
yield with trigger angle selections with respect to the second-order event plane in each centrality
bin. Large peak is observed in the near side and some residual yield is observed in the away side.
Left-right symmetry with respect to the dashed-line at A¢ = 0 and A¢ = 7 is observed for ¢5 < 0
and ¢s > 0. Therefore, the correlations with ¢ > 0 are averaged into those with ¢s < 0 thereafter.
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Figure 3.25: Azimuthal distribution of correlated yield after background subtraction (using
Fig.3.23), normalization and efficiency correction.
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Jet-correlated yield distributions with trigger angle selections with respect to the
event plane with 2-4®2-4 (GeV/c) in each centrality bin.
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3.7.1 Estimation of tracking efficiency

Tracking efficiency of charged particles reconstructed with TPC is estimated with pr spectra
and embedding simulation. Embedding method is a Monte-Carlo simulation : we embed a ’known’
particles which is generated by event generator (e.g. PYTHIA, HIJING or UrQMD) is embedded to
the real experimental data through the simulated detector and measure whether the particle can be
reconstructed or not. After applying as same cut to the embedded tracks as that for experimental
data, single-track efficiency is estimated. Fig.3.27 shows the TPC tracking efficiency of pions, kaons,
proton, and anti-proton as a function of pr and centrality.

efficiency x acceptance
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Figure 3.27: The single particle efficiencies of pions, kaons, protons and anti-protons as a function

of pr in each centrality estimated by embedding simulation.
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Tracking efficiency of charged hadrons can be obtained by integrating the efficiency of each
particle with being weighted by corrected pr spectra. But the spectra are limited up to 0.8 (GeV/c)
for Kaons and 3 (GeV/c) for pions and proton and anti-proton. Therefore, the spectra are extended
to 4 (GeV/c) via Blast-wave fit with Tsallis statistics [69] as shown in Fig.3.28. Finally, the tracking
efficiency is obtained as shown in Table.3.2.
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Figure 3.28: pr spectra of pions, kaons, protons and anti-protons with fitted by Blast-wave function
with Tsallis statistics [69].

3.8 Correction of trigger-smearing effect

If the resolution of event plane is ideal, trigger particles can be selected truly with respect to
the event plane. However, the resolution of event plane is 0 < ResW¥, < 1, and then, trigger
particles can be selected as different ¢, bins. Pair yield per trigger particle with respect to the
event plane is smeared neighboring trigger angle bins because of the finite resolution of event plane.
This trigger smearing effect must be corrected in order to measure real event plane dependence.
Two independent correction method is applied in this study. Fitting method is established PHENIX
[41] and expanded to correction of the fourth-order term by Dr. T. Todoroki’s thesis ([40]) and
iterative unfolding method is established by Dr. T. Todoroki’s thesis [40]. The detail is described
in this section.
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Table 3.2: Summary of tracking efficiency
centrality (%) ‘ pr (GeV/c) ‘ efficiency (%)

0-5 0.5-1.0 0.587

1.0-2.0 0.613

2.0-4.0 0.625

5-10 0.5-1.0 0.663
1.0-2.0 0.686

2.0-4.0 0.697

10-20 0.5-1.0 0.709
1.0-2.0 0.733

2.0-4.0 0.745

20-30 0.5-1.0 0.758
1.0-2.0 0.781

2.0-4.0 0.792

30-40 0.5-1.0 0.789
1.0-2.0 0.810

2.0-4.0 0.822

40-50 0.5-1.0 0.807
1.0-2.0 0.827

2.0-4.0 0.840

50-60 0.5-1.0 0.824
1.0-2.0 0.842

2.0-4.0 0.856

3.8.1 Fitting method

Assuming the pair yield per trigger particles are distributed with respect to the event plane, the
effect of trigger smearing effect due to limited event-plane resolution can be corrected in analogous
to the resolution correction in the single-particle low measurement via event-plane method. The
azimuthal angle of pair yield with respect to Uy at given A¢ can be written as

AN1TY u
T—gg — 1tV - ) (3.87)
= 1+Y(¢s +A0) (3.88)
= 1+ 20) cos(¢s + A¢) + 20} cos(¢s + Ad), (3.89)

where Y (¢s, Ag) is azimuthal distribution of pair yield before correction, ¢ is the relative angle
of trigger particles with respect to the Wy ¢y = ¢! — Wy, Agp = ¢* — ¢! and 0{4 is an azimuthal
anisotropy of pair yield. Here, the relation expression ¢ — Wy = (¢! — Wa) + (¢ — ¢') = ¢s + Ag is
applied to Eq.(3.87). The distribution is fitted by the Fourier fitting to 1+ Y (¢s, A¢) as a function
of ¢s with a phase shift A¢. Then, the anisotropy parameter v; 4 can be obtained and the azimuthal
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distributions using v} can be corrected by the event plane resolution as

dN1+PTY ’U%/ U}(
— =14+ 22 cos2(¢ps + Ad) + 2— cos4(ps + Ad). 3.90

The corrected distribution can be obtained by taking a ratio of uncorrected and corrected function
as,

1+ 2% cos2(¢ps + Ag) + 2;% cos4(ps + Ag)
1+ 20 cos2(ps + Ap) + 20} cosd(gs + Ag)

1+ 2% cos 2(¢s + Ag) + 2;% cos4(gps + Ag) o
1+ 203 cos2(¢s + Ad) 4 2v) cosd(ps + Ag) X (L+Y"™(¢s + Ag)) — 1.(3.92)

1+ Ycor(¢s 4 A¢) — X (1 + Yraw(¢s + A¢))(391)

Y (gs + Ag) =

Fig.3.29 shows an example of the unfolding by the fitting method and the Fig.3.29 is the all the ¢
distribution in one centrality bin and one pr combination.

3.8.2 Iteration method

The smearing effect is unfolded by iterative calculation. Firstly, pair yield distribution is defined
as Y (¢s, Ag) as a function of trigger direction ¢5 = ¢! — Wy and azimuthal angle A¢p = ¢@ — ¢'.
Constant offset O = 1 to the pair yield as A(¢s + A¢) = Y(¢s + A¢) + O in order to avoid
divergence of calculations in the unfolding by treating small value around 0. Now, the trigger
bin ¢5 is divided into 8 bins, and those width are 7/8 (rad) from —n/2 (rad) to 7/2 (rad) in ¥y
dependent correlations, and the relative angle between trigger and associate particle A¢ is divided
into 24 bins. For simplicity, trigger bin ¢s and relative angle bin A¢ is rewritten by indexes i (=0 -
7) and k (=0 - 23), respectively. Pair yield distribution is named as A(i, k) and summarized into a
vector A(k) at a given k as follows,

OO
~— N N N N N N

(3.93)

AR s s oo
No R wiw =S

Probability distribution function of ¥$** with respect to W54 is given by Eq.(3.43). The contam-
ination from other trigger bins can be estimated by the probability distribution function and the
width of trigger bin. Now, the smearing matrix S(k) is introduced with considering cyclic boundary
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Figure 3.29: Offset added correlated yield as a function of ¢, fitted by Fourier function (black) and

resolution corrected data and curve (red) in each A¢ window.
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condition and symmetry of even function as,

Sop S1 S2 S3 S4 S3 S2 S
S1 So S1 S22 S3 S4 83 89
S9 81 Sp S1 S2 S3 S4 S3
g = S3 S9 S| Sp S1 S92 S3 S4 ’ (3.94)
S4 S3 S2 S1 So S1 S2 S3
S3 S4 83 S92 S1 S0 S1 S92
S92 S3 S4 S3 S22 S1 S0 S1

S1 S92 83 S4 83 S22 S1 So

where s,,, is a contamination probability from m trigger bin away from selected bin, and sq is true
signal in a selected bin and the sum of the elements is normalized to unity as »_ s, = 1. The
smeared correlation matrix B(k) can be determined by the multiplying the smearing matrix from
left to the pair yield distribution as

B(k) = S(k)A(k). (3.95)
The diagonal element ¢;; of effective correction matrix C(k) is defined as
cii = A(i, k)/B(i, k), (3.96)

here, the off-diagonal elements c;; (i # j) are ignored because trigger smearing is assumed to smear
only by resolution effect (smearing matrix) in this study. Then, corrected correlation vector A°°™ (k)
can be obtained as

AT (k) = C(k)A(k). (3.97)

However, the first correlation vector A (k) is not real distribution, smeared by the limited event-
plane resolution in this method. Therefore, the procedure above is iterated until correction matrix
converges. The Matrixes A(k), B(k) and C(k) are re-defined as A® (k), B™ (k) and C™ (k)
(n > 1) to describe a iteration procedure which is summarized in Fig.3.30.

Here, the correlation matrix for n = 1, A(l)(k), correspond to the uncorrected correlation.
Those matrixes in n-th loop is defined as,

B™ (k) = S(k)A™ (k) (3.98)
A (k) = Y () AD (k) (3.99)

where the elements of correction matrix C™ (k) is defined as,

™ = AW (5, k) /B™ (i, k) (3.100)

(n) _ .
ij, =0 (for i #j). (3.101)

c
In this method, correction matrix directly affected by statistical fluctuations. When making the
correction matrix, smoothing parameters with neighboring bins are needed in order to avoid diver-

gence of the matrix. Therefore, the smoothing parameters are introduced both for ¢ and k£ indexes
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input
(raw data) + offset

A()(k) = Yraw(k)+O

smear (n-1)-th corrected data
for ¢s direction
with using probability distribution (P.24)

BO(K) = S(k)A(K)

make correction function
((n-1)-th corrected data) / (n-th smeared data)

cil(i,k) = AM)(i,k)/B0)(i,k)

iteration
correction of raw data smooth correction function
with n-th correction function with neighboring bins
AO)(i,k) = ci(i,k)*A0)(i,k) with using smoothing parameter
Gi™(i,k) = ri{cim(i-1,k)+cim(i+1,k)}
after converge +re{CiM(i,k-1)+ciM(i,k+1)}
output

(corrected data) - offset
Yecorr = An)-0O

Figure 3.30: Summary of unfolding loop procedure.

as,

k) = (1—2r — 2r)e ™ (k) + it (i = 1, k) + ric™ (i + 1, k)

i i

el (i k — 1) + reelf? (i, k + 1) (3.102)

The chi-squared value of correction matrix X% is calculated in the every loop and evaluate the
difference with the once previous matrix as

(3.103)

{cgl)(} k) — eV, k)}2
- ,
o2 Xk: \/ (s} + (oD}

(n) (i,k) is statistical error of the element of correction matrix. The iteration ends when

where dc;;
X% have a local minimum value. Fig.3.31 shows example of iterative unfolding procedure upto 50

loops.

3.9 Systematic uncertainties

In this section, systematic uncertainties in flow measurements and two-particle correlations are
presented.



3.9. SYSTEMATIC UNCERTAINTIES 81

Index of trigger bin

)
S
(1}
18
0
14
0€

0 S 0L § 0Cc S 0L § ( 0C SLOL S

C

(3]
-
o
Y
(3]
N
o

(

uiq v Jo xapu|

0C S OF S

02'0=1 ‘02'0=1 ‘%0p-0€ ANenuad ‘(9/A8D) 2-1 @ p-2 ‘(dv) A+1esyo

0Cc S 0 § 0Cc S 0 § (

96
86’
20y
o'l
90}
80'H
s
(48!
vy

Figure 3.31: Corrected correlations (A), smeared correlations (B) and correction function (C) in
selected loops ( 1, 2, 3, 5, 10, 20, 50th). Smoothing parameters are r; = ri = 0.20.
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3.9.1 Systematic uncertainties in flow measurements

The sources of systematic uncertainties on flow measurements considered in this study are listed
as follows,

e differences of track cut parameters and z-vertex V,,
e difference of East/West event plane

e difference of analysis method between two-particle-correlation method and event-plane method.

DCA, NHitsFit and V, are changed to loose or tight cut in order to change contamination of
secondary particles, track quality and effective acceptance of the TPC. The azimuthal anisotropy
vy, was measured by different cut parameter combinations as shown in Table.3.3. When changing

Table 3.3: Track and event selections for estimation of systematic uncertainties

cuts
variables | loose default tight
DCA <2cm| <lcm | <0.5cm
NHitsFit | > 15 > 20 < 25
V2| <30 cm | <20cm

one parameter to tight or loose cut, the other parameters are fixed to default parameters. Here, cut
parameters are assumed to have no systematic correlations. Therefore, six different combinations
have been considered to estimate systematic uncertainties from track and event selections as shown
in Fig.3.32. The systematic uncertainties of track and V, selections o.,; are defined as

6
Ocut = Z ‘Un,i - Un,aver (3104)
i
where the index ¢ corresponds to the difference of track and z-vertex cuts. Fig.3.33 shows the flow
measured at the east side with respect to west side event plane and the west side with respect to
east side event plane. The systematic uncertainties on the difference between east side and west

side ogw are defined by the absolute value of its difference,

(3.105)

OEW = |Un,east - Un,west|-

Fig.3.34 shows the flow measured via event plane method and two-particle correlation method. The
systematic uncertainties on the difference between event plane method and two-particle correlation
method o,,.; are defined by the absolute value of its difference,

Omet = ’Un,EP - Un,2PC|- (3106)

The total systematic uncertainties can be written as square root quadratic sum of these errors as,
_ 2 2 2

Ototal = \/Ucut 1t 0pp + Omet-

Fig.3.35 shows the linear sum of systematic uncertainties (histograms) of each component and the

(3.107)

quadratic sum of them (data point).
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3.9. SYSTEMATIC UNCERTAINTIES

all default cuts, (green) |V,| < 20 cm, (red) DCA < 2cm, (blue) DCA < 0.5 cm, NHitsFit > 15,

Figure 3.32: pr dependence of azimuthal anisotropy with various track and event selections :
NHitsFit > 25.
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Figure 3.33: Azimuthal anisotropy with east/west difference with inclusive pr : (red) EPeast, (blue)
EPwest.

3.9.2 Systematic uncertainties in two-particle correlations

The sources of systematic uncertainties on flow measurements considered in this study are listed
as follows,

e propagation of systematic uncertainties of vy,

e propagation of systematic uncertainties of Wo-W, correlation,
e difference of mixing binning,

e tracking efficiency,

e range of pair cut,

e difference of correction method for trigger smearing effect,

e differences of smoothing parameters.

For measurement of two-particle correlations, systematic uncertainties from v,, o,, can be
propagated after subtraction of flow. The systematic uncertainties from flow parameters o,, can
be defined by RMS of yield per trigger particle with v,, +1o(n = 2,3, 4) with respect to the average
value,

Ovp, (A@) = \/Z(le‘: (A¢) - Ydefault(A¢))2/6 + (Y;)k_ (A¢) - Ydefault(A¢))2/6v (3108)
k

where Yvki (A¢) represent the correlated yield with flow subtraction with vg+ 1o and Ye fquir(A¢) are
the correlated yield with flow subtraction with default flow parameters. The same background level
as default flow parameters is applied for estimation of systematic uncertainties. Fig.3.36-3.38 show
correlation functions with p%. ® p% = 2-4®1-2 (GeV/c) with vg, v3 and vy systematics, respectively.
The other pr selections are shown in AppendixB.
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Figure 3.34: Azimuthal anisotropy with event plane method and two-particle correlations :

event plane method, (magenta) two-particle correlation method.
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Figure 3.35: Total systematic uncertainties of azimuthal anisotropy v, with linear sum and quadratic
sum of each component.

The systematic uncertainties of the parameter 42 in the event plane correlation o,,, are defined
as,

Ovia(80) = /(Y (A9) = Yane(80))2/2+ (Y, . (A) — Yare(A9))2 /2. (3.109)

Fig.3.39 shows correlation functions with pf. @ p}. = 2-4®1-2 (GeV /c) with y42 systematics, respec-
tively. The other pr selections are shown in AppendixB.

The systematic uncertainties of pair cut e around (A¢, An) = (0,0) are calculated with cut
parameter in A¢* and An by changing the cut range from 3o to 2.50 as,

Upaircut(A¢) = |}/250(A¢) - Y?)U(A(b)‘ (3110)

The relative uncertainties are listed in Table.3.4.

The background level of correlations is determined by inclusive-trigger correlations or trigger-
angle selected correlations. The absolute difference between them, Y, ciusive and Yirigpin, is defined
as systematic uncertainties of ZYAM as,

02y AM(AP) = [Yinctusive(A®) — Yiirgbin (Ad)|. (3.111)

Fig.3.40 shows correlation functions with p. @ p} = 2-4®1-2 (GeV /c) with y42 systematics, respec-
tively. The other pr selections are shown in AppendixB.

The systematic uncertainty of tracking efficiency is 5 % [70], and therefore 5 % uncertainty o ¢
is added for all the data points.
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Figure 3.36: Azimuthal distributions of correlated yield with subtracting ve £ 1o with p} ® p% =

2-4®1-2 (GeV/c).
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Figure 3.37: Azimuthal distributions of correlated yield with subtracting v £+ 1o with p} ® p% =

2-4®1-2 (GeV/c).
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Figure 3.38: Azimuthal distributions of correlated yield with subtracting vs4 £ 1o with p} ® p% =

2-4®1-2 (GeV/c).
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Figure 3.39: Azimuthal distributions of correlated yield with subtracting x4z + 1o with pf. @ p4. =

2-4®1-2 (GeV/c).
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Figure 3.40: Azimuthal distributions of correlated yield with ZYAM determined with trigger-angle
selected correlation (red) and inclusive-trigger correlation (blue) p& @ p% = 2-4®1-2 (GeV /c).
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Table 3.4: Relative uncertainties of pair cut (%)

Pl (GeV/c) 2-4 4-10
p% (GeV/c) 05-1[1-2]2-4]05-1[1-2[2-4
0-5 % 0<|A¢| < /12 67 | 64 | 68 | 63 | 63 | 6.9
T/12<|Ad| <2r/12 | 33 | 24 | 0 45 | 42 | 0
510 % 0<|A¢| < /12 63 | 63 | 67| 62 | 62 | 6.9
/12 < |Ag| <2x/12 | 45 | 42 | 0 44 40| o0
1020 % | 0 < |Ag| < /12 59 | 59 | 65 | 58 | 59 | 6.7
T/12<|A¢| <2x/12 | 28 | 28 | 0 42 38 ] 0
20-30 % | 0< |A¢| < /12 54 | 55 | 63 | 56 | 55 | 6.2
T/12 < |A¢| <2x/12] 25 | 20 | 0 40 [ 36 ] 0
30-40 % | 0< |A¢| < 7/12 50 | 51 | 61 | 52 | 52 | 59
T/12 < |A¢| <2x/12] 23 | 18 | 0 38 [ 35 ] 0
40-50 % | 0 < |A¢| < m/12 49 | 49 | 59 | 50 | 51 | 5.8
T/12 < |A¢|<2x/12] 22 | 17| 0 37 [ 35 ] 0
50-60 % | 0 < |A¢| < m/12 47 | 47 | 56 | 49 | 51 | 56
T/12<|Ad| <2x/12] 20 | 15 | 0 35 | 30 ] 0

For the systematic study, the mixing class is not divided by the second-order event plane because
event mixing has been performed without event plane alignment in previous event-plane dependent
correlations [40, 41, 42]. The absolute difference between correlations with event-plane aligned
mixing Ygpalignea and those with event-plane not aligned mixing Yi.ogpalignment are treated as
systematic uncertainties of event mixing o,,;, as,

O'mw(A(ﬁ) = ‘YnoE'Palignment(A(b) - YEPalignment(A(p)" (3112)

Fig.3.41 shows correlation functions with pl. ®p% = 2-4®1-2 (GeV/c) with mixing systematics. The
other pr selections are shown in AppendixB.
The total systematic uncertainties without event-plane resolution correction o, gpcorrection are

defined as,

Uno—EPcorrection(A¢) = \/O'gn (A¢) + 0'>2<42 (A¢) + Ugaircut(A¢) + U%YAM(A¢) + Ugff(A¢)(3113)

For the correction of trigger smearing effect, two methods are tested, fitting method and iteration
method. The systematic uncertainties of the difference between fitting method Y};; and iteration

method Yiier, Omethoq are calculated as,

Omethod(AP) = [Yiit(Ad) — Yiter (Ad)|. (3.114)

Fig.3.42 shows correlation functions with pl ® p% = 2-4®1-2 (GeV /c) corrected by iteration method
and fitting method, respectively. The other pr selections are shown in AppendixB.
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Figure 3.41: Azimuthal distributions of correlated yield with and without alignment of the second-
order event plane (red) and inclusive-trigger correlation (blue), respectively, with pl.®p% = 2-4®1-2

(GeV/c).
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Figure 3.42: Azimuthal distributions of correlated yield corrected by iteration method (red) and

fitting method (blue), respectively, with pf. @ p% = 2-4®1-2 (GeV/c).
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For iteration method, five smoothing parameters are tested and the systematic uncertainties of
the difference between them o 4,,00t5 1S defined as follows,

Comooth(A0) = \/me)  Yiue(A6))2/5, (3.115)

where Y;(A¢) is the yield with the smoothing parameter pag—0.20 P, =0.20 s PA¢=0.30 s Pps=0.20 5
PAG=0.20 > Pbs=0.30 » PA¢=0.10 s Pps—=0.20 and PA¢—0.20 > Pgp,—0.10- Fig.3.43 shows correlation functions
with ph @p% = 2-401-2 (GeV /c) corrected by iteration method with various smoothing parameters,
respectively. The other pr selections are shown in AppendixB.

The total systematic uncertainties of the unfolding o gpcorrection are defined as,

O EPcorrection (A¢) = \/O?mooth(Aqs) + GiQteration(A¢) + J?nethod(Aqb)‘ (3116)

The total systematic uncertainties in two-particle correlations are defined as,

Ototal (A¢) = \/[UnofEPcorrection (A¢)] %Ppropagated + G%‘Pcorrection (A¢) ’ (3 1 17)

where the systematic uncertainties without event-plane resolution correction ¢,o— Epcorrection are
propagated by correction by iteration method. Fig.3.44 shows the fraction of square of systematic
uncertainty o; (7 is the uncertainty of each source) to the square total systematic uncertainty. The
uncertainty of Monte-Carlo (mainly from vs), the effect of smearing correction and the difference
of event mixing are major components.
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Figure 3.43: Azimuthal distributions of correlated yield corrected by iteration method with various

smoothing parameters with p}. ® pg. = 2-4®1-2 (GeV /c).
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Figure 3.44: Azimuthal angle dependence of fraction of square of each systematic
square of total systematic uncertainty with ph. ® p% = 2-4®1-2 (GeV/c).
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3.10 A Multi-Phase Transport (AMPT) model

In this section, AMPT model is introduced.

3.10.1 AMPT

A Multi-Phase Transport (AMPT) model is an event generator which describes the evolution of
the QGP step-by-step [71]. Heavy Ion Jet Interaction Generator (HIJING) is used for generating
the initial conditions : hard process (minijets) and soft process (soft strings). Excited strings are
converted into partons with string melting. Zhang ' s Parton Cascade (ZPC) is introduced for
modeling elastic partonic scatterings. For modeling hadronization, the Lund string fragmentation
model or a quark coalescence model are used. Finally, A Relativistic Transport (ART) model is
used to describe hadron scatterings. Structure of AMPT model with quark coalescence model is

summarized in Fig.3.45.

Structure of AMPT model with string melting

A+B
HIJING energy in nucleon
excited strings and minijet partons spectators

fragment into partons

ZPC (Zhang's Parton Cascade)
till parion freezeout

I Quark Coalesoencel

ART (A Relativistic Transport model for hadrons)

Figure 3.45: Tllustration of the structure of the AMPT model with string melting.

3.10.2 AMPT analysis

AMPT model is calculated to study interplay between jet and bulk through parton-parton
itneraction. Table.3.5 is the setup of AMPT simulation. In this study, charged hadrons, 7%, K+,
p and p, whose tracks can be reconstructed by the TPC are used for the analysis. Unlike the real
experiment, initial eccentricity and reaction plane can be obtained in the simulation. Thus, the
following cases are tested :
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e two-particle correlations with trigger angle selections with respect to the second-order event
plane with flow vector ¢y selections,

e two-particle correlations with trigger angle selections with respect to the second-order event
plane with participant eccentricity €2 selections,

The acceptance used for the analysis is restricted within || < 1 in order to compare directly with
the real experiment.

Table 3.5: AMPT setup

Variable value
SNN 200 GeV
collision system Au+Au
impact parameter 0 < b < 25.60 (minimum bias)
string melting ON

number of time-steps for hadron cascade (NTMAX) | 150 (fm/c)
flag for popcorn mechanism(netbaryon stopping) ON

shadowing flag ON
quenching flag ON
quenching parameter —dE/dz 2.0 (GeV/fm)
parton cross section 3 mb
initial and final state radiation ON
k7 kick ON
HIJING shadowing default

The eccentricity €2 and the length of flow vector ¢ is selected as shown in Fig.3.46 and Fig.3.47.
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Figure 3.46: 20 % events selected based on ¢y Figure 3.47: 20 % events selected based on e
in AMPT model. in AMPT model.
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Chapter 4

Results

In this chapter, higher-order harmonic flow parameters v, used for background subtraction in
two-particle correlations and azimuthal distribution of correlated yield after background subtraction

are presented.

4.1 Azimuthal anisotropy

Fig.4.1 shows the results of higher-order harmonic flow measured via event-plane method with
taking 1.0 n gap between event plane and particles to be interested in.



CHAPTER 4. RESULTS

102

V(W)

v5{W,}

v{¥,}

v{¥,}

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
0.3 1t It it I 1T 1T b
om:.z\m__q 1 0-5% centrality : 5-10% centrality : 10-20% centrality : 20-30% centrality : 30-40% centrality : 40-50% centrality : 50-60%

0. It 1t 1 ] a I 8 gl 8 a | B ]

B 8 - B L] . ]
0.1 I = g I - i T = T = T = b
- - - -
F-=-=-=-=-=-==== | g | | | | | -
1 1 1 1 1 Lodbl 1 1 1 1 Lidhl 1 1 1 1 Lidhl 1 1 1 1 Lidhl 1 1 1 1 Lidbl 1 1 1 1 Lidbl 1 1 1 1 1
T T T T T ™[ T T T T T[T T T T T T[T T T T T T[T T T T T T[T T T T T T[T T T T T T
0.3 his . I it I 1T 1T b
[=]a, unbiased
0.2 It 1t 1 1 1 1 1
0.t Jt It It It I I ]
; - - B <]
- - - - & - - B - ] - = - B
- - - - - - * -
F-=-=—=-=-===== | g | | | | | -
]
1 1 1 1 1 Lodbl 1 1 1 1 Lidhl 1 1 1 1 Lidhl 1 1 1 1 Lidhl 1 1 1 1 Lidbl 1 1 1 1 Lidbl 1 1 1 1 1
T T T T T ™[ T T T T T[T T T T T T[T T T T T T[T T T T T T[T T T T T T[T T T T T T
0.3 his it it I 1T 1T b
0. It 1t 1t 1 1 1 1
0.t Jt 1t 1t 1t 1 1 q
- - - B - - ] - L] . -] E ]
- - - - - - =
b=t _______ [ | S I | I | - ____ | | _]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T T T [T T [ T T R [ T I [ e [ [ T [ T R T O [ R I R [ T [ [ O e e
0.3 1 F F I 1 1 1
0.2t 1 F F I 1 1 1
O.l -4 - - - <4 <4 -
o-..-p-u----_m_lu.?..-u----u-|...-.. ...... I et - SRR S RO s o]
1 1 1 1 1 1 Livaales

4 5

Figure 4.1: Higher-order-harmonic flow v,, measured in this analysis.
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4.2 Two-particle correlations

In this section, the results of two-particle correlations after background subtraction are presented
with trigger angle selections with respect to the second-order event plane. Trigger particle’s pr
ranges are 2-4 and 4-10 (GeV/c) and associate particle’s pr ranges are 0.5-1 ,1-2 and 2-4 (GeV/c).

4.2.1 Second-order event-plane dependent two-particle correlations
Difference of event mixing

Fig.4.2 shows comparison of correlation functions before background subtractions (top) and az-
imuthal distributions of correlated yield (bottom) with pp : 2-4®2-4 (GeV/c) in 20-30 % centrality.
In the previous studies [40][41][42][72], event-plane dependent two-particle correlations have been
measured without Psio alignment in event mixing. Systematic differences exist between two mixing
method after background subtraction, but those differences are small although correlation shapes be-
fore background subtraction are quite different. In the event-plane (Psi,) dependent two-particle
correlations, systematic uncertainty from v, is major component because the uncertainties from
other flow harmonics are treated as square of their systematics but uncertainty from v, is treated
as first power. Thus, systematic uncertainties of event-plane dependent correlations are larger than
uncertainties in correlations without trigger angle selections. However, when mixed event pairs
are calculated with Pst,, alignment, uncertainty from v, can be reduced because mixed event also
have v,, oscillation. Therefore, it is possible to reduce systematic uncertainties by calculating mixed
event pairs with Psi, alignment. In this study, correlations before background subtractions with-
out Psio alignment in event mixing have vy oscillation because of collectivity of two particles, while
those with Psis alignment in event mixing have less vo oscillation because most of vo component is
canceled out by dividing mixed pairs with vy oscillation.
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Figure 4.2: Comparison of correlation functions before background subtractions (top) and azimuthal
distributions of correlated yield (bottom) with pr : 2-4®2-4 (GeV/c) in 20-30 % centrality. The
directions of trigger particles change from out-of-plane (left) to in-plane (right). The color difference
correspond to the difference of mixing binning on Ws. The underlines indicate event-plane directions.
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Selected results are shown in Fig.4.3 and Fig.4.4. The other results are shown in AppendixA.
Fig.4.3 shows difference of out-of-plane and in-plane trigger of azimuthal distributions of correlated
yield with pr : 2-4®2-4 (GeV/c) in 0-5, 20-30, 50-60 % centrality bins. In 0-5 % centrality (right),
both out-of-plane triggered and that with in-plane triggered correlations are fully suppressed on
the away side due to partonic energy loss in the medium. In 20-30 % (middle) and 50-60 % (right)
centrality, away-side yield of out-of-plane triggered correlations are suppressed, but that of in-
plane triggered correlations are not suppressed. The suppression of away-side yield in out-of-plane
triggered correlations is smaller in more peripheral collisions. According to energy-loss model, the
probability of penetration of hadrons is expected to be higher in the direction with shorter path-
length. In the most central collision, the ellipticity of participant region is small and the system
size is larger, and thus difference of path length between out-of-plane and in-plane is small, which
results in no difference between out-of-plane and in-plane triggered correlations. From mid-central
to peripheral collisions, the ellipticity is large enough to make a difference of in-medium path length,
which results in the difference of correlated yield on the away side. The observed trends in the away
side do not contradict the energy loss model. The away side peak of in-plane triggered correlation
in 20-30 % collisions has an asymmetry with respect to A¢ = 7. That shift can be caused by trigger
selections separately in the left and right side of the event plane [73].
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Figure 4.3: Azimuthal distributions of correlated yield with pr : 2-4®2-4 (GeV/c) in 0-5 (left),
20-30 (middle) and 50-60 % (right) centrality bins. The directions of trigger particles are out-of-
plane : —47/8 < ¢ < —37/8 (blue) and in-plane : —7/8 < ¢5 < 0 (red). The underlines indicate
event-plane directions.

Fig.4.4 shows polar representation of azimuthal correlations with 2-4®1-2 (GeV/c) in 0-5, 20-30,
50-60 % centrality in order to see how correlation shapes are modified. Second-order event-plane
W, direction is set to horizontal axis and trigger directions are analogous to Fig.3.20. Relative angle
of associate particle with respect to trigger particle circles counter-clock-wise direction. Residual
correlated yields are observed in the same direction with trigger particles (near side). In particular,
apparent back-to-back yields appear in correlations with in-plane and out-of-plane trigger bins
and the yield is larger with in-plane trigger bin because of shorter path-length of initial partons
in the medium. Modification of correlation shapes is the strongest in 20-30 % where in-medium
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path length is different enough to make difference of jet quenching effect. Correlation shapes with
two mid-plane triggers are strongly modified ; away side yield is not observed in the back-to-back
direction and the peak positions are shifted. Moreover, away side yield with mid-out-of-plane trigger
(—37/8 < ¢ps < —2m/8) has mainly out-of-plane direction where the path length is the longest mid-
in-plane trigger (—47/8 < ¢5 < —3m/8) has shifted to ¥y direction where the path length is the
shortest. This result can be understood by the balance of partonic energy loss and re-distribution
of deposited energy from partons because of asymmetric in-medium path length even in the same

centrality.

T
2-4 ® 1-2 (GeVic)

trigger : -4/8<¢'-W,<-31/8

trigger : -3u/8<¢'-W,<-21/8

—, [®@]q, unbiased
= trigger

A
5

trigger : -2u/8<¢'-W,<-/8

trigger : </8<¢-W,<0

Figure 4.4: Azimuthal distributions of correlated yield with pr : 2-4®2-4 (GeV/c) in 0-5 (top), 20-
30 (middle) and 50-60 (bottom) % centrality bins. The directions of trigger particles change from

out-of-plane :

—4r/8 < ¢ < —37/8 (left) to in-plane :

indicate event-plane directions.

—7/8 < ¢s < 0 (right). The underlines
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4.3 Results with ¢, selections

4.3.1 Azimuthal anisotropy with ¢, selections

The flow parameters vy, are measured with the same way as g2 unbiased case (Fig.4.1). Measured
vy, before taking the ratio are shown in AppendixA. Fig.4.5 shows the ratio of vo measured in g
selected events to vy measured in ¢o unbiased events. At least top and bottom 20 % g2 selected
events are separated even considering the uncertainties. The ratios show almost no pr dependence
within systematic uncertainties. The results confirm the collectivity of the system and possible
effect of the difference of path length because of non-zero vo with high-pr ranges.
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Figure 4.5: The ratio of vo measured in ¢o selected events to v measured in ¢o unbiased events in
pr slice from 0.5-1 GeV/c(left) to 4-10 GeV /c(right).
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4.3.2 Second-order event plane dependent two-particle correlations with ¢, se-
lections

In this subsection, selected correlations with go selections are presented. The other results are
shown in AppendixA. Fig.4.6 shows polar representations of correlated yield with pp :2-4®1-2
(GeV/c) with top and bottom g2 20 % (g2: 0-20 and 80-100 %, respectively) selection in 0-5, 20-30
and 50-60 % centrality. Separation of top-¢g2 and bottom-g2 event selections is observed for in-plane
and out-of-plane trigger bins in 0-5 and 20-30 % centrality, where the largest path length difference
is expected between large-¢go and small-go events. In 50-60 % centrality, g2 dependence is small or
nothing because average participant shape is elliptic enough to make no difference with ¢o selections.
Longer (shorter) path length is expected in the in-plane direction with small-go (large-g2) events
and shorter (longer) path length is expected in the out-of-plane direction with small-go (large-g2)
events due to the difference of the initial participant eccentricity. Larger yield is observed in the
large-q2 events in the away side, which is expected to have shorter path length than in the small-go
events. In the out-of-plane triggers, the yield in the small-g» events is smaller than in large-¢o events
even for its shorter path length. That could be the effect of energy re-distribution with larger path
length in the statical medium direction. Fig.4.7 shows polar representations of correlated yield with
pr :2-4®1-2 (GeV/c) with go selections in 20 % steps in 2-30 % centrality. Trigger angle dependence
is observed in all g2 bins ; the trend is similar as ¢, unbiased events (Fig.4.4). Correlation shapes are
slightly modified by g2 selections. In particular, away-side yield of out-of-plane triggered correlations
increase with larger go. These difference comes from difference of initial participant shape or effect
of collective flow.
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Figure 4.6: Azimuthal distribution of correlated yield with py : 2-4®1-2 (GeV/¢) in 0-5 (top), 20-30
(middle) and 50-60 % (bottom) with top and bottom 20 % ¢ selections with trigger angle selection

with respect to the second-order event plane.
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Figure 4.7: Azimuthal distribution of correlated yield with pp : 2-4®1-2 (GeV/c¢) in 20-30 % with
20 % g selections from top to bottom with trigger angle selection with respect to the second-order
event plane.
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Chapter 5

Discussions

We discuss what is observed for azimuthal distributions of correlated yield after background

subtraction in this chapter.

5.1 Event-plane dependent two-particle correlations

In this section, results of event-plane dependent correlations will be disucussed.

5.1.1 Comparison with AMPT model

In this subsection, the experimental results are compared with AMPT model in order to study
the effect of the interplay between jets and flow. Fig.5.1 shows azimuthal anisotropy in AMPT model
compared with experimental data which is measured in this study in 0-50 % centrality. Analysis
method is the same way as experimental data. The other results are shown in AppendixC. vo in
AMPT model tested in this setup is smaller than experimental data at pp > 1, while v and v4 are
almost consistent. One possible reason is that parton cross section (3 mb) is small to reproduce
elliptic flow.

Fig.5.2 shows azimuthal distribution of correlated yield after v, vs and v4 contribution sub-
traction in 0-50 % centrality. In AMPT model Psio-Psiy correlation is not considered because
that contribution on correlation shape is trivial. In 0-20 % centrality, AMPT does not reproduce
the experimental data. In 20-50 % centrality, AMPT reproduces the away-side shape experimental
data. Near-side peaks are smaller in AMPT model than the experimental data.

Fig.5.3 shows trigger-angle dependence of two-particle correlations with 2-4 GeV/ctriggers and
2-4 GeV /cassociates in 0-50 % centrality. The other pp combinations are shown in AppendixC.
AMPT model partially reproduces the trend of experimental data. Away-side yield with in-plane
trigger is larger than those with out-of-plane trigger, and peak-position are shifted to the direction
of 5. However, the amplitude of away-side yields are overestimated. Near-side yields also have
trigger angle dependence ; the near-side yields are suppressed with changing to out-of-plane trigger.
It could be the effect of jet-quenching effect or role of collective flow.
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Figure 5.1: Azimuthal anisotropy in AMPT model compared with experimental data which is
measured in this study in 0-50 % centrality. Analysis method is the same way as experimental data.
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Figure 5.2: Azimuthal distribution of correlated yield after vo, v3 and v4 contribution subtraction in

0-50 % centrality. In AMPT model ¥9-W, correlation is not considered because that contribution

is trivial.
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5.1.2 Integrated yield

Integrated yield is calculated for a quantitative discussion of trigger-angle dependent correlated
yield. Fig.5.4 shows integrated yield as a function of ¢, where the region for integration is |A¢| <
7/3 for near side and |A¢| < 27/3 for away side. Integrated yields with 2-4 (GeV/c) for trigger
particles and 0.5-1 and 1-2 (GeV/c) for associate particles have similar trend on both near side and
away side in all centrality bins : the integrated yield is the largest with the in-plane trigger bin and
is gradually suppressed with out-of-plane trigger and become larger with the out-of-plane trigger
bin in all centrality bins. The trend on the near side, the suppression of the yield with increasing
¢s, is similar with centrality dependence of near side peak [30],[74], which means that near-side
yield are suppressed with more peripheral collisions. This can be interpreted as near-side yield is
larger in dynamical direction. The enhancement of integrated yield at the out-of-plane bin where
the longest path length is expected can be a possible effect of energy re-distribution of the lost
energy of high-energy partons. The integrated yields with both trigger pr range and 2-4 (GeV/c)
associates have different trigger angle dependence from lower associate pr ranges. On the near
side, little trigger angle dependence is observed in 0-10 % , the similar trend at lower associate pr
ranges is observed in 10-40 % and the enhancement of integrated yield with changing to out-of-plane
trigger. This could be the effect of energy re-distribution of deposited energy to the bulk. On the
away side, the integrated yields are suppressed in the out-of-plane direction due to the path-length
dependence of energy loss. The integrated yield with 4-10 (GeV/¢) triggers, 0.5-1 and 1-2 (GeV/c)
associates on both near side and away side have similar trend with each other. In 5-50 %, the trend
is similar with lower trigger pr both on near side and away side. In 0-5 %, the integrated yield is
the largest at the mid-in-plane trigger bin but the trend that the yield is larger with in-plane trigger
is the same. In 50-60 %, the integrated yield is enhanced in the out-of-plane direction both on the
near side and away side.

Scaling with path length

Directions of particles and centrality can be translated into path length and global scaling of
energy loss can be studied. Centrality dependence of nuclear modification R 44 is usually measured
to investigate path-length dependence of high energy partons. But the measurements of particle
direction and centrality dependence are converted into the dimension of path length and energy
loss of single particle is studied by the PHENIX collaboration [75]. Path length is determined
by calculating effective length with transverse distribution of participant density by simulating
standard Glauber Monte-Carlo. Fig.5.5 shows path length L. dependence of R4a of pr : 1.0-10.0
(GeV/c) with in 10-60 % centrality bins. The universal scaling holds at higher pp region (pr > 4.0
GeV/e).

In this study, scaling with path length is tested to investigate how the path length dependence
of correlated yield can be understood in each trigger bin. Path length is calculated with standard
Glauber Monte-Carlo with selecting particles direction with respect to the second-order participant
plane which is assumed to correspond to the second-order event plane. It is assumed that hard
scattering can occur anywhere in the participant region and no pr dependence exists for both
trigger and associate particles. As shown in Ref.[75], the behavior of single particle R 44 is different
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Figure 5.4: Trigger angle ¢, dependence of integrated yield with 2-4, 4-10 (GeV/c) for trigger
particles and 0.5-1, 1-2 and 2-4 (GeV/c) for associate particles in each centrality.
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Figure 5.5: Raa of ¥ as a function of path length L. based on the hard sphere calculation : (black)
stars, 10-20%; open (red) squares, 20-30%; (green) triangles, 30-40%, open (blue) triangles, 40-50%;
open (magenta) circles, 50-60% [75].

below 8 GeV /c. Therefore, path length dependence is shown by each trigger bin. Fig.5.6 and Fig.5.7
show integrated yield as a function of path length L in the near side and away side, respectively.
Correlated yield in the near side is enhanced with L and that in the away side are suppressed with
L. These rough trends means that energy re-distribution of deposited energy from jets is dominant
in the near side and partonic energy loss is dominant in the away side. Behavior of path length
(centrality) dependence is different between trigger particles directions. For example in pl. ® p% =
4-10®2-4 (GeV/c), path length dependence is flat in the out-of-plane trigger bin but integrated yield
are enhanced with increasing L in the other three trigger bins. Thus, correlated yield of two-particle
correlations is not scaled with simple path length calculation among each trigger bin because the
balance of jet penetration and energy re-distribution cannot be described.
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Figure 5.7: Integrated yield of the away side as a function of path length L in 0-60 % centrality.
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Azimuthal anisotropy of correlated yield

Trigger angle dependence of integrated yield are fitted by Fourier function and extract the
oscillation parameters vy and v} as

F(¢s) = a{l+2v) cos(2¢,) + 2v) cos(4¢s)}, (5.1)

where a is the mean and ¢4 can be written as ¢, = ¢' — ¥y. In order to convert the equation
Eq.(5.1) the function of relative angle of associate particle to the event plane, ¢, in refeqyieldvn is
replaced by ¢s + A¢ (Ap = ¢ — ¢!). The parameter v} indicates that anisotropy per one trigger
particle which is assumed to distribute uniformly in full azimuth. However, trigger particles have
non-zero anisotropy as shown in Fig.4.1. Therefore real azimuthal distribution can be expressed by
superposition of them as

{1+ 20 cosn(¢® — Wa)} x {1 + 20! cosn(¢f — Wy)} (5.2)
= {1+ 20;, cosn(¢* — W2)} x {1+ 20}, cosn[(¢" — ¢') + (¢° — a)]} (5.3)
= {1420 cosn(¢® — Wa)} x {1 4 20, cos n(¢? — ¢') cos n(¢? — Wq)} (5.4)
=1+ 2{v) +v! cosn(¢® — ¢')} cosn(A¢) + O (5.5)
~ 1+ 2{v) +v! cosn(A¢)}cosn(¢? — Us) (5.6)
= 14 20 cos n(¢p? — Wy), (5.7)

t

where v! is azimuthal anisotropy of trigger particles. Here, v} and v! are assumed to be sufficiently

small and their product is ignored. Thus, the corrected azimuthal anisotropy of integrated yield

Y,corr
can be obtained as vy’

correlated yield v}b/ corr

= vY + 0! cosn(A¢). Fig.5.8 and Fig.5.9 show azimuthal anisotropy of
and single particle v, in the near side (|A¢| < m/4). In the near side Fig.5.8,

Y corr

except for higher trigger pr in 0-5 %, v

Y, Y,
pr dependence for v, """ and v, """

shows positive value. There is centrality and associate
: they are the largest in mid-central collisions and decrease

with increasing associate pr while single particle v,{WUs} increases with pr and centrality. For 2-4

Y corr corr

GeV /c) associate pr, v is smaller than single particle vo. If e is larger than single particle
2

v, ellipticity formed by correlated yield is stronger than that by hydrodynamics but the jet-like yield

component is very small compared with the collective flow. Moreover, if UYCOTT

orr

is larger than single
particle vy and 1)4 is larger than single particle v4{Ws}, coexistence of path length dependent
energy loss and re-distribution. The result confirms that the contribution of path-length energy loss
is dominant with lower associate pr and re-distribution is dominant with higher associate pp. In the
away side Fig.5.9, v,, with lower trigger pr is larger than that with higher one. In 0-40 % centrality,
opposite associate pr dependence is observed : vgf U increases with associate pr with 2-4 (GeV/c)
triggers. This is because high-pp particles are not emitted from back-to-back direction to high-pr

triggers due to path-length dependent partonic energy loss. At the same time, UZ’COW

same trend as v; " This observation means that the yield is suppressed with mid-plane triggers

also have the

and the contribution of re-distribution of the deposited energy from high-py particles also appear
and quadrangularity with respect to the second-order event plane.
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5.1.3 Asymmetry of the near-side and away-side structure

As seen in 20-30 % centrality in Fig.4.3, the asymmetry is observed due to the difference of
in-medium path length on the left side and right side. In order to evaluate the asymmetry on each
side, the asymmetry parameter Ay g is calculated as

fydagY(Ag) — [ dAgY (A¢)
- ffa dAd)Yinclusive (A¢) )

ALR (5.8)

where a is the limit of integrated range, a = 7/3 and 27 /3 for the near and away side, respec-
tively. The first term of numerator corresponds to the right side of the peak and the second term
corresponds to the left, and therefore in the definition of this thesis, more yield is obtained in the
in-plane (out-of-plane) direction for Arp > 0 (ArLr < 0). The existence of asymmetric yield struc-
ture do not contradict Mach-Cone Model. The effect of mach-cone shock wave could be observed
asymmetrically with asymmetric trigger angle selection with respect to the event plane because of
the limited system size created in the heavy-ion collisions. Fig.5.10 shows asymmetry on the near
side and away side as a function of ¢s. Asymmetry with 2-4 (GeV/c) triggers have the same trend
in all centrality bins and with all associate pr ranges : asymmetries of two in-plane trigger bins
have positive value and those of two out-of-plane trigger bins have negative value. This observation
indicates that more correlated particles are emitted in the in-plane direction with in-plane trigger
and emitted in the out-of-plane direction with out-of-plane trigger. The asymmetry is enhanced in
the mid-central collisions where the trigger angle dependence of integrated yield is also enhanced.
Asymmetries with 4-10 (GeV/c) triggers and 0.5-1 and 1-2 (GeV/c) associates have positive value
at almost all the point. Asymmetries with 4-10 (GeV/c) triggers and 2-4 (GeV/c) associates on
both near side and away side fluctuate around zero and have no systematic trend. In the away
side, asymmetries with 2-4 (GeV/c) triggers have the similar trend as near side in 0-40 % and at
least in the in-plane trigger in 40-60 %. Asymmetries with 4-10 (GeV/c) triggers and 0.5-1 and 1-2
(GeV/c) associates have similar trend with near side for two in-plane triggers.
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Figure 5.10: Trigger angle ¢s dependence of near-side (magenta) and away-side (blue) asymmetry
with 2-4, 4-10 (GeV/c) trigger particles and 0.5-1, 1-2 and 2-4 (GeV/c) associate particles in each
centrality from 0-5 % (left) to 50-60 % (right).
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5.2 Event plane and ¢, dependent two-particle correlations

In this section, event-plane dependent two-particle correlations with go selections are discussed.

5.2.1 Comparison with AMPT model

Fig.5.11 shows the ratio of elliptic flow vy with flow vector ¢o or initial participant eccentricity &9
selections in AMPT model compared with experimental data. Measured v,, with g5 and &5 selections
are shown in AppendixC. The effect of g2 selections is almost the same as experimental data and
that of ey selections is stronger than ¢o selections at 0.5 < |n| < 1. g2 selections have been done
with the information of finally emitted particles and directly correlated with vo, but the the fraction
of the number of particles for ¢o calculation to the whole particles generated in an event is limited
in this analysis. vg is correlated with initial eccentricity 2 but the correlations are modified due to
collective flow, but the whole participant nuclei are used to calculate 5. Hence, the effect of event

shape engineering is stronger with ¢, selections.

T centrality : 10-20% Jf centrality : 20-30% Jf centrality :

' CJAMPT :q,
EDAMPT : ¢,

= BEr

TE-BSSaT T _TLTTE

v2{q2 selected}/ v2{q2 unbiased}

p. (GeVic)

Figure 5.11: Ratio of vy with go or &5 selections to that without selections in AMPT model compared

with experimental data with ¢o selections in 0-50 % centrality.
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Fig.5.12 and Fig.5.13 show correlations with trigger angle selections with respect to the event
plane with top and bottom g2 20 % selections. The trend of trigger angle dependence is the same
as g unbiased events. For correlations in mid-central collisions with top ¢o selections in AMPT,
small peak is observed around A¢ = /2 which is perpendicular to the event plane. Apparent go
dependence cannot be observed for AMPT model with this statistics. Fig.5.14 shows comparison
of correlations with top and bottom g 20 % events selection. In AMPT model, trigger angle
dependence of is stronger in top g2 events, which we expect. Away-side peak with top ¢o events in the
in-plane triggered correlations are larger than that with bottom g2 events. In the in-plane and out-of-
plane trigger bins, yields are larger with top g2 selections, which is not conflict with what is observed
for experimental data. Fourth-order oscillations are observed in top gs events while vy is subtracted.
The other correlations in AMPT is shown appendixC. Fig.5.15 and Fig.5.16 show comparison of
correlations with g2 and e5 selections with top and bottom 20 % selections, respectively. In both top
and bottom event selections, correlations with ¢ selections and 9 selections are almost consistent.
That fact means that g9 selections lead to the same effect as €9 selections in AMPT model.
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Figure 5.12:
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Figure 5.13: Comparison of experimental data and AMPT. Trigger angle ¢s dependence of azimuthal
distribution of correlated yield after vy, v3 and v4 contribution subtraction with bottom ¢o 20 %
selections in 0-50 % centrality. Trigger and associate pp combination is ph @ p§ = 2-402-4 (GeV/c).
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Figure 5.14: Trigger angle ¢s dependence of azimuthal distribution of correlated yield after vs, vs
and vy contribution subtraction with top and bottom ¢y 20 % selections in 0-50 % centrality. Trigger

and associate pr combination is p ® p% = 2-401-2 (GeV/c).
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Figure 5.15: Trigger angle ¢s dependence of azimuthal distribution of correlated yield after ve, vs

and vy contribution subtraction with top g2 20 % and top €2 20 % selections in 0-50 % centrality.

Trigger and associate pr combination is pl ® p% = 2-4®1-2 (GeV/c).
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5.2.2 Integrated yield

Fig.5.17 shows integrated yield as a function of ¢,, where the region for integration is |A¢| < 7/3
for near side and |A¢| < 27/3 for away side. The results of the other momentum ranges are shown in
AppendixA. For the in-plane trigger bin, especially for mid-central collisions 10-30 %, the integrated
yields are larger with larger ¢o events in the in-plane trigger 0 < ¢s < /8, which means that the
yields get larger with shorter path length. For the two mid-plane triggers, the yields in large
g2 events are systematically smallest in 0-40 % but ¢o dependence is not clearly observed in all
centrality bins. For the out-of-plane trigger bin, the integrated yields are larger with larger go
events in the in-plane trigger 37 /8 < ¢5 < 47 /8, which means that the yields get larger with longer
path length. Thus, the same trend is observed for ¢s dependence with in-plane and out-of-plane
trigger but the meaning is opposite. The results suggests that the effect of quark coalescence and
that of penetration are dominant with in-plane triggers and the effect of energy re-distribution is
dominant with out-of-plane trigger for go dependence.

Scaling with path length

Fig.5.18 and Fig.A.47 show integrated yield as a function of path length L with p}. ®p% =
2-4®1-2 and 2-4®2-4 (GeV/c).Here, g2 is assumed to be one-to-one correspond to €2, and the initial
shape is selected by participant eccentricity in Glauber Monte-Carlo. Integrated yield are enhanced
(suppressed) in the near (away) side. Centrality and g2 bins are roughly on the same line in each
trigger bin, which implies that integrated yield of each trigger angle direction can be explained by
difference of path length. However, the trend of path length dependence between each trigger angle
are different. Role of elliptic flow could make a difference of path length dependence of integrated
yield. If energy re-distributed particles are pushed toward in-plane direction, integrated yield may
not scale path length.

Azimuthal anisotropy of correlated yield

Fig.5.20 and Fig.5.21 show azimuthal anisotropy of correlated yield vy “"" as a function of

p§ with 2-4 (GeV/c) triggers in the near side and away side, respectively. The results with 4-10
(GeV/c) triggers are shown in AppendixA. The trend of pr dependence, v;/ €T decreasing with
increasing pr, is observed in 5-60 % centrality in the near side. However, no clear ¢o dependence is
observed for U;’COTT. On the other hand, v}(’cmr shows ¢o dependence ; v4 decreases with increasing
pr both in near side and away side. More elliptic shape will be expected for large g2 events and
more peripheral events. However, the trend of v};’ww from mid-central to peripheral collisions is
opposite to that from small ¢ to large go. The effect of energy loss is not strongly changes by
g2 selections but the re-distribution can changes with g9 selections. Therefore, the contribution of

energy re-distribution cannot be explained simply by difference of in-medium path length.
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Figure 5.18: Integrated yield as a function of path length L with pp :2-4®1-2 (GeV/c) in the near
side (top) and away side (bottom).
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Figure 5.19: Integrated yield as a function of path length L with pp :2-4®2-4 (GeV/c) in the near
side (top) and away side (bottom).
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Figure 5.20: Azimuthal anisotropy of correlated yield with pp :2-4 (GeV/c¢) in the near side with

q2 selections.
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Figure 5.21: Azimuthal anisotropy of correlated yield with pp :2-4 (GeV/c¢) in the away side with

q2 selections.
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5.2.3 Asymmetry of the near-side and away-side structure

Fig.5.22 show the asymmetry on the near side and away side with 2-4®1-2 GeV/c. The re-
sults of the other momentum ranges are shown in AppendixA. Near-side asymmetry with 0-60 %
q2 selections two in-plane trigger bins have positive value and two out-of-plane trigger bins have
negative value and that with 60-100 % g¢2 selections is almost zero. Absolute value of asymmetry in
the away side is larger than that in the near side, which can be thought by medium effect. In 0-20
% centrality, two in-plane trigger bins have similar trend as near side in g2 top 20 % events. On
the other hand, asymmetry in the away side with ¢a 60-100 % selections is positive or zero. This
observation indicates that asymmetry can be caused by the ellipticity of initial shape and do not
contradict the existence of mach-cone shock wave by considering with the results of integrated yield.
Left /right asymmetry is enhanced by selecting large-go events but no conclusion can be obtained
due to large uncertainties.
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Chapter 6

Conclusion

The measurement of two-particle correlations with trigger angle selection with respect to the
second-order event plane in Au+Au collisions at /sy = 200 GeV have been performed with the
data taken in 2011 by the STAR experiment. Azimuthal distributions of correlated yield have been
measured with subtracting higher-order harmonic flow (ve, v and v4) measured with taking 1.0 7
gap between tracks and event planes.

Difference of correlation shapes between in-plane (same direction as event plane) and out-of-
plane (perpendicular to event plane) is enhanced in mid-central collisions compared with central and
peripheral collisions where the difference of path length is large. Correlated yields in the away side
yield with long path length is suppressed compared with those with short path length in mid-central
collisions, which is the same trend as previous study. With differential trigger angle selections,
correlation shapes are modified; correlations with in-plane trigger and out-of-plane trigger have
back-to-back peak but those with mid-plane triggers have the peak shifted away from back-to-back
jet axis. Azimuthal correlations are compared with AMPT model with including string melting
and quenching model. vs in AMPT model is smaller than real data but vs and vy are almost
consistent. Azimuthal correlations in AMPT model reproduce away side shape from mid-central to
peripheral collisions. However, near-side peak in AMPT is much smaller than real data. Near side
peaks almost disappear with out-of-plane triggers and clearer peak is observed in central collisions
than peripheral collisions. Integrated yield shows some characteristic behaviors. Non-monotonic
behavior is observed for 2-4 GeV/c triggers : the integrated yields are suppressed with mid-plane
triggers and enhanced with out-of-plane trigger, which is observed with lower trigger and associate
pr from central to mid-central collisions. If quenched jets triggered, both partonic energy loss and
energy re-distribution would be appeared. The integrated yields with selecting higher associate pr
are enhanced with long path length, which indicates the contribution of re-distribution is dominant.
Integrated yields are plotted as a function of simple path length calculated by Glauber Monte-
Carlo. The integrated yields do not scale well in 0.5-2 GeV/c associate pr, while the integrated
yields scale in 2-4 GeV/c associate pr comapred with lower associate pp. This is because path-
length dependent enhancement or suppression cannot be described by simple path length in lower
associate pr. The azimuthal anisotropy of integrated yield has been calculated and compared with

that of single particle. v;/ T and UZ’COM decrease with increasing p% and are larger than single



140 CHAPTER 6. CONCLUSION

particle v with 0.5-2 (GeV/c) pr on the near side in all centrality bins and 2-4 (GeV/c) from
central to mid-central collisions. vg “U" increases with increasing p$% with 2-4 (GeV/c) triggers
while that with 4-10 (GeV/c) triggers on the away side have no pr dependence within systematic
uncertainties in mid-central collisions. This observation indicates that py combination dependence
for the balance of partonic energy loss and energy re-distribution exists 2-4 (GeV/c) triggers. When
v;/’w” and v}(’cm’r are larger than single particle v, { W5}, azimuthal anisotropy caused by path length
dependent partonic energy loss is stronger than hydrodynamical expansion. Left/right asymmetry
of the near side shows following features : near side peaks shifted to in-plane direction with two
in-plane trigger bins and shifted to out-of-plane direction with two out-of-plane triggers with lower
pr triggers. Asymmetry of peak on the near side and away side. When relative trigger angle with
respect to the event plane (¢s) is negative, if asymmetry is positive (negative), the peak shifts to
in-plane (out-of-plane) direction. Asymmetry of the away side with higher trigger and associate pp
is not negative because higher associate pr particles composing jets emitted more to shorter path
length direction. The results of event-plane dependent two-particle correlations can be interpreted

as follows.
e Jets emitted more from the short path-length direction with less energy loss.

e Jets emitted more from the long path-length direction associated with energy re-distributed
particles.

As a new approach of event selections to determine the collision geometry, g» selections are
applied to the measurement of two-particle correlations. In the real experiment, participant eccen-
tricity cannot be directly selected, and thus the length of flow vectors have been used to restrict the
initial eccentricity. The effect of event shape engineering is observed for vy in all centrality bins,
which indicates that go selections at the forward rapidity affect the vy at the backward rapidity.
Therefore, g2 selections at local rapidity range works as global event characterization. In addition,
no pr dependence is observed for vs ratio to ¢go unbiased events within statistical and systematic
uncertainties. Correlation shapes are modified by trigger angle and ¢ selections in mid-central col-
lisions especially for in-plane and out-of-plane triggers. In the out-of-plane triggered correlations,
the yield in the large-qo events is larger than in small-gs events, which can be caused by the effect
of energy re-distribution with larger path length. No ¢o dependence is observed for v;/’w”, but on
the other hand, v} " increases with increasing go with 2-4 (GeV/c) triggers and 0.5-2 (GeV/c)
associates from central to mid-central collisions, which may indicates that g and trigger angle se-
lections affect more path-length dependence of energy re-distribution than that of partonic energy
loss. The g2 dependence of integrated yield is observed for in-plane and out-of-plane trigger slices
where the difference of path length is caused by g2 selections; the integrated yields are enhanced
with increasing g2, which means that the integrated yield of the out-of-plane trigger is enhanced
with increasing path length and the integrated yield of the in-plane trigger is enhanced with de-
creasing path length. This observation could be interpreted as follows: the effect of jet penetration
is dominant in the in-plane direction, and the effect of energy re-distribution is dominant in the
out-of-plane direction. Therefore, collective expansion could be thought to have effect on the jet-like
particle productions.



141

We point out that correlated yield cannot scale with simple path length expected for initial hard-
scattered partons. More realistic model calculation, such as two-particle path length calculation
with assuming position of hard scattering of high-pr particles because path-length dependent energy
loss exists, is needed for more detail discussion for the balance of path length dependent partonic
energy loss and energy re-distribution from high energy particles. We expect the results in this
thesis will help to further constrain the later stage conditions on the theoretical models. Finally, if
more data is taken at 200 GeV with including Event Plane Detector (EPD; pseudorapidity coverage:
2.1 < |n| < 5.1), two-particle correlations with respect to the second and third order event planes is
expected to be performed with taking large pseudorapidity gap between the region for two-particle
correlations, that for event plane and that for ¢ selections at the STAR experiment.
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Appendix A

Results of experimental data

In this chapter, correlation functions, integrated yield and asymmetry parameter are presented.

A.1 Azimuthal anisotropy with ¢, selections

Fig.A.1 show azimuthal anisotropy v, as a function of py with various g2 selections in 0-60 %
centrality.

A.2 Correlation functions

In this section event-plane dependent two-particle correlations after backround subtractions and
all corrections.

A.2.1 Correlation functions with inclusive ¢

Fig.A.2-A.7 show azimuthal distribution of correlated yield with various pr combinations with
trigger angle selections with respect to the second-order event plane in 0-60 % centrality.

A.2.2 Correlation functions with ¢, selections

Fig.A.8 shows azimuthal distribution of correlated yield with various pr combinations without
trigger angle selections in 0-60 % centrality. Fig.A.9-A.38 show azimuthal distribution of correlated
yield with various pr combinations with trigger angle selections with respect to the second-order
event plane in 0-60 % centrality. Fig.??-Fig.A.13 are 2-4®0.5-1 (GeV/c). Fig.??-Fig.A.18 are 2-
4®1-2 (GeV/c). Fig.?7?-Fig.A.23 are 2-4®2-4 (GeV/c). Fig.?7?-Fig.A.28 are 4-100.5-1 (GeV/c).
Fig.??-Fig.A.33 are 4-10®1-2 (GeV/c). Fig.??-Fig.A.38 are 4-1002-4 (GeV/c).

A.3 Integrated yield with ¢, selections

Fig.A.39-A.43 show integrated yield as a function of centrality and gs.
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A.3. INTEGRATED YIELD WITH @, SELECTIONS
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Figure A.2: Azimuthal distribution of correlated yield in pp : 2-4®0.5-1 (GeV/c) with trigger angle

selection with respect to the second-order event plane.
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Figure A.3: Azimuthal distribution of correlated yield in pp :2-4®1-2 (GeV/c) with trigger angle

selection with respect to the second-order event plane.
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Figure A.4: Azimuthal distribution of correlated yield in pp :2-4®2-4 (GeV/c) with trigger angle

selection with respect to the second-order event plane.
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Figure A.5: Azimuthal distribution of correlated yield in py :4-1000.5-1 (GeV/c)

angle selection with respect to the second-order event plane.
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Figure A.6: Azimuthal distribution of correlated yield in pp :4-1001-2 (GeV/c) with trigger angle

selection with respect to the second-order event plane.
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Figure A.7: Azimuthal distribution of correlated yield in pp : 4-1002-4 (GeV/c) with trigger angle

selection with respect to the second-order event plane.
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Figure A.8: Azimuthal distribution of correlated yield with various pr combinations after vy, v3 and

and associate particle’s pp are 0.5-1, 1-2 and 2-4 (GeV/c).
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Figure A.9: Azimuthal distribution of correlated yield in pp : 2-4®0.5-1 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.10: Azimuthal distribution of correlated yield in pr :2-4®0.5-1 (GeV/c)

angle selection with respect to the second-order event plane in g5 :
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Figure A.11: Azimuthal distribution of correlated yield in pr :2-4®0.5-1 (GeV/c)

angle selection with respect to the second-order event plane in g5 :
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Figure A.12: Azimuthal distribution of correlated yield in pr :2-4®0.5-1 (GeV/c

angle selection with respect to the second-order event plane in g5 :



APPENDIX A. RESULTS OF EXPERIMENTAL DATA
1/N'dN®/dA¢

156

0.4+ centrality : 0-5%

O.N-?":"]m..." RPN SR N

s ol 2 Lt P, L il L
' Rty Ty A
n il Uy [
O|||"|| - |||L”=_ i 1 i T |||_|||L " T T 1 - - "| ST T |"| ST T ]
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
. . 1 1 1 1 1 1 1 1 1 1 1 1
-0.25, _.Aﬂxm_A.s_._H.\NA.w_q”\m ' | P " 1 1 __— [ | P " 1 1 __— Lo " 1 1 __— Lo " 1 1 __— 1 1 " 1 1 __— 1 1 " 1 1 __— 1
T T LA AL M LA LA LA M L LA AL M LA AL M LA AL M LA R A
04 " " 1 _H_ndN :80-100% || 24 ®05-1(GeVie) | " Ani<t " " " " " "
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
0.2+ 1 - 1 1 2 1 1 2 1 1 3 1 1 J 1 1 J 1 1 i
1 1 1 1 1 1 1 1 F 1 1
1 ] 1
8 ! %ﬂgi E@Eﬂ%ﬁ m.m...%.i%mﬁ.kﬁr..
Offg = = - _--m__ = -~ S - - - el L T e S ST L Rt - e
[ [ [ [ [ [ [ [ [ [ [ [ [ [
..m\imAeré A.Nm\m 1 1 1 1 1 1 1 1 1 1 1 1
020 e .N i A " Liissl __— 1 1 " Liissl __— 1 1 " Liissl __— 1 1 " Liissl __— 1 1 " Liissl __— 1 1 " Liissl __— 1
T T LA AL M LA AL M LA AL M LA AL M LA AL M LA AL M
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.4+ 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1

-2n/8<' W ,<-/8
02 iitiiririn
T
1 1
1 1
0.4r 1 1
1 1
1 1
1 1
0.2 1 Eig I+
1
iy
L i _ ot
1 1 1 1 1 1 1
L] L] ] ] ] ] ] ] ] ] ] ] ] ]
C R 1 1 1 1 1 1 1 1 1 1 1 1
/8<¢W,<0 1 [ 1 1 1 1 1 1 1 1 1 1
-0. 1 1 1 1 FTWPRT TN | FYY FATTY YUY PETTE SYETY | FETY PITY | FPY PRTTE PYTEE PROTY YT (PP | P T P albaaal | PTY FRTYY PRTTE FYRTY [ WU FITY | FPY PRTTE PYTEY PRUTY FYTE | YETY PV | FOY PRUTY PETTY FORTY AT [ TP01 P
-10 1234 10 123 4 1012 3 4 -10 1 3 4 1012 3 4 1012 3 4 -10 12 3 4

with trigger

80 — 100% selected events.

Figure A.13: Azimuthal distribution of correlated yield in pr :2-4®0.5-1 (GeV/c)

angle selection with respect to the second-order event plane in g5 :
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Figure A.14: Azimuthal distribution of correlated yield in pp : 2-4®1-2 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.15: Azimuthal distribution of correlated yield in pp :2-4®1-2 (GeV/c) with trigger angle

20 — 40% selected events.

selection with respect to the second-order event plane in g2 :
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Figure A.16: Azimuthal distribution of correlated yield in pp :2-4®1-2 (GeV/c) with trigger angle

40 — 60% selected events.

selection with respect to the second-order event plane in g2 :
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Figure A.17: Azimuthal distribution of correlated yield in pr : 2-4®1

selection with respect to the second-order event plane in g2 :
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Figure A.18: Azimuthal distribution of correlated yield in pp :2-4®1-2 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.19: Azimuthal distribution of correlated yield in pp :2-4®2-4 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.20: Azimuthal distribution of correlated yield in pp :2-4®2-4 (GeV/c) with trigger angle

20 — 40% selected events.

selection with respect to the second-order event plane in g2 :
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Figure A.21: Azimuthal distribution of correlated yield in pp : 2-4®2-4 (GeV/c) with trigger angle

40 — 60% selected events.

selection with respect to the second-order event plane in g2 :
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60 — 80% selected events.

Figure A.22: Azimuthal distribution of correlated yield in pp :2-4®2-4 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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80 — 100% selected events.
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Figure A.23: Azimuthal distribution of correlated yield in pp :2-4®2-4 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.24: Azimuthal distribution of correlated yield in py :4-1000.5-1 (GeV/c) with trigger

0 — 20% selected events.

angle selection with respect to the second-order event plane in g5 :
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20 — 40% selected events.

Figure A.25: Azimuthal distribution of correlated yield in py :4-1000.5-1 (GeV/c) with trigger

angle selection with respect to the second-order event plane in g5 :
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40 — 60% selected events.
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Figure A.26: Azimuthal distribution of correlated yield in py :4-1000.5-1 (GeV/c) with trigger

angle selection with respect to the second-order event plane in g5 :
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Figure A.27: Azimuthal distribution of correlated yield in pr :4
angle selection with respect to the second-order event plane in g5 :
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Figure A.28: Azimuthal distribution of correlated yield in pr :4
angle selection with respect to the second-order event plane in g5 :
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Figure A.29: Azimuthal distribution of correlated yield in pp : 4-10®1-2 (GeV /¢) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.30: Azimuthal distribution of correlated yield in pp : 4-10®1-2 (GeV /¢) with trigger angle

20 — 40% selected events.

selection with respect to the second-order event plane in g2 :
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Figure A.31: Azimuthal distribution of correlated yield in pr : 4-1001-2 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.32: Azimuthal distribution of correlated yield in pr : 4-1001-2 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.33: Azimuthal distribution of correlated yield in pp : 4-10®1-2 (GeV/¢) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.34: Azimuthal distribution of correlated yield in pp :4-1002-4 (GeV /c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.35: Azimuthal distribution of correlated yield in pp : 4-1002-4 (GeV /c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.36: Azimuthal distribution of correlated yield in pp : 4-1002-4 (GeV /c) with trigger angle

selection with respect to the second-order event plane in g2 :
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60 — 80% selected events.

Figure A.37: Azimuthal distribution of correlated yield in pr : 4-1002-4 (GeV/c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.38: Azimuthal distribution of correlated yield in pp : 4-1002-4 (GeV /c) with trigger angle

selection with respect to the second-order event plane in g2 :
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Figure A.39: Centrality and ¢o dependence of integrated yield with pr :2-4®0.5-1 (GeV/c). (Top
row) near side |[A¢| < 7/3, (bottom row) away side |A¢| < 27/3. Trigger angle is from out-of-plane

(left) to in-plane (right).
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Figure A.40: Centrality and g2 dependence of integrated yield with pp :2-4®2-4 (GeV/c).

row) near side |[A¢| < 7/3, (bottom row) away side |A¢| < 27/3. Trigger angle is from out-of-plane

(left) to in-plane (right).
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Figure A.41: Centrality and g2 dependence of integrated yield with pr :4-1020.5-1 (GeV/c). (Top
row) near side |[A¢| < 7/3, (bottom row) away side |A¢| < 27/3. Trigger angle is from out-of-plane

(left) to in-plane (right).
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Figure A.42

row) near side |[A¢| < 7/3, (bottom row) away side |A¢| < 27/3. Trigger angle is from out-of-plane

(left) to in-plane (right).
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Figure A.43: Centrality and g2 dependence of integrated yield with pr :4-1002-4 (GeV/c).

row) near side |[A¢| < 7/3, (bottom row) away side |A¢| < 27/3. Trigger angle is from out-of-plane

(left) to in-plane (right).
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Fig.A.44-A.47 show integrated yield as a function of path length simulated by Glauber Monte-

Carlo.

Integrated yield
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Figure A.44: Integrated yield as a function of path length L with pp :2-4®0.5-1 (GeV/c) in the
near side (top) and away side (bottom).

A.4 Azimuthal anisotropy of correlated yield

Y,corr

Fig.A.48 and Fig.A.49 show pr dependence of vy,

as a function of pr with ¢o selections.

A.5 Asymmetry of near-side and away-side structure

Fig.A.50-A.59 show peak asymmetry as a function of trigger angle ¢4 in each centrality and ¢

bin.
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Integrated yield

Figure A.45: Integrated yield as a function of path length L
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Figure A.46: Integrated yield as a function of path length L with pp :4-10®1-2 (GeV/c¢) in the near
side (top) and away side (bottom).
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Integrated yield
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Figure A.47: Integrated yield as a function of path length L with pp :4-1002-4 (GeV/c¢) in the near
side (top) and away side (bottom).
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Figure A.48: Azimuthal anisotropy of correlated yield with pp :4-10 (GeV/c) in the near side with

q2 selections.
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Figure A.49: Azimuthal anisotropy of correlated yield with pp :4-10 (GeV/c) in the away side with

q2 selections.
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Figure A.50: Trigger angle ¢s dependence of near-side asymmetry with pr :2-4®0.5-1 (GeV/c)
with ¢y selections from go :0-20 % (left) to g2 :80-100 % (right) in each centrality bin from 0-5 %
(top) to 50-60 % (bottom).
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Figure A.51: Trigger angle ¢s dependence of away-side asymmetry with pr :2-4®0.5-1 (GeV/c)
with ¢y selections from go :0-20 % (left) to g2 :80-100 % (right) in each centrality bin from 0-5 %
(top) to 50-60 % (bottom).
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Figure A.52: Trigger angle ¢, dependence of near-side asymmetry with pr :2-4®2-4 (GeV/c) with
g2 selections from go :0-20 % (left) to g2 :80-100 % (right) in each centrality bin from 0-5 % (top)
to 50-60 % (bottom).
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Figure A.53: Trigger angle ¢, dependence of away-side asymmetry with pr :2-4®2-4 (GeV/c) with
g2 selections from go :0-20 % (left) to g2 :80-100 % (right) in each centrality bin from 0-5 % (top)
to 50-60 % (bottom).
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Figure A.54: Trigger angle ¢ dependence of near-side asymmetry with pr :4-1020.5-1 (GeV/c)
with ¢y selections from go :0-20 % (left) to g2 :80-100 % (right) in each centrality bin from 0-5 %
(top) to 50-60 % (bottom).
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Figure A.55: Trigger angle ¢ dependence of away-side asymmetry with pr :4-10®0.5-1 (GeV/c)
with ¢y selections from go :0-20 % (left) to g2 :80-100 % (right) in each centrality bin from 0-5 %
(top) to 50-60 % (bottom).
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Figure A.56: Trigger angle ¢5 dependence of near-side asymmetry with pr : 4-1001-2 (GeV/c) with
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Figure A.57: Trigger angle ¢s dependence of away-side asymmetry with pr :4-1001-2 (GeV/c)
with ¢y selections from go :0-20 % (left) to g2 :80-100 % (right) in each centrality bin from 0-5 %
(top) to 50-60 % (bottom).
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Figure A.58: Trigger angle ¢5 dependence of near-side asymmetry with pr : 4-1002-4 (GeV/c) with
g2 selections from go :0-20 % (left) to g2 :80-100 % (right) in each centrality bin from 0-5 % (top)
to 50-60 % (bottom).
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Appendix B

Systematic uncertainties of
correlations

B.1 Systematics of v, for background reconstruction
B.2 Systematics of event-plane alignment in event mixing

B.3 Systematics of ZYAM

B.4 Fraction of square of systematics
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Figure B.1: Azimuthal distributions of correlated yield with subtracting v & 1o with ph. @ p$ =

2-420.5-1 (GeV/c).
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Figure B.2: Azimuthal distributions of correlated yield with subtracting ve & 1o with ph. @ p% =

2-4®2-4 (GeV/c).
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Figure B.4: Azimuthal distributions of correlated yield with subtracting ve & 1o with ph. @ p} =

4-10®1-2 (GeV/c).
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Figure B.5: Azimuthal distributions of correlated yield with subtracting ve & 1o with ph. @ p% =

4-10®2-4 (GeV/c).
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Figure B.12: Azimuthal distributions of correlated yield with and without alignment of second-order
event plane (red) and inclusive-trigger correlation (blue), respectively, with p% @ p% = 2-4®0.5-1
(GeV/c).
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Figure B.13: Azimuthal distributions of correlated yield with and without alignment of second-

order event plane (red) and inclusive-trigger correlation (blue), respectively, with pl.®p% = 2-4®1-2
(GeV/c).
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B.4. FRACTION OF SQUARE OF SYSTEMATICS

order event plane (red) and inclusive-trigger correlation (blue), respectively, with p}®@p% = 2-4®2-4

Figure B.14: Azimuthal distributions of correlated yield with and without alignment of second-
(GeV/c).
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Figure B.15: Azimuthal distributions of correlated yield with and without alignment of second-order
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Figure B.17: Azimuthal distributions of correlated yield with and without alignment of second-order

event plane (red) and inclusive-trigger correlation (blue), respectively, with pl. @ p

(GeV/c).
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Figure B.18: Azimuthal distributions of correlated yield with ZYAM determined with trigger-angle
selected correlation (red) and inclusive-trigger correlation (blue) p% ® p% = 2-4®0.5-1 (GeV /c).
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Figure B.19: Azimuthal distributions of correlated yield with ZYAM determined with trigger-angle

selected correlation (red) and inclusive-trigger correlation (blue) pb @ p% = 2-4®2-4 (GeV /c).
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Figure B.21: Azimuthal distributions of correlated yield with ZYAM determined with trigger-angle
selected correlation (red) and inclusive-trigger correlation (blue) p% @ p% = 4-1001-2 (GeV /c).
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Figure B.22: Azimuthal distributions of correlated yield with ZYAM determined with trigger-angle
selected correlation (red) and inclusive-trigger correlation (blue) p% @ p% = 4-1002-4 (GeV /c).
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Fraction of square of each uncertainty to the square of total uncertainty
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Figure B.23: Azimutal angle dependence of fraction of square of each systematic source to the
square of total systematic unertainty with pl ® p% = 2-4®0.5-1 (GeV /c).
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Fraction of square of each uncertainty to the square of total uncertainty
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Figure B.24: Azimutal angle dependence of fraction of square of each systematic source to the
square of total systematic unertainty with pl, ® p% = 2-402-4 (GeV/c).
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Fraction of square of each uncertainty to the square of total uncertainty
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Figure B.25: Azimutal angle dependence of fraction of square of each systematic source to the
square of total systematic unertainty with ph. @ p§. = 4-100.5-1 (GeV/c).
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Azimutal angle dependence of fraction of square of each systematic source to the

square of total systematic unertainty with pl. @ p4. = 4-1001-2 (GeV /c).
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Appendix C

Results of AMPT

In this chapter, results of AMPT model is presented. Centrality is determined based on imapct
parameter b in the generated events in this study as shown in Table.C.1.

Table C.1: Centrality binning and impact parameter
low edge of centrality (%) (0| 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80
low edge of impact parameter (fm) || 0 | 3.3 | 4.9 6.9 | 84 | 9.7 | 109 | 11.9 | 12.9 | 13.8

C.1 Azimuthal anisotropy v,

C.1.1 Azimuthal anisotropy with and without jet quenching mode

Fig.C.1 shows comparison of vy, v3 and vq with and without jet quenching mode as a function
of pr in 0-50 % centrality.

C.1.2 Azimuthal anisotropy with ¢, or ¢, selections

Fig.C.2-C.6 shows vy, v3 and vq with ¢o or g9 selections as a function of py in 0-50 % centrality.

C.2 Azimuthal distributions of correlations

C.2.1 Comparison of correlations with and without quenching mode

Fig.C.7 shows azimuthal distribution of correlated yield with various pr combinations in 0-50
% centrality with and without quenching option in AMPT model. Quenching parameter —dE/dx
= 2 (GeV/fm).
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Figure C.1: Azimuthal anisotropy with 0-20 % g2 or &9 selections in 0-50 % centrality in AMPT
model.
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Figure C.2: Azimuthal anisotropy with 0-20 % g2 or e selections in 0-50 % centrality in AMPT
model.
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Figure C.3: Azimuthal anisotropy with 20-40 % g¢o or &9 selections in 0-50 % centrality in AMPT
model.
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Figure C.4: Azimuthal anisotropy with 40-60 % g2 or €5 selections in 0-50 % centrality in AMPT
model.



234 APPENDIX C. RESULTS OF AMPT

0.3+ 1
centrality : 0-5% {} centrality : 5-10% centrality : 10-20%

centrality : 20-30% centrality : 30-40% centrality : 40-50%

Va

0.3r T g :6080%: data

[ q,: 6080% : AMPT
{5k, 1 60-80% : AMPT

Vs

Vg

Figure C.5: Azimuthal anisotropy with 60-80 % g¢o or &9 selections in 0-50 % centrality in AMPT
model.
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Figure C.6: Azimuthal anisotropy with 80-100 % g2 or €3 selections in 0-50 % centrality in AMPT
model.
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C.2.2 Event plane dependent two-particle correlations

Fig.C.8 and Fig.C.9 show trigger angle ¢, dependence of azimuthal distribution of correlated
yield with 2-4 ® 0.5-1 and 1-2 (GeV/c) after vy, vz and vg contribution subtraction in 0-50 %
centrality.

C.2.3 ¢ selections and ¢, selections
Inclusive triggered correlations
Fig.C.10 and Fig.C.11 show correlations with top and bottom g2 or 3 selections with various

pr combinations in 0-50 % centrality with and without quenching option in AMPT model.

Trigger angle dependence
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Figure C.8: Trigger angle ¢s dependence of azimuthal distribution of correlated yield with 2-4 ®

0.5-1 (GeV/c) after ve, v3 and vy contribution subtraction in 0-50 % centrality.
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Figure C.9: Trigger angle ¢s dependence of azimuthal distribution of correlated yield with 2-4 ®

1-2 (GeV/c) after vy, vz and v4 contribution subtraction in 0-50 % centrality.
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Figure C.12:
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Figure C.14: Trigger angle ¢ dependence of azimuthal distribution of correlated yield after vy, vs
and vy contribution subtraction with top g2 20 % and top €2 20 % selections in 0-50 % centrality.

Trigger and associate pr combination is p ® p% = 2-4®0.5-1 (GeV/c).
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Figure C.15: Trigger angle ¢ dependence of azimuthal distribution of correlated yield after vy, vs
and v4 contribution subtraction with bottom ¢ 20 % and bottom 9 20 % selections in 0-50 %
centrality. Trigger and associate pr combination is ph ® p$ = 2-4®0.5-1 (GeV/c).
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Figure C.16: Trigger angle ¢ dependence of azimuthal distribution of correlated yield after vy, vs
and vy contribution subtraction with top g2 20 % and top €2 20 % selections in 0-50 % centrality.

Trigger and associate pr combination is pl ® p% = 2-422-4 (GeV/c).
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Figure C.17: Trigger angle ¢ dependence of azimuthal distribution of correlated yield after vy, vs
and v4 contribution subtraction with bottom ¢ 20 % and bottom 9 20 % selections in 0-50 %
centrality. Trigger and associate pr combination is pl. ® p$ = 2-482-4 (GeV/c).
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