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ABSTRACT

SPIN DEPENDENCE IN POLARIZED PROTON-PROTON
ELASTIC SCATTERING AT RHIC

Donika Plyku
Old Dominion University, 2013

Director: Dr. Stephen Bueltmann

The STAR experiment at RHIC is equipped with insertion devices (Roman Pots)

that allow detectors to be moved close to the beam for the measurement of protons at

very small scattering angles. This setup, together with the unique capability of RHIC

to collide spin-polarized proton beams, allows STAR to study both the dynamics

and the spin-dependence of the proton-proton (pp) elastic scattering process. Silicon

strip detectors installed inside the Roman Pots measure tracks of protons scattered

diffractively at very small angles. In a dedicated run with special beam optics during

the 2009 RHIC run, the experiment collected about 20 million elastic events with

transversely polarized proton beams at center of mass energy
√
s = 200 GeV and four

momentum transfer squared (t) range of 0.003 ≤ |t| ≤ 0.035 (GeV/c)2, where, due to

the Coulomb Nuclear Interference (CNI), a measurable single spin asymmetry arises.

We report on a high precision measurement of the transverse single spin asymmetry

AN at
√
s = 200 GeV. The measured AN and its t-dependence are consistent with

the absence of a hadronic spin-flip amplitude. The contribution from a possible

hadronic spin-flip amplitude can be quantified by measuring the r5 parameter, which

is proportional to the ratio of the single hadronic spin-flip to the hadronic non-flip

amplitudes. The presented results will also provide strong constraints on the r5

parameter.



iii

Copyright, 2013, by Donika Plyku, All Rights Reserved.



iv

ACKNOWLEDGEMENTS

The completion of the research work presented in this dissertation, would not have

been possible without the continuous support, guidance, help and encouragement of

my dissertation advisor and my mentor through the years of graduate school, Dr.
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CHAPTER 1

INTRODUCTION

A proton is a spin-1/2 particle, composed of three valence quarks, gluons and sea

quarks. Quarks are held together by the strong nuclear force mediated by gluons.

Proton and neutrons, also referred to as nucleons, compose all atomic nuclei except

hydrogen, which has no neutrons. Compared to the electron, which is a point-like

particle, the proton has a composite structure and a larger mass. Understanding the

structure of this fundamental particle is an important, but complicated task that

requires the use of Quantum Chromodynamics (QCD). 1

QCD is the theory of strong interactions describing the interaction of quarks

and gluons in hadrons, such as protons. The protons and their interactions can be

studied in particle colliders or in fixed target experiments, at facilities such as the

Large Hadron Collider (LHC) at CERN, Tevatron at Fermilab, and the Relativistic

Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Experiments

that focus on high-energy proton collisions at these facilities can study the dynamics

of the scattering processes in both polarized and unpolarized proton beam collisions,

depending on whether the opportunity of providing polarized proton beams exists at

the facility.

Previous proton-proton (pp) and proton-antiproton (pp̄) scattering experiments

carried out at CERN and at the Tevatron, have provided pp total and differential

cross sections at different center of mass energies
√
s and four-momentum transfer

squared t. The total cross section, in both pp and pp̄ data reaches a minimum at
√
s = 10 GeV, and shows a characteristic rise at higher energies. Phenomenolog-

ical models have been developed in order to describe this behavior. Regge theory,

for example, describes the total cross section at very high energy by introducing a

Reggeon with vacuum quantum numbers, called the Pomeron. The Pomeron is a

color singlet combination of gluons, has mass, no spin and no electric or color charge.

The Pomeron was postulated in order to explain the slowly rising cross section of the

hadronic collisions at high energies.

1This Dissertation follows the style of The Physical Review, C
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The highest
√
s energy achieved in experiments in pp collisions is by the TOTEM

experiment at LHC, reaching 7 TeV with unpolarized beams and by CERN ISR

experiments at 20 GeV with polarized beams. RHIC has the capability of accelerating

and colliding identical particles, i.e. protons at a wide and previously unexplored

center of mass energy range of 50 GeV ≤
√
s ≤ 500 GeV, and a unique capability

of accelerating polarized protons. Thus, RHIC provides a unique opportunity to

study both the dynamics and the spin-dependence of pp scattering at a previously

unexplored energy range and four-momentum transfer squared range of 2 · 10−4 ≤
|t| ≤ 1.5 (GeV/c)2. In comparison, the TOTEM experiment at LHC will measure

elastic and diffractive pp scattering with unpolarized beams up to
√
s = 14 TeV.

The first part of Chapter 2, gives a description of the kinematics of the diffrac-

tive processes, concentrating on the elastic scattering process. A discussion of the

measurements of the spin-independent variables in pp and pp̄ scattering experiments,

including a summary of the pp and pp̄ experiments in the world (Appendix B) and

the motivation for the measurement of the spin-independent observables, is given in

the Section 2.3 of Chapter 2. The measurement of the spin-averaged observables at

different cms energies (the total cross section
√
s, the exponential slope parameter-b

of the elastic cross section and the ρ parameter), is important in understanding the

exchange mechanisms dominating in the diffractive processes at low and high ener-

gies, as well as in understanding the features that the total and elastic cross sections

exhibit in different energy regimes.

Elastic scattering is in some sense the most fundamental type of reaction, but it is

also the most difficult to understand theoretically [114]. In this discussion, it is also

important to take into account the kinematic region of interest. In our experiment we

are interested (the reason will be explained later), in measuring pp elastic scattering

in the small momentum transfer-t region. This is the domain of non-perturbative

QCD, where the large coupling constant (α) does not allow perturbation theory to

be applicable in the description of the process. To study the dynamics of the small-

t-scattering process in pp elastic collisions, we need to examine our understanding

of the underlying interactions and the associated exchange mechanisms. While the

electromagnetic interaction can be described by Quantum Electrodynamics (QED),

the hadronic interaction is not well understood, and the calculation of cross sections

for the small-t scattering requires the use of non-perturbative techniques in QCD, a

theoretical approach which is still in development.
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Phenomenological models rather than p-QCD, are used to describe the exchange

mechanism and much work has been done in connecting Regge phenomenology to

QCD concepts [1], by associating Pomeron (P ) exchange with the exchange of n ≥
2 (non-perturbative) gluons [2–4]. As stated in [139], for the case n ≥ 2 (charge

conjugation C = +1), this mechanism generates a bare hard Pomeron, while for n =

3, containing both C = ± 1, the C = -1 amplitude leads to another Reggeon, a bare

Odderon (O), which corresponds to a odd-signature partner of P [5–8,10,74]. Sections

2.5 and 2.6, give a review of several phenomenological models: Regge theory, the

Geometrical Models by Chou and Yang [19], the Impact Picture Model by Bourrely

et al. and the Multiple Exchange Model by Donnachie and Landshoff [113].

RHIC capabilities enable us to measure the spin dependent observables of elas-

tic pp scattering: the transverse single spin asymmetry AN and the transverse and

longitudinal double spin asymmetries (ANN , ASS, ALL), and cross section differences

(∆σT , ∆σL), corresponding to transverse and longitudinal polarization of the collid-

ing beams. The measurement of the spin-dependent observables at the high energy

range available at RHIC, will help deepen our understanding of the asymptotic spin

dependence of the nucleon-nucleon scattering with energy. Consequently, a better

understanding of the asymptotic spin dependence can be used to help identify the

dynamical mechanisms dominant at high energies [63]. RHIC presents a wonderful

opportunity to do these measurements, and, with precise measurement of the double

spin asymmetries, to possibly distinguish between a Pomeron vs. Odderon or other

exchange mechanisms dominant at high energies. If the dynamics is well approxi-

mated by a pure Pomeron pole, the spin asymmetries will be quite small and require

very sensitive experiments to measure [63]. In this context, one of the objectives of

the STAR experiment at RHIC is the characterization of the dynamics of high energy

scattering by means of measuring of the spin-dependent observables and the study

of the spin-dependence in polarized pp elastic collisions.

Spin dependent elastic scattering of two spin 1/2 particles has been described

by six-independent helicity amplitudes (depending on the helicity of initial and fi-

nal states: two of the amplitudes are helicity conserving amplitudes, two are double

spin-flip amplitudes and the fifth is the single spin-flip amplitude), each of them

having contributions from both the electromagnetic and hadronic interactions, True-

man et al. [115]. Measuring in the small-t kinematic region is important since this

is the region where the electromagnetic and hadronic amplitudes have comparable
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magnitudes, and their interference results in a measurable asymmetry in the scat-

tering. This kinematic region is the Coulomb-Nuclear Interference (CNI) region.

The single-spin asymmetry AN , also referred to as the analyzing power in polarime-

try terminology, is defined as the left-right cross section asymmetry with respect to

transversely polarized beams. In terms of the scattering process AN is manifested

as a measurable asymmetry in the azimuthal plane or ”anisotropy”, in the scattered

proton counts in the left and right detector areas. The measurement is based on

a geometric mean method [78], which, in the case of two polarized proton beams,

makes use of the alternating spin patterns of the proton beams.

Therefore, proton-proton elastic scattering in the CNI region (small-angle forward

region and small momentum transfer-t), results in a measurable asymmetry AN ,

which, in the absence of the hadronic spin-flip amplitude, is calculable and predicted

to be ∼4%. AN arises mainly from the interference between the Coulomb spin-flip

amplitude, which is generated by the anomalous magnetic moment of the proton,

and the hadronic non spin-flip amplitude. The pure Coulomb-Nuclear Interference

term (CNI), is precisely determined in QED. However, a second interference term,

between the Coulomb non spin-flip amplitude and the hadronic spin-flip amplitude,

can also contribute to AN . Therefore, a measurement of AN in the CNI region, is a

sensitive probe to the contribution from hadronic spin-flip amplitude, which is the

scope of the experiment and analysis work presented in this thesis.

Since the CNI region, falls in the non-perturbative regime of QCD, the hadronic

amplitudes can and have only been described by several phenomenological models,

i.e. Regge poles exchange phenomenology. Because of this reason, experimental

data are indispensable. The measurement of the hadronic spin-flip amplitude at

high energies is directly related to the understanding of the nature and spin-flip

component of the dominating exchange mechanism at high energies, i.e. the Pomeron.

Moreover, the study of the energy-dependence of the hadronic spin-flip amplitude

using measurements from different experiments, gives information on the energy-

(in)dependence of the spin-flip component. Some of the questions we are trying to

answer are: What is the nature of the dominant exchange mechanism in diffractive

processes at high-energies? Does the exchange mechanism of the hadronic interaction

at high energies (the Pomeron or gluonic exchange) have a contribution to the spin-

flip amplitude in polarized hadron collisions? If yes, what is the magnitude of its

contribution and does it depend on the energy regime?
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Section 2.8 of Chapter 2, gives a detailed theoretical description of the spin-

dependent pp elastic scattering, including the helicity formalism of the spin observ-

ables and a detailed discussion on the parametrization of AN . There are several

theoretical approaches that predict non-zero spin-dependent Pomeron amplitudes

for elastic scattering: a models that treats the Pomeron helicity-flip coupling anal-

ogously to the isoscalar magnetic moment of the nucleon by Ryskin [74]; the Pion

Exchange Model by Pumplin and Kane [76]; the Impact Picture Model by Soffer,

Bourrely and Wu, based on a rotating matter picture [24]; and the quark-diquark

model which predicts a non-zero Pomeron helicity flip if the spatial distribution of

the quarks in the proton is asymmetric [75]. The models are also discussed in Section

2.8.

Measurements of spin-dependent observables have been performed at different cms

energies, and the various experiments to date are summarized in Table 3 of Section

2.8. Among the experiments, we highlight high precision experiments from RHIC

polarimeters, where it has been observed that the measured AN and its t-dependence

is compatible with the CNI prediction at
√
s = 13.7 GeV, Alekseev et al. [98] and

21.7 GeV, Bazilevsky et al. [97], but the measurement of AN at 6.8 and 7.7 GeV

from the same experiments may indicate a non-zero hadronic spin-flip contribution

at lower energies.

Since the beginnings of the RHIC operation in 2000, an experiment was proposed

for measuring pp elastic scattering in the forward region (small momentum transfer-t

region) using movable insertion devices called Roman Pots. This was the PP2PP

experiment at RHIC, which in 2003 run year was successful in measuring for the

first time pp elastic scattering of polarized protons and the exponential slope b of the

elastic cross section at the cms energy
√
s = 200 GeV (Bültmann et al. [138]), and the

first measurement of the transverse single spin asymmetry AN (Bültmann et al. [96])

and transverse double spin asymmetries ANN and ASS (Bültmann et al. [79]). In

2008, the PP2PP experimental setup and the physics program was integrated with

the STAR experiment at RHIC, and the STAR experiment was equipped with the

very forward detectors, Roman Pots, which are now part of the experiment named

”Physics with Tagged Forward Protons at STAR”.

With this experimental setup, we had a successful data collection period in 2009

run year (Run09), with transversely polarized proton beams collisions at 200 GeV
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cms energy, and where a sample of 33 million elastic triggers was collected. The ex-

perimental setup and the detector performance during Run09, are discussed in details

in Chapters 3 and 5, respectively. A simulation study of the detector acceptance is

given in Chapter 4. Chapter 6 gives a detailed description of the procedure followed

and the selection criteria used in the selection of elastic events. The selected elastic

events were then used in the calculation of spin asymmetries, and the measurement

of the single spin asymmetry AN , Chapter 7. The first high precision measurement of

the transverse single-spin asymmetry AN is presented in Chapter 7 and a discussion

of the systematic errors of the measurement is given in Chapter 8.
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CHAPTER 2

THEORETICAL FORMALISM AND PHYSICS

MOTIVATION

2.1 HADRONIC PROCESSES

Hadronic processes are traditionally classified in two distinct classes: soft

processes and hard processes [11].

• Soft processes are characterized by an energy scale of the order of the hadron

size R (∼ 1 fm). The momentum transfer squared is generally small: |t| ∼ 1/ R2

and the t-dependence of the cross sections is exponential dσ/dt ∼ e −R
2|t|, and

large-|t| events are highly suppressed [11]. Elastic hadron-hadron scattering and

diffractive dissociation are classical examples of soft hadronic processes. Soft

hadronic processes are characterized by a large length scale (R), which makes

them intrinsically non-perturbative. These processes cannot be described by

perturbative quantum chromodynamics (QCD) since the coupling constant is

not small enough to allow perturbative techniques to be applicable. Accord-

ing to Regge theory, an approach that has been adopted since the 60’s [12],

soft hadronic phenomena at high energies are dominated by the exchange of a

hypothetical object, the Pomeron. The Pomeron is a Reggeon with vacuum

quantum numbers JPC = 0++, where J is the total angular momentum

quantum number, P is the parity or the eigenvalue under reflection (parity

operator (P ) reverses the sign of the spatial coordinates: x, y, z) and C is the

charge parity or a multiplicative quantum number that describes particles’ be-

havior under the symmetry operation of charge conjugation. Hence no quantum

numbers are being exchanged in the reaction.

• Hard processes are characterized by two (or more) energy scales: one is still

the hadron size, the other is a ”hard”energy scale [11]. The momentum transfer

squared is large |t| ≥ 1 (GeV/c)2 and the t-dependence of the cross sections is
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powerlike. Two examples of hard hadronic processes are deep inelastic scatter-

ing (DIS) and large-pT jet production, where a jet is a narrow cone of hadrons

and other particles produced by the hadronisation of a quark or gluon in a par-

ticle physics/heavy ion experiment and pT is the component of the momentum

of the scattering particles in the transverse plane (x − y plane). The physics

phenomenon of confinement in QCD shows that color charged particles (such as

quarks) cannot be isolated singularly, but, in turn they clump together to form

hadrons, either mesons (one quark, one anti-quark) or baryons (three quarks).

The high value of the momentum transfer, allows the use of perturbative QCD

to describe these processes. Part of the process is still of non-perturbative ori-

gin. This component is embodied in the quark and gluon distribution, or the

fragmentation fractions of hadrons [11]. The study of hard hadronic processes

gives us the possibility to study diffraction in a perturbative QCD framework,

allowing investigation of the nature of the Pomeron.

2.1.1 DIFFRACTIVE PHENOMENA

Diffraction is a phenomenon which takes place asymptotically (i.e., as the energy

increases), whenever the particles diffused have the same quantum numbers as the

incident particles [11]. In this viewpoint, a hadronic diffractive reaction at high

energies is defined as a reaction in which no quantum numbers are exchanged between

the colliding particles. The three hadronic processes listed below can be described

as diffractive reactions according to this definition of the diffractive phenomenon:

• Elastic Scattering (p+ p→ p+ p)

In the elastic scattering process, the initial particles are detected after the

collision, (see Fig. 1 (a)).

• Single Diffraction (p+ p→ p+X2)

In the single diffractive process, one of the incident particles remains intact

while the other gives rise to a state of final particles (or a resonance) with the

same quantum numbers, (see Fig. 1 (b)).

• Double Diffraction (p+ p→ X1 +X2)

In the double diffractive process, each of the incident particles gives rise to a
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(a)

(b)

(c)

FIG. 1: (a) Elastic Scattering (b) Single Diffractive Dissociation (c) Double Diffrac-
tive Dissociation. The double line (IP) marks the Pomeron exchange. φ is the
azimuthal angle and η is the pseudorapidity (see Appendix A).

state of final particles (or a resonance) with the same quantum numbers of the

two initial particles, (see Fig. 1 (c)).

The cross sections of diffractive processes at small-|t| behave as:

dσ

dt
=
dσ

dt
|t=0 e

−b|t| ≈ dσ

dt
|t=0 (1− b|t|) (1)

where b is the slope parameter and is proportional to the squared radius of the

target hadron [11]. At larger |t| other secondary maxima appear.

The traditional framework for diffraction is Regge theory, which will be discussed
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later in this chapter. Regge theory describes hadronic reactions at high energies in

terms of the exchange of objects called Reggeons. The exchange of other scalars

with vacuum quantum numbers, contributing to non-diffractive events, is suppressed

at high energy [11]. The Reggeon with vacuum quantum numbers which dominates

asymptotically is the Pomeron. Because of this reason in Regge theory the diffractive

reactions are dominated by Pomeron exchange. The colliding particles in Fig. 1, pro-

tons in this case, interact by exchanging a Pomeron, and thus no quantum numbers

are exchanged in this reaction. As the center of mass of the reaction
√
s decreases,

other Reggeons contribute and the non-diffractive contamination gets larger [11].

2.2 PROTON-PROTON (pp) ELASTIC SCATTERING

In a proton-proton collision, the elementary constituents of the colliding hadrons

interact via the fundamental strong interaction. The parameter that determines the

size of the smallest structure that can be resolved in elastic scattering is the energy

transferred between the incoming and the outgoing particles, or the four momentum

transfer squared:

t = (pin − pout)2 (2)

where pin and pout are the four-momenta of the incoming and the outgoing protons,

respectively.

In a proton-proton collision, the colliding hadrons are charged particles and thus,

they also interact via the fundamental electromagnetic (Coulomb) interaction, which

is well understood and calculable in quantum electro-dynamics (QED). The hadronic

interaction, however, is very complex and the description of the scattering process de-

pends on the value of momentum transfer squared t. When the momentum transfer

is small (|t| ≤ 1 GeV2), this is the non-perturbative regime of quantum chromo-

dynamics (QCD), in which the scattering process is described by phenomenological

models rather than perturbation theory, since the strong coupling constant αs(t) is

not small enough for these techniques to be applicable. The strong coupling constant

αs(t) increases with decreasing momentum transfer. This phenomenon, referred to

as the running of αs(t) has different implications for two different regimes of mo-

mentum transfer. For low momentum transfers, αs(t) is very large, preventing the

use of perturbative techniques in QCD calculations. However, for large momentum

transfers, αs(t) → 0 as t → ∞, permitting the use of perturbative techniques to be
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applied to QCD calculations. QCD, the theory of strong interaction, can calculate

reliably only at high momentum transfers (|t| ≥ 8 GeV2), because only at sufficiently

high-|t| the strong coupling constant is small enough for perturbative calculations to

become valid. Typical hadron-hadron collisions involve many quarks and gluons and

the individual momentum transfers are generally small [14]. In the case of large en-

ergy transfer, the underlying interaction involves only a pair of partons (quarks or

gluons), while the others serve as spectators, and the interaction is no longer elastic,

leading to a breakup of one or both participating hadrons [14].

The center of mass energy of the system in pp elastic scattering is:

√
s = p1 + p2 (3)

where p1 and p2 are the four-momenta of the the two colliding protons, respectively.

Depending also on
√
s, different t values result in the system being probed at

different dimensions, where either electromagnetic, hadronic, or the interference be-

tween these two interactions dominates. At small-t values, such as (|t| ≤ 10−4 GeV2)

or less, the dimension probed is larger than the range of strong hadronic interaction,

therefore the electromagnetic interaction dominates. Medium-t values correspond to

the Coulomb Nuclear Interference (CNI) region, where the Coulomb and hadronic

interactions have comparable contributions to the elastic differential cross section.

This is the smallest |t|-region accessible with the forward proton detectors at RHIC,

which will be described in Chapter 3. Measurements in this region reveal valuable

information on the strong nuclear amplitude and the pp total cross section, since the

Coulomb interaction is precisely calculable in QED. At values of |t| beyond 1 GeV2,

the size probed is less than 1 fm, which is equal to the dimension of the proton.

Therefore, this region is dominated by the strong interaction between constituent

quarks. For values of |t| well beyond 1 GeV2 the interaction can be described by

perturbative QCD.

In Chapter 2, we will discuss the elastic scattering of two protons at high energy

and small-to-medium momentum transfer. Sections 2.1 - 2.4, focus primarily on the

dynamics of pp elastic scattering process and the measurement of the spin-averaged

observables. Firstly, the kinematic variables of the elastic scattering process will

be described. Appendices A and C, provide additional information on variables

and parameters that are very useful in high energy physics in general and in the

description of elastic scattering process in particular. Section 2.3 gives an overview
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FIG. 2: Elastic pp Scattering (s-channel)

of the pp and pp̄ world experiments. Several phenomenological models that are used

in the interpretation of the experimental data, including the Donnachie-Landshoff

model are discussed in Sections 2.6. The Pomeron is described in the framework of

the Regge theory in Section 2.5 and the Multiple-Exchange model in Section 2.7.

Sections 2.8 and 2.9 are devoted to the spin-dependence of the elastic scattering

process and the measurement of the spin-dependent observables.

2.2.1 KINEMATICS

Consider two body exclusive scattering as shown in Fig. 2:

1 + 2→ 3 + 4 (4)

The reaction given by Eq. 4 is described by two independent variables. A special

case of 4 is the elastic scattering:

1 + 2→ 1′ + 2′ (5)

where the two particles remain unaltered, but with a different kinematic configuration

[11].

The variables are usually chosen among the Mandelstam invariants. Mandelstam

variables are used to describe the interaction of the incoming particles in high-energy

scattering processes and to characterize the kinematics of the scattering.
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FIG. 3: Elastic pp Scattering in the Center of Mass System, where p∗i = p1 = −p2

and p∗f = p3 = p4

Consider the elastic scattering of two protons in the center of mass (cms) system

shown in Fig. 3:

p1 + p2 → p3 + p4 (6)

where p1 and p2 are the four-momenta of the the two colliding protons, and p3 and p4

are the four-momenta of the the two scattered protons, respectively. The Mandelstam

variables for the above reaction are:

s = (p1 + p2)2 = (p3 + p4)2 (7)

t = (p1 − p3)2 = (p2 − p4)2 (8)

u = (p1 − p4)2 = (p2 − p3)2 (9)

The Mandelstam variables obey the identity:

s+ t+ u =
4∑
i=1

m2
i (10)

In proton-proton elastic scattering two incoming protons collide and remain intact

after the collision. In the center of mass system (cms), assuming particles 1 and 2

are traveling along the z axis with equal and opposite momenta p1 and p2, (see Fig.

3), we have by definition:

p1 + p2 = 0 (11)
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The four-momenta of the particles can be written as:

p1 = (E, p) = (E, 0, 0, pz) (12)

p2 = (E,−p) = (E, 0, 0,−pz) (13)

p3 = (E, p′) = (E, p⊥, p
′
z) (14)

p4 = (E,−p′) = (E,−p⊥,−p′z) (15)

where p′ is the three-momentum of the scattering particles, p⊥ = |p′| sin θ is the

transverse two-vector momentum, p′z = |p′| cos θ and θ is the cms scattering angle.

The 4-momentum of the system is conserved:

p1 + p2 = p3 + p4 (16)

Since in pp elastic scattering the particles have equal masses, m, the Mandelstam

variables for the process can be expressed in terms of the cms variables as:

s = (p1 + p2)2 = 4(p2 +m2) (17)

t = (p1 − p3)2 = p2
1 + p2

3 − p1 · p3 = −2p2(1− cos θ) = −4p2 sin2(θ/2) (18)

For small-θ or very-forward scattering (which is the case in the experiment presented

in this thesis), the four-momentum transfer squared t can be approximated as:

t ≈ −p2θ2 (19)

Mandelstam variables are dot-products of four-vectors, therefore they are Lorentz

scalars. The cms scattering angle θ can be expressed in terms of Lorentz scalars (for

s→∞ or s >> m2 in this experiment) :

cos θ = 1 +
2t

s
(20)

2.2.2 SCATTERING AMPLITUDE, DIFFERENTIAL ELASTIC CROSS

SECTION AND FORWARD SCATTERING PARAMETERS σtot, ρ, b

The differential cross section is equal to the square of the scattering amplitude

f(θ, s):
dσ

dΩ
= |f(θ, s)|2 (21)



15

where dΩ = dφd(cos θ) is the element of the solid angle. A Jacobian transformation

gives dΩ = 2πd(cos θ)

Thus we can express the differential cross section in terms of Mandelstam variables:

dσ

dt
=
dΩ

dt

dσ

dΩ
= 2π

d(cos θ)

dt

dσ

dΩ
(22)

Differentiating Equation 18 with respect to cos θ, we get:

dt

d(cos θ)
= 2p2 (23)

Therefore, Equation 22 becomes:

dσ

dt
=

π

p2

dσ

dΩ
=

π

p2
|f(θ, s)|2 (24)

We now introduce an invariant scattering amplitude F :

F =

√
π

p
|f(θ, s)| (25)

The optical theorem (see Appendix A), relates the imaginary part of the elastic

scattering amplitude fel at t = 0 (scattering at very small scattering angle or very

forward scattering) and the total cross section as:

σtot =
4π

p
Imfel(t = 0) (26)

where p is the center of mass three momentum of the incident particle.

An important derivation of the optical theorem is to find the relation between the

total cross section σtot, the forward differential cross section dσ/dt (t = 0), and the

ratio between the real to the imaginary part of the scattering amplitude at t = 0:

The forward differential cross section is:(
dσ

dΩ

)
θ=0

= |f(t = 0)|2 = [Ref(t = 0)]2 + [Imf(t = 0)]2 (27)

The ρ-parameter is defined as the ratio of the real to the imaginary part of the

scattering amplitude at t = 0:

ρ =
Ref(s, t = 0)

Imf(t = 0)
(28)

Using the optical theorem 26 and Eq. 27, the forward differential cross section can

be expressed as: (
dσ

dΩ

)
θ=0

=
(pσtot

4π

)2

(1 + ρ2) (29)
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Now, using the relation in Eq. 24, Equation 29 becomes:

dσel
dt t=0

=

(
σ2
tot

16π

)
(1 + ρ2) (30)

where dσel
dt

is the differential elastic cross section.

The optical theorem can be expressed in terms of the previously defined invariant

scattering amplitude F , such as:

σtot =
4π

p
Imfel(t = 0) = 4

√
πImF (s, t = 0) (31)

Replacing σtot from Eq. 31 in Eq. 30 we get:

dσ

dt
= |F |2 (32)

In order to express the differential elastic pp cross section in terms of the forward

scattering parameters σtot, ρ and the nuclear slope parameter b, contributions from

both the Coulomb and the strong hadronic/nuclear interactions need to be consid-

ered. The differential cross section is related to the invariant scattering amplitudes

for the Coulomb and the hadronic interactions, the Fc and Fn, respectively, according

to:

dσel
dt

= |Fc + Fn|2 (33)

where Fc and Fn are functions of
√
s and t.

The Coulomb interaction scattering amplitude can be derived precisely in Quan-

tum Electro-Dynamics (QED), essentially the relativistic corrected Rutherford scat-

tering cross section, determines the scattering amplitude for the pure Coulomb in-

teraction [11]:

dσc
dΩcm

=

∣∣∣∣∣−αemG2
E(t)

2p sin2 θ
2

∣∣∣∣∣ (34)

where αem ∼ 1/137 is the fine-structure constant and GE(t) is the proton electro

form factor given by:

GE(t) =

(
1

1 + t
Λ2

)2

(35)

where Λ2 = 0.71 GeV2.
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Using Equation 24, the differential cross section for the Coulomb interaction can be

rewritten as:
dσc
dt

= π

∣∣∣∣−G2
E(t)

2αem
|t|

∣∣∣∣2 (36)

The invariant scattering amplitude for Coulomb interaction is:

Fc = −
√
πsG2

E(t)
2αem
|t|

(37)

The hadronic interaction at small-|t| is not well understood and because of the

non-perturbative nature of this kinematic regime, QCD perturbation theory cannot

be used to describe the hadronic scattering amplitude. However, experiments per-

formed at small-|t| have shown that this amplitude can be very well approximated

by a simple exponential function in |t|. The hadronic scattering amplitude can be

empirically derived by using the definition of the ρ parameter (see Eq. 28) and the

optical theorem (see Appendix A):

Fn =
s(ρ+ i)σtote

− b|t|
2

4
√
π

(38)

Calculation of the differential elastic cross section requires that the two ampli-

tudes, Fc (see Eq. 37) and Fn (see Eq. 38), are added together and squared (see Eq.

21). Thus, an interference term arises. The two amplitudes have a relative phase

with a phase factor which reflects the distortion of the pure amplitudes, Fc and Fn,

due to simultaneous presence of both Coulomb and hadronic scattering. This phase

is introduced in the Coulomb amplitude:

dσel
dt

=
1

16πs2
|Fce±iαemφ(t) + Fn|2 (39)

where the factor αemφ(t) is the relative phase between the Coulomb and hadronic

amplitudes, and ± is related to whether it is pp or pp̄ collision, respectively.

The differential elastic cross section at small-|t| can be expressed in terms of the

forward scattering parameters (σtot, ρ, b) as:

dσ

dt
= 4πα2

em

G4
E(t)

|t|2
+

1 + ρ2

16π
σ2
tote
−b|t| − αem

G2
E(t)

|t|
σtote

−bt
2 (ρ+ αemφ) (40)

The forward scattering parameters depend on the interaction energy
√
s.

The third term in Eq. 40 arises from the interference between the Coulomb and

hadronic interactions. When |t| is small enough to neglect F 2
n , then the interference
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term is proportional to (ρ ± αemφ). The relative phase αemφ, first calculated by

Bethe (1958) [35] in a potential scattering model, was then investigated by several

authors (West and Yennie 1968 [36]; Buttimore, Gotsman and Leader 1978 [37]; Cahn

1982 [38]), [11]. The helicity independent Coulomb phase δ = αemφ is approximately

[37], [38]:

δ = αemφ = αem

(
ln

2

|t|(b+ 8/Λ2)
− γ
)

(41)

where the so called slope-b is the logarithmic derivative of the differential cross section

at t = 0, a number ∼ 13 GeV−2 and increasing through the RHIC region [63],

γ = 0.5772 is the Euler’s constant. Replacing φ(t) = ln(0.08/|t|)− 0.5772 in Eq. 41,

where b = 15 GeV−2, we get for the Coulomb phase numerically δ ≈ 0.027 at t = t0,

the momentum transfer when the two amplitudes, Coulomb and hadronic, become

comparable to each-other:

|t0| ∼
8παem
σtot

(42)

|t0| ∼ 10−3 GeV2 at present energies [11].

The dependence of the differential cross section on |t| can be divided into three

regions: the Coulomb region, the Coulomb Nuclear Interference (CNI) region and

the hadronic region. In the low-|t| region, the Coulomb term dominates (see Eq. 37)

and dσ/dt has a (1/t2) dependence. As t increases, the relative contribution of the

interference increases and at higher-|t|, the hadronic term (see Eq. 38) dominates

and the elastic differential cross section falls exponentially with |t|.

Coulomb Region

The low-|t| region, the region where the Coulomb amplitude dominates, is the

region where a partial total cross section in t can be measured by comparing to QED

calculation. The total cross section of pp and pp̄ scattering has been successfully mea-

sured at other colliders such as Tevatron at Fermilab and CERN Intersecting Storage

Ring (ISR), at the respective available energies. Figure 4 shows the measurement

of pp and pp̄ total cross section at different cms energies
√
s [40]. Data on both pp

and pp̄ total cross sections are shown up to the maximum energies available at the

ISR (
√
s = 62 GeV). At these energies the pp and pp̄ total cross sections tend to

approach each other. The pp̄ total cross section was measured at higher energies at

the SPS/CERN and Tevatron/Fermilab. The pp total cross section can be measured
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at RHIC at a wide and previously unexplored energy range of 50 - 500 GeV. The

pp total cross section was measured very recently by the TOTEM collaboration at

CERN at a much higher energy of
√
s = 7 TeV [43]. This result is not included in

the plot in Fig. 4. The fit to the data comes from the predictions of the dispersion

relations [39].

There are two approaches to the measurement of the total cross section: (a)

Luminosity-Dependent Method, by measuring the scattering in the very-forward re-

gion and using the optical theorem (see Eq. 26) to calculate the total cross section

(but, this method requires knowledge of the absolute luminosity of the machine) and

(b) Luminosity-Independent Method, this method can be used when the machine lu-

minosity is not known or can not be measured precisely from other measurements.

The total cross section and the integrated luminosity L of the machine are related

as below:

Nel +Ninel = Lσtot (43)

where Nel and Ninel are the observed numbers of elastic and inelastic interactions,

respectively [40].

The first method requires measuring scattering in the very-forward region, which

experimentally is very challenging. Thus, the Roman Pot technique has been very

significant for this measurement in the very-forward direction. Measurements of

the absolute luminosity can be done at RHIC via Van de Meer (Vernier) scans of

the two proton beams. During a Vernier scan the two proton beams are scanned

stepwise across each-other while the count rate in detectors near the interaction

point (usually the zero-degree calorimeters, ZDCs), is recorded. The scan provides

the transverse beam size and the luminosity of the collider. The relation between

the differential elastic cross section and the measured distribution of the number of

elastically scattered protons (the count rate dNel/dt) is given by:(
dNel

dt

)
t=0

= L

(
dσel
dt

)
t=0

(44)

where L is the machine luminosity and dNel/dt is the number of elastically scattered

protons or the measured count rate per fraction of the momentum transfer squared-t.

This measurement method depends also on the acceptance and the efficiency of the

detector system used. Thus another factor appears in Eq. 44:(
dNel

dt

)
t=0

= Lµ

(
dσel
dt

)
t=0

(45)
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FIG. 4: The pp and pp̄ total cross section σtot as a function of cms energy
√
s. The

fit is from prediction of the dispersion relations [39]. The high energy behaviour is
described by the term (log s)γ. The best fit solid line correspond to γ = 2.2. The
dotted line is the result obtained with γ = 1 [40]. Data on both pp and pp̄ are shown
up to the maximum energies of the ISR (

√
s = 62 GeV). The latest result on pp total

cross section measured by the TOTEM collaboration at CERN at
√
s = 7 TeV [43],

is not included in this plot.
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where µ is the efficiency/acceptance coefficient related to the design of the experi-

mental apparatus.

The second method, Luminosity-Independent Method, provides a practical way to

measure the total cross section when luminosity of the machine is not known. The

optical theorem (see Appendix A), also in relation to Eq. 44, leads to the following

equation: (
dNel

dt

)
t=0

= L

(
dσel
dt

)
t=0

= L
σ2
tot(1 + ρ2)

16π
(46)

Combining Eq. 46 and Eq. 43, the luminosity can be eliminated and the total cross

section can be written as a function of the measurable count rates as follows:

σtot =
16π

1 + ρ2

(dNel/dt)t=0

Nel +Ninel

=
16π

1 + ρ2

(dNel/dt)t=0

Ntot

(47)

where Ntot = Nel + Ninel. Since it is very difficult to measure scattering at t = 0

experimentally, (dNel/dt)t=0 in Eq. 47 is extrapolated from the measured t-region of

nuclear scattering given by:

dNel

dt
=

(
dNel

dt

)
t=0

· e−bt (48)

The Luminosity-Independent Method was followed by the TOTEM collaboration in

the measurement of the pp total cross section at
√
s = 7 TeV [43]. The plot in Fig. 5

shows a compilation of the elastic (σel), inelastic (σinel) and total (σtot) cross section

measurements as a function of cms energy
√
s.

Furthermore, if measurement of the scattering in the Coulomb region can be

achieved experimentally, a normalization of the differential elastic count rate at very

small-|t|, yields a direct determination of the collider luminosity L, since the Coulomb

cross section is exactly calculable in QED.

Coulomb-Nuclear Interference Region

The Coulomb-Nuclear Interference (CNI) region, t ∼ 10−3 GeV2 or the region

where the Coulomb and hadronic amplitudes have comparable magnitude, is the

region where the measurement of the ρ-parameter (see Eq. 28) can be performed.

The Coulomb and hadronic amplitudes are equal at:

−tmax ≈
√

3
8πα

σtot
(49)

which for
√
s = 200 GeV with a pp total cross section of σtot = 60 mb, this occurs

at tmax ≈ −2 · 10−3 (GeV/c)2 and corresponds to a scattering angle of 0.54 mrad.
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FIG. 5: Compilation of the elastic (σel), inelastic (σinel) and total (σtot) cross section
measurements as a function of cms energy

√
s [43]

Measurement of the ρ-parameter is directly related to the measurement of the real

part of the forward scattering amplitude, which in turn is complementary to the

measurement of the total cross section. The real part of the forward scattering

amplitude is related to the energy dependence of the total cross section [41]. The

plot in Fig. 6 shows the measurement of the ρ-parameter as a function of cms energy
√
s.

Being able to measure polarized pp scattering in the CNI region, is crucial for

the measurement of the spin-dependent variables, such as spin asymmetries. This is

especially important for the measurement of the transverse single spin asymmetry,

AN , since the interference of the two amplitudes results in a measurable asymmetry

in this kinematic region. AN , also referred to as ”the analyzing power”, is maximum

in the CNI region. The measurement of the single spin asymmetry AN is the main

subject of this thesis and will be explained in details in section 2.8.
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FIG. 6: Measurement of the ρ-parameter as a function of cms energy
√
s. The fit is

from prediction of the dispersion relations [39].
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FIG. 7: Measurement of the b-parameter as a function of cms energy
√
s.

Hadronic/Nuclear Region

The region where the hadronic amplitude is dominant is the region sensitive to the

measurement of the 3rd forward scattering parameter, the nuclear slope parameter

b. The plot in Fig. 7 shows the measurement of the nuclear slope parameter as

a function of of cms energy
√
s. The nuclear slope parameter b was successfully

measured by PP2PP collaboration at RHIC at
√
s = 200 GeV, in 2003 [138] (not

included in the plot).

2.3 OVERVIEW OF pp AND pp EXPERIMENTS

Elastic scattering has been studied in pp and pp̄ collisions at CERN Intersecting

Storage Ring (ISR), Tevatron at Fermilab and RHIC at BNL. The elastic scattering

process historically has been an important tool in the study of strong interaction

and together with the measurement of the total cross section, have been the first

measurements performed in a new accelerator. Table 29 in Appendix B gives a

chronological overview (latest first) of the pp and pp̄ elastic scattering experiments

at high energy [14]. Table 29 in Appendix B includes detailed information on the

location of the experiment, the type of experiment, the
√
s and |t| ranges covered
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during each experiment, the year when the experiment was performed and references.

Table 1 summarizes the highest energy for pp and pp̄ elastic scattering experiments

at the above-mentioned accelerator facilities. Additional information on whether the

beams are polarized or not is indicated. At CERN ISR, the highest center of mass

energy (
√
s) at which experimental studies have been performed in pp collisions

is at
√
s = 62.8 GeV with unpolarized beams and at

√
s = 20 GeV with polar-

ized beams. The pp̄ collisions have been studied at the
√
s = 53 GeV at CERN

ISR and at
√
s = 1.8 TeV at Tevatron (Fermilab). RHIC provides a unique op-

portunity to cover a previously unexplored center of mass energy in the study of

polarized pp collisions, at a wide energy range of 50 GeV ≤
√
s ≤ 500 GeV. The

PP2PP experiment at RHIC, designed to study pp elastic scattering collisions at the

available wide
√
s energy at RHIC and four momentum-transfer squared range of

2 × 10−4 (GeV/c)2 ≤ |t| ≤ 1.5 (GeV/c)2, had a successful period of data taking in

2002 and 2003, performing the first measurement of elastic scattering at
√
s = 200

GeV. Before the 2008 RHIC run, the Roman pots were installed on both sides of the

STAR interaction point and the PP2PP experiment was integrated with the STAR

experiment. This part of the STAR experiment physics program, called Physics with

Forward Tagged Protons at STAR, makes use of the Roman pots as very-forward

proton detectors and requires special running conditions (special beam optics), dif-

ferent from the other STAR experiments. With this experimental configuration, the

STAR collaboration had a successful period of data taking during the 2009 RHIC

run, collecting ∼33M elastic triggers and ∼1M Central Production (CP) (see Fig. 1

(c)) triggers at
√
s = 200 GeV. The physics program of Forward Tagged Protons at

STAR entails measurement of both spin-averaged and spin-dependent observables in

elastic and inelastic processes:

• Spin-Averaged Observables in pp Elastic Scattering: the differential

elastic cross section dσ/dt, the total cross section σtot, the nuclear slope param-

eter b and the ratio of the real to the imaginary part of the forward scattering

amplitude ρ

• Spin-Dependent Observables in pp Elastic Scattering:

– With Transverse Beam Polarization: the analyzing power AN , the

double spin correlation parameters ANN and ASS and the difference in
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TABLE 1: Overview of pp and pp̄ elastic scattering experiments in the world

Collider Type Center of Mass
Accelerator of Energy

Facility Experiment
√
s

ISR at CERN pp collisions (unpolarized beams) 62.8 GeV

ISR at CERN pp collisions (polarized beams) 20 GeV

ISR at CERN pp̄ collisions 53 GeV

Tevatron at Fermilab pp̄ collisions 1.8 TeV

RHIC at BNL pp collisions (polarized beams) 50 GeV ≤
√
s ≤ 500 GeV

LHC at CERN pp collisions (unpolarized beams) 14 TeV

the total cross section as a function of initial transverse spin states ∆σT =

σ↑↓tot − σ
↑↑
tot

– With Longitudinal Beam Polarization: the double spin correlation

parameter ALL

• Central Production (see Fig. 1 (c)) and Single Diffraction Dissociation

processes (see Fig. 1 (b)) and their spin dependence

A future goal of the physics program is to perform these experiments at RHIC at
√
s = 500 GeV.

2.3.1 THE TOTAL CROSS SECTION

The Pomeranchuk theorem [15], states that for any scattering process in which

there is an exchange of charge, the total cross section vanishes asymptotically as
√
s

increases. Foldy and Peirels [16] proved that, for a particular scattering process, if

the cross section does not fall as
√
s increases, then the process must be dominated by
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the exchange of quantum numbers of the vacuum. Pomeranchuk [15] predicted that

the total cross sections would approach a constant asymptotic limit, and the Regge

trajectory whose exchange ensures this behaviour became known as the Pomeron.

The Pomeron is a color singlet combination of gluons carrying quantum numbers of

the vacuum JPC = 0++. The Pomeron is a Regge trajectory, which was postulated

in order to explain and is believed to be responsible for the high-energy interaction

at small-|t|.
Experimental data indicate that the total cross section σtot does not vanish, but

rises slowly as
√
s increases. The rate at which the pp total cross section rises is

limited by the Froissart bound:

σtot(s→∞) < R2 ln2 s (50)

where R is the finite range of the hadronic interaction. The Froissart bound implies

that σtot cannot grow more quickly than ln2s, as s increases.

This behavior of the σtot at large-s, seems to be identical for pp and pp̄ collisions.

The plot shown in Fig. 8 summarizes existing world elastic scattering data for pp and

pp̄ collisions. The total cross section σtot, the ratio of the real to imaginary part of the

forward scattering amplitude ρ and the slope parameter b, are plotted as a function

of the center of mass energy
√
s. The center of mass energy available at RHIC is

indicated in Fig. 8. The measurement of b performed by the PP2PP experiment at

200 GeV is also shown in Fig. 8 [138].

There is a difference in the total cross sections of pp and pp̄ collisions at small energy
√
s ≤ 10 GeV. The total cross section of pp̄ is higher and both cross sections are

decreasing with increasing
√
s. This difference at low energy is due to the Coulomb

interaction. As the energy increases this effect of the electromagnetic interaction be-

comes smaller and at large
√
s, the difference between the two cross section decreases

and is expected to converge to zero:

lim√
s→∞

σtot(pp̄)

σtot(pp)
≈ 1 (51)

An observation of the total cross sections at
√
s = 20 GeV shows that both the

pp and pp̄ total cross sections rise. The total cross sections seem to converge slowly,

although comparison is not possible after 60 GeV, because of the lack of data on

pp σtot. Experiments at RHIC in pp collisions can provide data in the previously

unexplored center of mass energy range of 50 GeV ≤
√
s ≤ 500 GeV.
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FIG. 8: Measurements of the forward scattering parameters (σtot, ρ, b) in pp and pp̄
collisions.
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2.3.2 DIFFERENTIAL CROSS SECTIONS

At small-|t|, including the CNI region, the differential cross section can be

parametrized by the forward scattering parameters, σtot, ρ and b. The ρ-parameter,

increases from -0.4 to 0.1, by changing sign around
√
s = 10 GeV, then it seems to

remain constant for pp̄ (see Fig. 8).

CERN ISR provided experimental data in the intermediate-|t| region. At |t| < 0.8

(GeV/c)2 the differential cross section decreases exponentially and after a diffraction

dip at |t| ∼ 1.4 (GeV/c)2, it continues to decrease slowly. The Chou-Yang geometrical

model [20] had previously predicted the existence of a diffraction dip in the differential

cross section. The impact picture model by Bourrely et al. [24], [25] and [26], gives

a good description of the experimental data in the dip region. The differential cross

sections between pp̄ and pp differ significantly, with pp̄ showing a less pronounced dip

structure than pp [14]. For large-|t|, −t > 3.5 (GeV/c)2, the differential cross section

can be described in the form:

dσ

dt
= Ct−8 (52)

where C = 0.09 mb GeV14 [32].

2.4 MEASUREMENT OF SLOPE PARAMETER b IN pp ELASTIC

SCATTERING AT RHIC

In this section we will talk briefly about the measurement of one of the spin-

averaged observables, the exponential slope-parameter b of the pp differential elastic

cross section, by the PP2PP experiment at
√
s = 200 GeV at RHIC. Bültmann et

al. [138], performed the first measurement of the exponential slope parameter b of

the diffractive peak of the elastic cross section at 200 GeV cms energy and in the

t-range 0.010 ≤ |t| ≤ 0.019 (GeV/c)2. Fig. 9 shows the measured dN/dt distribution

of the selected elastic events [138], as a function of t.

The distribution is fit by using equation for the differential elastic cross section

Eq. 40, with b as a free parameter. The slope parameter b was measured to be 16.3

± 1.6 (stat.) ± 0.9 (syst.) (GeV/c)−2 at
√
s = 200 GeV at RHIC [138]. This result is

included in the plot on the measurement of the forward scattering parameters (σtot,

ρ, b), from several pp and pp̄ elastic scattering experiments, in Fig. 8.

2.5 REGGE THEORY AND THE POMERON
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FIG. 9: The dN/dt distribution of selected elastic events as a function of t. The two
distributions shown are the measured data and the simulated acceptance function
(below). The fit is shown by the solid line. [138].

Regge theory has been very successful as a phenomenological model, in describing

a large class of reactions for which no alternative theoretical framework has been

presently available [11]. The Regge pole idea was originally formulated based on

the non-relativistic quantum mechanics. In quantum mechanics one denotes the

partial wave amplitudes by al(k). Regge’s idea starts from the bound states for a

spherically symmetric potential. These bound states appear as poles of the partial

wave amplitudes al(k). Regge (1959, 1960) continued al(k) to complex values of l,

thus obtaining an interpolating function a(l, k), which reduces to al(k) for angular

momentum l = 0, 1, 2.... [11]. The singularities of a(l, k) are the Regge poles located

at values defined by the relation l = α(k), where α(k) is function of the energy

called Regge trajectory. The extension of the Regge technique to high-energy particle

physics is originally due to Chew and Frautschi (1961) and Gribov (1961), [11].

Regge theory belongs to the class of the so-called t-channel models. The Mandelstam

variables for two related processes given as: (1) a + b → c + d and (2) a + c̄ → b̄ +

d are defined as: (for reaction 1) s1 = (pa + pb)
2 and t1 = (pa - pc)

2; (for reaction 2)

s2 = (pa - pb̄)
2 = t1 and t2 = (pa + pc̄)

2 = s1. In this example, reaction (1) is usually

refereed to as s-channel and reaction (2) as t-channel.

Regge’s approach for studying the scattering amplitude at large energy and finite
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momentum transfer, makes use of the s, t correspondence, where the amplitudes of

the s-channel and t-channel are related by the crossing symmetry, such as: Ta+c̄→b̄+d

(s, t, u) = Ta+b→c+d (t, s, u), where u is the third Mandelstam variable. The t-channel

models describe the hadronic processes in terms of the t-channel exchange of a virtual

particle. According to Regge theory, the strong interaction is not mediated by the

exchange of particles with definite spin, but rather the exchange of a Regge trajectory,

which is a family of resonances. The large s-limit of a hadronic process, known as

the Froissart bound, is determined by the exchange of one or more Regge trajectories

in the t-channel. Regge trajectories are often called reggeons. Exchanging reggeons

instead of particles leads to scattering amplitudes which are in general less divergent

[11]. They do not violate the Frossart-Martin bound if α(0) < 1.

2.5.1 REGGE TRAJECTORY

For the two-body t-channel scattering process given in reaction (2) a + c̄ → b̄

+ d, the scattering amplitude can be expanded in terms of Legendre Polynomials

Pl(cos θ), as a function of s and t:

Ta+c̄→b̄+d(s, t) = Σ∞l=0(2l + 1)al(s)Pl(cos θ) (53)

where the functions al(s) are the partial wave amplitudes. By using the relation

between the scattering angle θ and Mandelstam-t given in Eq. 20, and by inter-

changing s and t using the crossing symmetry, we obtain the scattering amplitude in

the corresponding s-channel:

Ta+b→c+d(s, t) = Σ∞l=0(2l + 1)al(t)Pl(1 +
2s

t
) (54)

[14]. Using the Sommerfeld-Watson transformation [44], the wave expansion of Eq.

54 may be written in terms of a contour integral in the complex angular momentum

plane:

T (s, t) =
1

2i

∮
C

dα(2α + 1)
a(α, t)

sin πα
P (α, 1 +

2s

t
) (55)

[14]. The denominator sinπα in Eq. 55, vanishes for integer l when α = 1, resulting

in poles/singularities, called Regge poles. The analytic function a(α, t) is expressed in

two forms according to the quantum number τ , the signature of the partial wave [11]

which is expressed as τ = ± 1. Thus we have two analytic functions a+1(α, t) and

a−1(α, t), called even- and odd-signature partial wave functions, respectively. The
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FIG. 10: The Chew-Frautschi plot for mesons, α(t) vs mass squared or t GeV2. Regge
trajectories lie in a straight line.

simple poles αnτ (t) are called even for τ = 1 and odd for τ = -1 signature Regge

poles [14].

Chew and Frautschi [45] plotted the spins of the low lying mesons against mass

squared and noticed that they lie in a straight line, called Regge trajectories. This is

shown in Fig. 10.

It can be shown that a(α, t) is unique when a(α, t) < eπ|α| as |α| → ∞, [14, 46].

The Regge trajectories are parametrized as: α(t) = α(0) + α
′
t, where α(0) is the

intercept and α
′

is the slope. Fig. 10 shows the leading mesonic trajectories with

largest α(0). Each trajectory has quantum numbers: parity (P ), charge conjugation

(C), G-parity, isospin (I), strangeness (S) etc. [11], i.e. the trajectory f2 has quantum

numbers of the vacuum, like the Pomeron (P = +1, C = +1, G = +1, I = 0, S =

0, B (baryon number) = 0; τ (signature) = 1).

2.5.2 POMERON AS A REGGE TRAJECTORY

Using the Regge trajectory which dominates a particular scattering process, we

obtain the asymptotic behavior of the total cross section:

σtot ∼
1

s
ImTa+b→c+d(s, t = 0) ∼ sα(0)−1 (56)
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where α is the leading trajectory exchanged in elastic scattering [14]. Since all total

cross section are nearly constant at high energy, α(0) ≈ 1 in Eq. 56. The trajectory

with α(0) = 1 is the Pomeron, as this is not possible for meson trajectories. The

Regge trajectories given in Fig. 10 have intercept which do not exceed 0.5, and their

exchange leads to total cross sections decreasing with energy. However, it has been

experimentally shown that the hadronic total cross sections as a function of s are flat

around
√
s ∼ 10 - 20 GeV2 and increase at higher energies. In order to account for

asymptotically constant total cross sections, Chew and Frautschi (1961) and Gribov

(1961) introduced ad Regge trajectory with intercept 1 [11], named ”Pomeron” after

I.Ya. Pomeranchuk (originally named as pomeranchukon after the Russian scientist,

but then later abbreviated to Pomeron). The Pomeranchuk theorem [15] asserts that,

under certain quite strong assumptions, the total cross sections for collisions of a par-

ticle and the corresponding antiparticle on the same target become asymptotically

equal at high energy [65]. Collins summarized in 1977 [13] that the inclusion of the

Pomeron in the Regge theory, provides a very successful description of the experi-

mental data in high-energy diffractive scattering. First attemts to explain Pomeron

in terms of QCD were done by Low [17] and Nussinov [18]. However, the precise

nature of the Pomeron is still not clear.

The slowly rising total cross at high energy (at
√
s beyond 200 GeV) is attributed

to the exchange of a single Regge pole with intercept α(0) = 1, carrying vacuum quan-

tum numbers. Since the behavior of the total cross section seems to be independent

of the flavor of the scattering hadrons (and thus independent of their quark struc-

ture) and since all the known trajectories involving quark structure have α(0) ≥ 1,

the dominant mechanism at high energy (the Pomeron) in the elastic and diffractive

processes, represents gluonic exchange. In the parton model, the Pomeron is defined

as a colorless combination of two or more gluons. The Pomeron and the f meson

have the same flavor properties, it may be expected that the longest-range part of

the coupling at small |t|, comes from the formation of a virtual f meson.

Another Regge trajectory important in high energy scattering is the odd-signature

partner of the Pomeron, the so-called ”Odderon”. The Odderon was introduced by

Lukaszuk and Nicolescu (1973) and its existence would cause differences between the

asymptotic scattering amplitudes and cross sections of pp and pp̄ scattering.
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2.6 PHENOMENOLOGICAL MODELS ON pp ELASTIC

SCATTERING

The kinematic region of our interest in this experiment is the Coulomb-Nuclear In-

terference region, or the small-|t|. This kinematic region lies in the non-perturbative

QCD regime, where the scattering process cannot be described by perturbative QCD,

since the the coupling constant (α) is not small enough to allow the use of pertur-

bation theory in QCD calculations. With the increasing of hadron-hadron scattering

data at medium and high energy, several phenomenological models have been devel-

oped to understand the diffractive process at low-|t| and to interpret the experimental

data. Regge approach, which was described briefly in the previous section, tells us

that the exchange of t-channel reggeons (with the Pomeron as the leading singularity),

determines the asymptotic behavior of the cross sections in the direct s-channel [11].

The various phenomenological models that have been developed, have been successful

in the explanation of various features (i.e. energy dependence of the cross sections,

the diffractive slope, the ρ-parameter, the diffractive dip (minima) in the data), both

qualitatively and quantitatively. These phenomenological models used to explain

pp and pp̄ elastic scattering include: the Geometrical/Optical Models proposed by

Yang and collaborators [20, 21], (i.e. the Expanding Protons Model by Cheng and

Wu (1987) [22]), the Impact Picture Model by Bourrely, Soffer and Wu [24–26] and

a Multiple Exchange Model by Donnachie and Landshoff (the Donnachie Landshoff

(DL) Model) [32,34,65].

2.6.1 GEOMETRICAL MODELS

The geometrical models used to describe hadronic processes are based on the

similarities between optics and hadronic physics, although the two fields appear to be

distant from each-other at first sight. The intersection point, or the similarity between

the two fields in physics, is the diffractive phenomena that characterizes scattering

processes. In this context, the interacting hadrons in high energy scattering are

viewed as extended objects composed of hadronic matter (partons), flying through

each-other [11]. At each point, the interaction is proportional to the local density

of hadronic matter, assumed to have a distribution similar to the electric charge

distribution [11]. The geometrical model is based on the spatial distribution of matter

in the proton. The spatial distribution of the hadronic matter in the interacting

hadrons can be related to the measured transfer of the three-momentum by the
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Fourier transformation.

This model is analogous to the phenomena of the Fraunhofer diffraction from a

black disk. When a macroscopic object is illuminated by an electromagnetic wave,

and if the wavelength of the illuminating EM wave s small compared to the dimension

of the obstacle/object, the diffractive phenomenon occurs and we observe diffractive

maxima, separated by minima. Similarly in hadronic collisions, the incoming particle

sees the target as a disk with a two-dimensional density. At very small wavelength

compared to the disk’s dimensions, which in the analogy corresponds to the high

energy limit, the total cross section tends to be constant. With increasing energy, the

target behaves more and more like a perfectly black disk [14]. The geometric/optical

model treats elastic scattering as the shadow of the absorption resulting from the

passage of one hadron, with a certain hadronic matter distribution, through another

[14]. In this context, geometrical optics becomes relevant in the description of the

high energy hadronic processes.

Chou and Yang [19], use geometrical model to predict the existence of many

diffraction dips in high energy hadron-hadron elastic scattering. In their model,

the cross sections are written following the eikonal formalism. First as usual one

starts from the scattering amplitude. The scattering amplitude based on the eikonal

formalism is written as (for details on the derivation refer to p. 29 of [11]):

f(k, θ, φ) =
ik

2π

∫
d2be−iq·b(1− eiχ(b)) (57)

where k is the momentum, q is the momentum transfer such as −q2 = t, b here is the

impact parameter (not to be confused with the slope parameter-b), χ is the eikonal

function defined as:

χ(b) = − 1

2k

∫ +∞

−∞
U(b, z)dz (58)

[11]. The quantity Γ(b) ≡ 1 - eiχ(b) is the profile function analogous to optics, [11].

In the geometrical model, the elastic differential cross section is written by adopt-

ing the eikonal approximation for very small wavelengths [19], such as:(
dσ

dt

)
el

=
1

4π

∣∣∣∣∫ ei
~k·~b(1−e−Ω(b))d2b

∣∣∣∣2 (59)

where ~b is the two-dimensional impact parameter, ~k is the two-dimensional momen-

tum transfer, Ω(~b) is the blackness at impact parameter ~b. The blackness function
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Ω(s, b), also called the opacity, is factorized as:

Ω(s, b) = K(s)D(b) (60)

where K(s) is an energy-dependent free parameter of the model, to be determined

from the energy dependence of the total cross section σtot data and D(b) is related

to the electric form factors (GE) of the colliding hadrons. D(b) is expressed as [11]:

D(b) =

∫
d2b

′
TA(b− b

′
)TB(b

′
)(61)

where A and B denote the two interacting hadrons, T (b) is related to the charge

density ρ(b, z) of the hadron by T (b) =
∫ +∞
−∞ dz ρ(b, z). D(b) is then expressed as:

D(b) =

∫
d2q

(2π)2
eiq·bGA(q2)GB(q2) (62)

where GA,B are the form factors given as a function of momentum transfer −q2 = t:

GA,B(q2) =
∫
d2b e−iq·b TA,B(b) [11].

D(b) is related to the electric form factors (GE) of the colliding hadrons. The

opacity is taken to be real, so that the amplitude is purely imaginary. The total cross

section is also expressed in terms of the opacity:

σtot = 2

∫
(1− e−Ω(s,b))d2b (63)

[19].

In the ”Expanding Protons” model by Cheng and Wu [22], the hadron radius is

described to increase logarithmically with the energy, and because of this expansion

the total cross section must increase as (ln s)2 in the limit of high energies. The

imaginary part of the elastic scattering amplitude also increases as s(ln s)2, which

is the Froissart bound [22]. Cheng and Wu [22], give a schematic representation

of the high-energy particle in the theory of expanding protons, shown in Fig. 11.

At extremely high energies the particle acts like a Lorentz-contracted ”pancake” [22],

composed of two parts: a black core (completely absorptive), with a radius expanding

logarithmically with energy; and a gray fringe (partially absorptive) with a width that

is independent of s [11,22].

2.6.2 IMPACT PICTURE MODEL

The pp and pp̄ elastic scattering are described by the following amplitudes:

a(s, t) = aN(s, t)± aC(t) (64)
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FIG. 11: The schematic representation of the appearance of a high-energy particle
in the theory of expanding protons [22].

where the upper sign is for pp̄ and the lower one is for pp, aN(s, t) is the hadronic

amplitude and aC(t) is he Coulomb amplitude (see Eq. 37) [26].

In the impact picture, the spin-independent hadronic amplitude for pp and pp̄

elastic scattering is expressed in the form:

aN(s, t) =
i s

2π

∫
e−iq·b(1− e−Ω0(s,b))db (65)

where q is the momentum transfer (t = −q2) and Ω0(s, b) is the opaqueness (blackness

function) at impact parameter b and at a given energy s. The opaqueness Ω0(s, b) is

the sum of two terms [29]:

Ω0(s, b) = S0(s)F (b2) +R0(s, b) (66)

The first term is associated with the Pomeron exchange, which generates the diffrac-

tive component of the scattering and the second is the Regge background, which

is different for pp and pp̄ and goes to zero rapidly as s increases. The Pomeron

energy dependence is given by the crossing symmetric expression (modeled via the

high-energy behavior of quantum field theory):

S0(s) =
sc

(ln s)c
′ +

uc

(lnu)c
′ (67)

where u is the third Mandelstam variable. The Fourier transform F̃ (t) is chosen to

be proportional to the square of the proton’s electromagnetic form factor G(t), with

a slowly varying function:
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F̃ (t) = f [G(t)]2
a2 + t

a2 − t
(68)

and the proton electromagnetic form factor is parametreized as:

G(t) =
1

(1− t/m2
1)(1− t/m2

2)
(69)

The slowly varying function given in Eq. 68 reflects the approximate propor-

tionality between the charge density and the hadronic matter distribution inside the

proton [23]. The Pomeron part of the amplitude depends on only six parameters c,

c
′
, m1, m2, f and a [29]. The asymptotic energy regime of hadronic interactions is

controlled by c and c
′
, which are kept at the values obtained in 1984 [25] and are

given as: c = 0.167 and c
′

= 0.748. The remaining four parameters are related to the

reaction pp and pp̄ and they have been fitted by the use of a large set of data [28]:

m1 = 0.577 GeV; m2 = 1.719 GeV; a = 1.858 GeV; f = 6.970 GeV−2, the Pomeron

parameters for pp and pp̄.

The spin-independent Regge background is gives as:

R̃0(s, t) = [C+ + C−e
−iπα(t)]sα(t) (70)

representing the standard even- and off-signature exchange contributions, with an

exchange-degenerate trajectory α(t) = α0 + α
′
t [24]. Summarizing all the above

expressions Eq. 66, 68, 69 and 70, we get: Ω̃0(s, b) = S0(s)F̃ (t) + R̃0(s, t), whose

Fourier transform provides Ω0(s, b). From this one can calculate the spin-independent

elastic scattering amplitude:

a0(s, t) = i s

∫ ∞
0

J0(b
√
t)(1− e−Ω0(s,b))bdb (71)

where J0 is the lowest order Bessel function.

Eq. 74 gives the expressions of the ratio of the real to the imaginary parts of the

forward scattering amplitude , the total cross section and differential cross section,

in terms of Eq. 71:

ρ(s) =
Re a(s, t = 0)

Im a(s, t = 0)
(72)

σtot(s) =
4π

s
Im a(s, t = 0) (73)

dσ(s, t)

dt
=

π

s2
|a(s, t)|2 (74)

which completes the description of the scattering amplitudes.
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2.7 MULTIPLE EXCHANGE MODEL

High-energy, small-t processes are believed to be controlled by single-Pomeron

exchange [34]. Landshoff and Polkinghorne [73] observed that the Pomeron couples

to the quarks rather like the photon, with a more-or-less constant γµ coupling, but

with a Regge signature factor which gives it even C-parity. The model proposed by

Donnachie and Landshoff in 1983 [32] is based essentially on three main contributions

to the scattering amplitude at high energy scattering: the single Pomeron exchange

for low-t region, the double-Pomeron exchange for medium-t region and the triple-

gluon exchange which dominates at large-t. The dip observed in high-energy pp

scattering (in the −t-range between 1-2 GeV2) is provided by the interference of

both the single-Pomeron exchange and the triple-Pomeron exchange with the double-

Pomeron exchange. The model predicts that the dip will not be found in high-energy

scattering [33] and the dip observed in low-energy pp̄ scattering is a the result of the

additional presence of reggeon-Pomeron exchange.

2.7.1 DONNACHIE AND LANDSHOFF (DL) MODEL

Starting in 1982, Donnachie and Landshoff analyzed the pp elastic scattering

data at the CERN ISR range of energies, in terms of multi-gluon exchange. At

small-t, the dominant mechanism is a version of the Chou-Yang model, improved to

incorporate multi-gluon exchange, whereas at large-t values the three-gluon exchange

dominates [32]. The dip-bump structure observed in pp at CERN ISR is produced

by a cancellation in the imaginary part of the Pomeron between single and double

exchanges exchanges, while the real part of the Pomeron is balanced by the triple-

gluon term.

The differential pp elastic cross section at high energies (Fermilab and CERN

ISR), and for −t ≥ 3.5 GeV2 obeys the power-law equation given in Eq. 52. It

was observed that this behavior is in agreement with the triple-gluon exchange. At

very small-t, the amplitude is known to be almost imaginary, while the triple gluon

exchange is real (at least to lowest order in perturbative QCD). While at large-t,

triple gluon exchange describes the data well, at smaller-t values additional gluons

are needed. The simultaneous exchange of a large number of gluons between a pair

of quarks is represented by the exchanged of a single object, the Pomeron [32]. In

order to describe the energy dependence of the pp total cross section, the Pomeron
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trajectory is given an intercept α(0) = 1 + ε, where ε = 0.1, without violating the

Froissart bound.

Donnachie and Landshoff use six kind of exchanges in their (DL) model [33]:

Pomeron (P) exchange, Reggeon (R) exchange, (RP) exchange, triple-gluon (ggg)

exchange, triple-Pomeron (PPP) exchange, exchange of a Pomeron plus two gluons

(Pgg) exchange, and double-Pomeron (PP) exchange.

Single-Pomeron (P) exchange gives the following contribution to the pp elastic

scattering:

i[3βF1(t)]2e[(αP (t)−1)(log(s/m2)− 1
2
iπ)](ū3γ

µu1)(ū4γµu2) (75)

where β is the (constant) coupling of the Pomeron to the quarks, 3 accounts for the

three valence quarks in the proton, and u1,....,u4 are the spinor wave functions of

the protons [33]. F1(t) is the Dirac form factor. Single Pomeron exchange between

quarks is given by an amplitude similar to Eq. 75, but without the form factor F1(t).

The contribution of Eq. 75 to the differential cross section for unpolarized pp and p̄

scattering is:

dσ

dt
=

(3βPF1(t))4

4π

( s

m2

)(2αP (t)−2)

(76)

[33] and p.53 in [65]. A fit to the data for F1(t) in the region |t| < 1 GeV2 is provided

as:

F1(t) =
4m2

p − 2.79t

4m2
p − t

1

(1− t/0.71)2 (77)

where mp is proton mass [65]. The Pomeron tajectory is assumed to be linear in t,

like the ρ, ω, f2, a2 trajectory but with a different slope: αP (t) = 1 + εP + α
′
P (t).

The value of α
′
P (t) is determined by comparing the shape of the formula given in

Eq. 76 with the data from CERN ISR R211 experiment at
√
s = 52.8 GeV [53] and

α
′
P (t) is determined to be 0.25 GeV [65].

The Reggeon (R) exchange for (ρ, ω, f , a2) is of concern for very small-t and is

omitted in the calcuation [33].

At energies below the ISR range, the Reggeon-Pomeron (RP) exchange becomes

important and it helps to provide the dip observed at 50 GeV/c in pp̄ scattering [33].

Triple-exchange terms, particularly (ggg) are necessary to provide the dip. To

calculate the triple gluon (ggg) exchange, (PPP ) and (Pgg) exchanges, a form for

the fractional longitudinal momentum distribution of the three constituent quarks
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FIG. 12: The triple-gluon exchange in pp and pp̄ elastic scattering [33].

needs to be assumed [32]. However, at any given energy pp and pp̄ elastic scattering

are predicted to be different in the dip region, because the ggg term contributes

to them with different signs [32]. Fig. 12 illustrates a diagram of the triple-gluon

exchange. Refer to [33] for the contributions of the triple-exchange terms (ggg, PPP

and Pgg to the pp scattering amplitude.

Double-Pomeron (PP ) exchange cannot be well calculated [73]. The s depen-

dence of the double-Pomeron exchange is well-known, but its t-dependence remains

uncertain. This becomes prominent in the dip-region of the high-energy pp data

(−t ∼= 1.4 GeV2). For smaller values of t, the double-Pomeron exchange is hidden

by the single-Pomeron exchange, and for larger t, by the ggg exchange [32]. The

double-Pomeron amplitude (for small-t values) is chosen to be:

−iDβ4F1(t)

log(s/m2)
e[(2ε+ 1

2
α
′
P t)(log(s/m2)− 1

2
iπ)](ū3γ

µu1)(ū4γµu2) (78)

with positive constant D the imaginary part of single Pomeron exchange cancels at

the dip, but the real part does not [33].

2.8 SPIN DEPENDENCE IN pp ELASTIC SCATTERING

In the following description of the spin-dependence of proton-proton elastic scat-

tering, we are going to use helicity instead of spin. Helicity is the projection of the

spin vector in the direction of momentum vector of the incoming and outgoing pro-

tons. The spin dependent proton-proton elastic scattering process is described in

terms of helicity amplitudes φi:

φn(s, t) = 〈h1h2|M |h3h4〉 (79)
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where h1 and h2 are the helicity states of the colliding/incoming protons, h3 and h4

are the helicity states of the scattered/outgoing protons, M is the scattering matrix

containing all the dynamics of the scattering process. The helicity amplitudes φi have

contributions from both the electromagnetic/Coulomb and hadronic interactions:

φn(s, t) = φEMn (s, t) + φHadn (s, t) (80)

Five independent helicity amplitudes are required to describe scattering of like-

fermions such as proton-proton elastic scattering [63]:

φ1(s, t) = 〈+ + |M |+ +〉 (81)

φ2(s, t) = 〈+ + |M | − −〉 (82)

φ3(s, t) = 〈+− |M |+−〉 (83)

φ4(s, t) = 〈+− |M | −+〉 (84)

φ5(s, t) = 〈+ + |M |+−〉 (85)

where Eq. 82 and Eq. 84 are the non helicity-flip amplitudes or the helicity conserving

amplitudes; Eq. 83 and Eq. 85 are the double helicity-flip amplitudes and Eq. 85

is one of the 4 possible combinations of the single helicity-flip amplitude. All the

above helicity amplitudes have contributions from the two interactions present in

this reaction: Coulomb and Hadronic interactions.

To put this description in perspective, scattering of unlike-fermions require a

sixth amplitude φ6, a single helicity amplitude which degenerates to −φ5 for identical

particles [63]. Both pp and pp scattering require 5 amplitudes, whereas the scattering

of a proton on a spin-zero particle, like a pion or a spin-less nucleus (i.e. carbon),

requires only two amplitudes, non-flip and flip amplitudes.

At very high
√
s and very small momentum transfer squared-t, such as the center

of mass energy and the momentum transfer of the reaction we are studying, the

mass of the proton m can be neglected when compared to
√
s. Likewise momentum

transfer t can be neglected with respect to m, simplifying the presentation of the

following formulas. The total cross section and the differential elastic cross section

are therefore expressed in terms of the helicity amplitudes:

σtot =
4π

s
Im(φ1(s, t) + φ3(s, t))|t=0 (86)
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dσ

dt
=

2π

s2
{|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + 4|φ5|2} (87)

Following this description and considering only initial state polarization, with one

or both beams polarized, one can measure seven spin-dependent asymmetries [63]:

AN
dσ

dt
= −4π

s2
Im{φ∗5(φ1 + φ2 + φ3 − φ4)} (88)

ANN
dσ

dt
=

4π

s2
{2|φ5|2 +Re(φ∗1φ2 − φ∗3φ4)} (89)

ASS
dσ

dt
=

4π

s2
Re{φ1φ

∗
2 + φ3φ

∗
4} (90)

ASL
dσ

dt
=

4π

s2
Re{φ∗5(φ1 + φ2 − φ3 + φ4)} (91)

ALL
dσ

dt
=

2π

s2
{|φ1|2 + |φ2|2 − |φ3|2 − |φ4|2} (92)

where AN is the analyzing power or the single spin asymmetry; ANN , ASS, ASL, ALL

are the double spin asymmetries corresponding to beams fully polarized along the

different unit vectors: the normal vector to the scattering plane (unit vector ~n); the

vector in the scattering plane and normal to the initial momentum ~p (unit vector ~s)

and L is the longitudinal direction. The unit vector ~s is represented as ~s = ~n×~p
|~n×~p| .

Eq. 89 shows that the single spin asymmetry AN results from the interference

of the single helicity-flip amplitude φ with the other amplitudes. If we take a closer

look at Eq. 89 and take into account that each of the helicity amplitudes consists

of the Coulomb and hadronic contributions: φi = φemi + φhadi , we can express AN in

terms of the interference between the helicity amplitudes from Coulomb and hadronic

interactions. The Coulomb/electromagnetic amplitudes φemi can be described by

QED [64].

The total cross section is expressed in terms of the hadronic amplitudes according

to the optical theorem:

σtot =
4π

s
Im(φhad1 + φhad3 )|t=0 (93)

providing a constraint on the parametrization of the helicity conserving hadronic

amplitudes φhad1 and φhad3 . We will introduce the following shorthands for easiness:

φ+ = (φ1 + φ3)/2 and φ− = (φ1 − φ3)/2. There are two cross section differences
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corresponding to longitudinal and transverse polarization:

Imφ−(s, 0)

Imφ+(s, 0)
=

1

2

∆L(s)

σtot(s)
,∆σL = σ ~← − σ ~→ (94)

Imφ2(s, 0)

Imφ+(s, 0)
= −∆T (s)

σtot(s)
,∆σT = σ↑↓ − σ↑↑ (95)

At small values of t, the interference of the strong amplitudes with the single

photon exchange amplitudes is important. This interference results in a measurable

asymmetry in elastic scattering in the Coulomb-Nuclear Interference (CNI) region,

the region where electromagnetic and strong amplitudes have comparable magnitude.

The helicity amplitudes have two components, electromagnetic and hadronic:

φi → φhadi + φemi eiδ (96)

where δ is the Coulomb phase and is approximately helicity independent [38,64]:

δ = α ln
2

|t|(b+ 8/Λ2)
− α γ, (97)

where b is the logarithmic derivative of the differential cross section at t = 0, also

called ”the slope” of the forward peak in elastic scattering (a number about 13 GeV−2

and increasing through the RHIC region); α is the fine structure constant; γ = 0.5772

is the Euler’s constant and Λ2 = 0.71 GeV/c2.

The proton from factors at small momentum transfer squared −t are given as in

Eq. 98:

GE(−t) = GM(−t)/µp = (1 + | − t|/Λ2)−2 (98)

where µp = κ + 1 and is the proton’s magnetic moment, and m is proton’s mass.

The electromagnetic amplitudes are expressed approximately:

φem1 = φem3 =
αs

t
F 2

1

φem3 = −φem4 =
αsκ2

4m2
F 2

2

φem5 = − αsκ

2m
√
−t
F1F2 (99)

where F1 and F2 are the proton electromagnetic form factors related to GE and GM

such as:
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F1 =
GE −GM t/4m

2

1− t/4m2
(100)

κF2 =
GM −GE

1− t/4m2
(101)

The relations between φ1 and φ3 and between φ2 and φ4, are special consequences

of the quantum numbers of the exchanged photon, they are not generally true for

the full amplitudes [63].

Each hadronic amplitude φi can be broken into two parts: φi ≡ φRi + φAsi , where

the first one φRi is controlled by Regge pole type dynamics and in the normalization

according to [63], decreases with energy like ≈ s−1/2 with respect to the asymptotic

part φAsi . The first term is essential in understanding the data in the low-to-moderate

energy region which overlaps the RHIC range [63], while the second term is important

in understanding of the rise of σtot(pp) and σtot(pp̄) asymptotically. The second

term φAsi is related to the exchange mechanism which dominates at high energies.

High energy diffractive scattering at small values of four-momentum transfer t, is

dominated by an exchange mechanism of the Pomeron trajectory [11,65]. Pomeron is

described in perturbative QCD as a color singlet combination of two gluons, carrying

quantum numbers of the vacuum [11,65]. There are two forms for φ+ to describe the

high energy behavior of σtot(pp): in the first the data is fit with s lnp s, where p ≤
2 [66,67], as suggested by Regge theory and the Froissart-Martin bound [68]:

|φ+| ≤ c s ln2 s (102)

as s→∞. In this approach ImφAs+ receives contributions from the simple pomeron

pole P , with intercept αP = 1, with a contribution growing at the maximum allowed

rate sln2s (sometimes referred to as a froissaron [66]): ImφAs+ (s) = aP s + aF sln
2s,

[63]. In the second, the Landshoff-Donnachie pomeron [34], with αP = 1 + ∆P ,

where ∆P ∼ 0.08, ensuing a behavior ImφAs+ ∝ s1+∆P , [63].

As t→ 0, the strong amplitudes φ1, φ2 and φ3 go to a possibly non-zero constant

while φ4 ∝ t and φ5 ∝
√
−t, as a consequence of angular momentum conservation [63].

The determination of the asymptotic spin dependence can be used to help identify

the dynamical mechanisms dominant at high energies [63]. There are three classes of

exchanges relevant to nucleon-nucleon scattering [69, 70], and their contribution to

the pp amplitudes is shown in Table 2:
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TABLE 2: Classification of pp amplitudes by exchange symmetries and the associated
Regge poles [63]

Class 1 Class 2 Class 3
τ = P = C τ = −P = −C τ = −P = C

φ+, φ5, φ2-φ4 φ− φ2+φ4

P , O, ρ, ω, f , a2 a1 π, µ, b

The various exchange mechanisms given in Table 2: Pomeron-P , Odderon-O etc.

are classified according to the quantum numbers: parity-P , charge conjugation-C and

signature-τ . An amplitude Aτ is called even or odd under crossing according as τ =

+1 or -1, since Aτ (e
iπs, t) = ∗

τ (s, t). If the asymptotically dominant contribution has

definite quantum numbers, then unitarity requires it has the quantum numbers of the

vacuum [71]; this is the defining property of the Pomeron [63]. The quantum number

C or C-parity determines the relative sign of the contribution of a given exchange,

such as Ap̄pτ,P,C(s, t) = CAppτ,P,C(s, t). This implies that the Pomeron dominance and

the absence of an Odderon requires that the total cross sections for pp and p̄p be

equal [63]. Since experimental data in pp and pp̄ collisions performed at CERN

and Tevatron at high energies show that the pp and p̄p total cross sections behave

the same (rising equally) asymptotically. This may imply that the Pomeron is the

exchange mechanism dominating asymptotically. However, if and how the Pomeron

couples to φ5 and φ2 - φ4 is open to experimental study. Does the dominant behavior

become pure Pomeron/Froissaron as s → ∞ or can there be a substantial Odderon

contribution to these amplitudes [63]. An Odderon with nearly the same asymptotic

behavior as the Pomeron/Froissaron will be approximately π/2 out of phase with

it [63].

The helicity amplitudes φ2 and φ4 are important because they are directly related

to the double spin asymmetries. An important observation here is that the angular

momentum conservation forces φ4 to vanish as t→ 0, [63]. If the dominant exchange

has pure CP = 1 or CP = -1, then φ2 must also vanish in the forward region [71].
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FIG. 13: The enhancement of Odderon contribution to ANN due to interference
with the one-photon exchange. The three curves correspond to ratios of helicity
amplitudes: φ2/φ+ = 0.05i (pure Odderon), φ2/φ+ = 0.05 (pure Pomeron) and
φ2/φ+ = 0.05(1+i) (equal mixture), [72]

Table 2 shows that φ2 + φ4 and φ2 - φ4 couple to opposite values of CP . Therefore,

if only one value of CP is dominant asymptotically, φ2 ∼ ∓ φ4 as s → ∞ and it,

too, must vanish at t = 0 [63]. This makes the measurement of φ2 near t = 0,

or the measurement of the double spin asymmetries in the forward region a very

interesting probe for the study of the dynamics, although the same fact implies that

some asymmetries may be unmeasurably small.

Leader and Trueman [72] showed that the asymmetry ANN is sensitive to the

contribution from Odderon exchange, in high energy pp scattering. An enhancement

illustration of the Odderon contribution to ANN due to interference with the one-

photon exchange is presented in [72], see Fig 13. So, the measurement of ANN at

high energies is a sensitive probe to the search of the negative charge conjugation

partner of Pomeron. In addition, the Odderon can be observed in the dip region of

pp and pp̄ elastic scattering.

2.8.1 MODELS FOR THE POMERON HELICITY-FLIP

Several models have been introduced to understand the helicity-flip amplitudes

of the Pomeron, the dominant exchange mechanism at high energies, and its spin

coupling to the nucleon. Several theoretical approaches predict a non-zero spin-

dependent amplitudes for elastic scattering. An early model that preceded the QCD
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formulation, introduced by Landshoff and Polkinghorne [73], is called the quark-

parton model. The model shows that the t-dependence of the Pomeron coupling is

determined by the electromagnetic form factors of the proton and neutron. This led

to a conclusion that the helicity-flip coupling is given by the isoscalar anomalous

magnetic moment of the nucleons, giving r5 = (µp - 1 + µn)/2 = -0.06 [63]. This

relation was obtained subsequently in a variety of models based on QCD [63].

Perturbative QCD

The perturbative Pomeron couples to a hadron through two gluons and the quark-

gluon vertex conserves helicity [63]. However, the case for the proton needs to be

considered carefully. Ryskin [74], introduced a model which evaluates the Pomeron

helicity-flip coupling analogously to the isoscalar magnetic moment of the nucleon.

This analogy was applied by [74] to the quark-gluon vertex and the anomalous color

magnetic moment of the quark was found. Ryskin calculated the helicity-flip part of

the Pomeron-proton vertex, using the two-gluon model for the Pomeron and the non-

relativistic constituent quark model for the nucleon. He showed that Imr5 = 0.13,

a result independent of energy. The spin-flip part of the three-gluon Odderon was

also estimated in [74] and the helicity component was found to be nearly the same

as for the Pomeron [63]. However, the helicity is defined relative to the direction of

the proton momentum, and the quark momenta are oriented differently, making the

proton helicity different from the sum of the quark helicities [75]. Perturbative QCD

shows that the helicity-flip amplitude in pp elastic scattering correlates with the quark

wave function of the proton and the spin effects cancel out if the spatial distribution

of the constituent quarks in the proton is symmetric [63,75]. However, if the proton

wave function is dominated by a quark configuration containing a compact diquark

(ud), the Pomeron helicity-flip is non-zero. The more the proton wave function is

symmetric (the smaller the diquark is) the larger is Imr5 [63, 75]. As the diquark

size is accepted to be 0.3 -0.4 fm, therefore Imr5 does not exceed 10%. In general,

theoretical calculations emphasize values of Imr5, since the maximum of AN in the

CNI region can be evaluated as κ - 2Imr5, as it will be shown in the sections to come.

Pion Exchange Model

A nucleon contains a pion cloud of large radius. Pumplin and Kane [76] introduced

a model for the Pomeron-nucleon coupling, by focusing on the inelastic interactions
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of the colliding hadron with the virtual peripheral pions of the nucleon, since the

helicity-flip amplitude is proportional to the impact parameter. This model predicts

a value for Imr5 ≈ 0.016(lns)3/2. The energy dependence is based on the radius of

the pion cloud, assumed to be proportional to
√

lns. A more detailed analysis which

focused on the correlation of the value of r5 with isospin, was undertaken by [77].

This analysis led to Imr5 = 0.06 for the Pomeron (and 0.15 for the f -reggeon) [63,77].

Impact Picture Model

The impact picture model, derived by Soffer, Bourrely and Wu [24–26], gives a

successful description of pp and pp̄ scattering up to ISR (Intersecting Storage Ring

at CERN) energies. The spin-independent amplitude at high energies is shown as:

φimpact+ (s, t) = i s

∫ ∞
0

J0(b
√
−t)(1− e−Ω0(s,b))bdb (103)

where b is the impact parameter of the interaction, J0 is the lowest order Bessel

function and Ω0(s, b) is defined to be the opaqueness and is associated with the

Pomeron exchange. Ω0 is assumed to factorize as Ω0 = S0(s)F (b2), where S0(s)

is the crossing symmetric function which comes from the high energy behavior of

quantum field theory. The t-dependence of φimpact+ (s, t) is driven by F (b2), which

is related to the Fourier transform of the electromagnetic proton form factor [63].

The spin structure of the model [30], provides a good description of the polarization

data up to highest available energy, pL = 300 GeV/c [30, 63]. The spin dependent

amplitude at RHIC energies is given by:

φimpact5 (s, t) = i s

∫ ∞
0

J1(b
√
−t)Ω1(s, b)e−Ω0(s,b)bdb (104)

where Ω1(s, b) is the spin dependent opaqueness corresponding to the helicity-flip

component of the Pomeron. Ω1(s, b) factorizes as

Ω1(s, b) = S1(s)Fs(b
2) +R1(s, b) (105)

where Fs(b
2) is related to F0(b2) such as Fs(b

2) = bω(b2)F (b2) and w(b2) is not very

precisely known. The impact picture model is based on a rotating matter picture and

w is the angular velocity that specifies a rigid rotation [24]. w is replaced by a function

of impact parameter w(b), as given above, and is chosen such that w(b) → 0 as b2

→ ∞ [24]. In this case the motion is referred to as soft rotation, in contrast to rigid
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rotation [24]. Present theoretical knowledge does not allow a precise determination

of the function w(b2), therefore an arbitrary Gaussian form is chosen, [30]:

w(b2) = w0e
−b2/b20 (106)

values of parameters w0 = -0.06 GeV and b0 = 3.75 GeV−1, obtained from the fit of

17 and 100 GeV/c data [30].

The second term in Eq. 105 is a necessary Regge spin-dependent contribution

in order to study polarization and rotation parameters at low energies [24]. More

explicitly, R1(s, b) is the Fourier transform of the standard Regge background, given

in Eq. 70.

R̃1(s, t) =
√
t[C

′

+ + C
′

−e
−iπα(t)]ebtsα(t) (107)

[24].

This model leads to a negative value for Imr5 ≈ -0.06, if one assumes that the flip

component of the Pomeron is normalized at t = 0 by the nucleon isoscalar magnetic

moment [31,63]. Fig. 14 shows the Imr5 value calculated in this model as a function

of t. The graph shows that Imr5 increases with energy.

The single spin asymmetry is given in terms of the Coulomb and hadronic ampli-

tudes in the impact picture formalism:

AN(s, t) =
4Im((φh1(s, t))∗φC5 (s, t))

Σi=1,....,5|φhi (s, t) + φCi (s, t)|2
(108)

2.8.2 HELICITY FORMALISM AND SPIN OBSERVABLES AN , ANN ,

ASS

The spin dependent differential cross section for the polarized protons can be

expressed in the form:

σ = σ0[1 + AN( ~Pb + ~Py) · ~n+ ΣAij( ~Pb ·~i)( ~Py ·~j)] (109)

where AN and Aij are the asymmetry parameters, ~Pb and ~Py are the beam polar-

ization vectors, ~n = (~kin × ~kout)/|~kin × ~kout|; ~k = ~kin/|~kin| where ~kin and ~kout are

the momentum vectors of the incident and scattered particles; ŝ is the unit vector

pointing along the spin quantization axis, such as cos β = k·s, its the direction is

given in terms of the angles β and φ (see Fig. 15), as given in [78].
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FIG. 14: Imr5 calculated in the impact picture model for two energy values:
√
s =

50 GeV (dashed curve) and
√
s = 500 GeV (solid curve), [63].
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FIG. 15: Coordinate system for the spin angles definition (scattering is in the x-z
plane): z is along the incident beam momentum, kin; y is along kin×kout and kout
is scattered beam momentum; x completes a right-handed coordinate system; unit
vectors along (x,y,z) are represented by (l̂,n̂,k̂); the unit vector pointing along the
spin quantization axis is denoted by s, its direction is defined by the angles β (the
angle between the quantization axis and the beam direction such as cos β = k·s) and
φ (the angle between the projection of s in the x-y plane and the y axis [78].
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For transversely polarized beams, Equation 109 can be rewritten in the following

form:

σ = σ0[1 + AN( ~Pb + ~Py) · ~n+ ANN( ~Pb · ~n)( ~Py · ~n) + ASS( ~Pb · ~s)( ~Py · ~s)] (110)

where the term containing ASN is not included since it has zero value due to parity

conservation.

Equation 110 is written in terms of event count rates N instead of cross section σ,

for the conditions of our experiment, as follows:

N++(φ) = N0[1 + AN(Pb + Py) cosφ+ PbPy(ANN cos2 φ+ ASS sin2 φ)] (111)

N−−(φ) = N0[1− AN(Pb + Py) cosφ+ PbPy(ANN cos2 φ+ ASS sin2 φ)] (112)

N+−(φ) = N0[1 + AN(Pb − Py) cosφ− PbPy(ANN cos2 φ+ ASS sin2 φ)] (113)

N−+(φ) = N0[1− AN(Pb − Py) cosφ− PbPy(ANN cos2 φ+ ASS sin2 φ)] (114)

where Pb = | ~Pb| , Py = | ~Py| are the polarizations of the two beams and N++, N−−,

N+− and N−+ are the azimuthal distributions of the scattered particles. N ij are the

normalized counting rates with respect to the luminosity for each spin combination.

G.G. Ohlsen and P.W. Keaton [78], have derived the expressions for measuring the

spin-dependent asymmetries and ratios and the corresponding statistical uncertain-

ties, i.e. the measurement of spin-1/2 analyzing power and its statistical uncertainty.

We can make use of the square-root formula based on the calculation of geo-

metric means [78], in order to exclude the external beam normalization (luminosity

dependence), as follows:

ε1 =

√
N++(φ)N−−(π − φ)−

√
N++(π − φ)N−−(φ)√

N++(φ)N−−(π − φ) +
√
N++(π − φ)N−−(φ)

=
AN(Pb + Py) cosφ

1 + PbPy(ANN cos2 φ+ ASS sin2 φ)
(115)

ε2 =

√
N+−(φ)N−+(π − φ)−

√
N+−(π − φ)N−+(φ)√

N+−(φ)N−−(π − φ) +
√
N++(π − φ)N−−(φ)

=
AN(Pb − Py) cosφ

1− PbPy(ANN cos2 φ+ ASS sin2 φ)
(116)

where ε1, ε2 are the ”raw asymmetries” for (↑↑, ↓↓) and (↑↓, ↓↑) spin combinations.



54

See Appendix C for a complete derivation of the spin-dependent parameters and the

square-root formula, by the ITEP group at the STAR collaboration. (φ) and (π -

φ) can also be and are often denoted as R and L, referring to right and left in the

azimuthal plane.

The term δ(φ) ≡ PbPy(ANN cos2 φ + ASS sin2 φ) is determined to be ≤ 0.028,

according to the measurement of the double spin asymmetries ANN and ASS by the

PP2PP experiment at RHIC in 2004, [79]. Thus, the term δ(φ) can be safely neglected

relative to 1, introducing a relative error less than 2 %. Recent preliminary results

on the double spin asymmetries ANN and ASS of our experiment (from the work

performed by the ITEP group at the STAR collaboration, [80], has showed that both

ANN and ASS are very small ≈ 0.005 (and compatible with zero), constraining δ(φ)

to ≈ 0.002, which can be safely neglected, refer to [81]. Ref. [81] is the recent result

on the measurement of the single spin asymmetry AN in polarized proton-proton

elastic scattering at
√
s = 200 GeV at RHIC, by the STAR collaboration from our

experiment.

The counting rates N++, N−−, N+− and N−+ can also be written as N↑↑, N↓↓,

N↑↓ and N↓↑ for each combination of the two beams. The single spin asymmetry AN

(analyzing power) and double spin asymmetry ANN can be expressed in the following

form:

AN =
1

Pb cosφ

N↑↑ −N↓↓ +N↑↓ −N↓↑
N↑↑ +N↓↓ +N↑↓ +N↓↑

(117)

AN =
1

Py cosφ

N↑↑ −N↓↓ −N↑↓ +N↓↑
N↑↑ +N↓↓ +N↑↓ +N↓↑

(118)

ANN =
1

PbPy cos2 φ

N↑↑ +N↓↓ −N↑↓ −N↓↑
N↑↑ +N↓↓ +N↑↓ +N↓↑

(119)

As suggested also by I.G. Alekseev et al., see Appendix C, only N++ and N−−

combinations carry information on AN parameter in case of equal polarization for

blue and yellow beams. The counting rates N+− and N−+, carry information about

the difference in polarizations of blue and yellow beams. The measurement of AN

using information fromN+− andN−+ combinations, can be used as a systematic error

of the result, depending on the our knowledge and precision of the polarization values

of the two beams and if their difference is expected to be zero. If the spin pattern
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consisted of only N++ and N−− combinations, it would be possible to measure AN

with an additional precision gain of
√

2, C. AN can also be measured in the case that

only one of the beams is polarized. The ”raw asymmetry” in this case is expected to

be half of the ”raw asymmetry”measured in the case where both beams are polarized.

In addition, we would have twice as more statistics in the case where only one beam

is polarized, giving a statistical precision of
√

2 times larger in the measurement of

AN .

2.8.3 THE TRANSVERSE SINGLE SPIN ASYMMETRY AN

The contribution of the two double helicity-flip hadronic amplitudes (φhad2 and

φhad4 ) to the single spin asymmetry AN is indicated to be small by both theoretical

predictions [82] and experimental measurements [79] (in pp elastic scattering at
√
s

= 200 GeV in 2004, at RHIC), and [80] (in pp elastic scattering at
√
s = 200 GeV

in 2009, at RHIC). Therefore, the main contribution to AN comes from the inter-

ference between the single photon exchange (Coulomb amplitude) with the hadronic

amplitude, and Eq. 89 reduces to:

AN
dσ

dt
= −8π

s2
Im(φem5 φhad+ + φhad5 φem+ ) (120)

where φ+ = (φ1 + φ3)/2 are the helicity conserving amplitudes and φ5 is the single

helicity-flip amplitude. In the one-photon exchange approximation φem+ and φem5 are

real and have well established expressions, as given in Eq. 99, so in order to give a

theoretical prediction for AN , one needs to know the hadronic amplitudes, [63]. The

imaginary part of the largest hadronic amplitude φhad+ is related at t = 0 to the total

cross section σtot as given in Eq. 93 and the interference term between φem5 and φ+ is

most prominent at t = -8πα/σtot ≡ tc, [63]. What is left in Eq. 120 is the hadronic

helicity flip amplitude φhad5 , the existence and the magnitude of which at this energy

and kinematic regime is not known. Previous measurements of AN in the CNI region,

from different experiments (including the measurement of AN at 200 GeV, by the

PP2PP experiment at RHIC), have been performed at different energy ranges and

will be shown in the next subsection.

Given the above, the first interference term between the electromagnetic helicity-

flip amplitude with the hadronic non helicity-flip amplitude (first term on the right

side of Eq. 120) can be calculated in QED (which means that AN can be calculated

in the absence of the hadronic helicity-flip amplitude φhad5 ), a measurement of AN in
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the CNI region is a probe to a contribution of a second interference term between

the electromagnetic non helicity-flip amplitude with a possible hadronic spin-flip

amplitude, φhad5 . The parametrization of φhad5 is given in terms of φhad+ , such as:

φhad5 (s, t) =

(
−t
m

)
r5(s)Imφhad+ (s, t) (121)

where m is the proton mass and r5 is a relative amplitude. As explained above,

the presence of a hadronic helicity-flip amplitude modifies the QED calculation and

the contribution of a hadronic helicity-flip amplitude to AN , is described by the

magnitude of the r5-parameter.

Our main interest in this study is the measurement of AN , whose main contribu-

tion comes from the interference of electromagnetic single helicity-flip amplitude φ5

with the non helicity-flip amplitudes (as given in Eq. 120), we will mainly focus on

the asymptotic behavior of φ5. The r5-parameter can also be defined as:

r5 = Re r5 + iIm r5 =
mpφ

had
flip√

−tφhad
non−flip

(122)

given also in Eq. 121. Therefore, the determination of the r5-parameter is the

measure of the hadronic spin-flip contribution to elastic pp scattering.

The asymmetry for the CNI region can be expressed as a ratio of a linear expres-

sion in tc/t in the numerator and a quadratic expression for tc/t in the denomina-

tor [83], and AN can be parametrized in terms of the r5 parameter, such as:

AN =

√
−t
m

[κ(1− ρ δ) + 2(δ Re r5 − Im r5)] tc
t
− 2(Re r5 − ρ Im r5)

( tc
t
)2 − 2(ρ+ δ) tc

t
+ (1 + ρ2)

(123)

In this formula tc = −8πα/σtot, κ is the anomalous magnetic moment of the proton,

ρ = Reφ+/Imφ+ is the ratio of the real to imaginary parts of non-flip elastic ampli-

tude, and δ is the relative phase between the Coulomb and hadronic amplitudes [63].

The Coulomb phase is small in the CNI region (≈ 0.02), getting smaller at larger-t

and it has a slight effect on the position of the maximum peak in AN :

tmax
tc

=
√

3 +
8

κ
(ρIm r5 − Re r5)− (ρ+ δ) (124)

where tmax is t value where AN experiences its maximum. However, the effect of

the phase δ is negligible in pp scattering, since it is multiplied by small amplitudes.
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The height of the peak is mainly sensitive to the unknown quantity Im r5, while

the shape depends on Re r5. An Im r5 of ± 0.1, modifies AN by about 11% and a

large value of Im r5 generates a very large uncertainty on Amax, [63]. The asymmetry

has a characteristic shape, which was first calculated by Schwinger [84] and other

authors [63,64,75]. The interference between the electromagnetic single spin-flip and

the hadronic non-flip amplitude gives rise to this asymmetry. Eq. 99 shows the value

of φem5 calculated for one-photon exchange approximation and can be written also as:

φem5 =
α
√
s√
|t|
µp − 1

2m
(125)

where α is the fine structure constant and µp is the proton’s total magnetic moment.

Overview of Measurements of the Transverse Single Spin Asymmetry AN

in the Coulomb Nuclear Interference (CNI) Region

The transverse single spin asymmetry (analyzing power) AN has been extensively

measured for pp elastic scattering. One of these measurements in the first measure-

ment of AN in the CNI region, performed by E704 experiment at Fermi National

Accelerator Facility (Fermilab) [85], using a polarized proton beam on a fixed target

at a lab momentum pL = 200 GeV/c and at the kinematic region where −t from 1.5

× 10−3 (GeV/c)2 to 5.0 × 10−3 (GeV/c)2. The plot given in Fig. 16 shows the AN

results as a function of t, measured by the E704 experiment at a lab momentum pL

= 200 GeV/c. The two fits in the E704 data allow a non-zero r5, the solid curve is

the best fit with the constraint that φ5 is in phase with φ+. If the two amplitudes

have the same asymptotic behaviour, they will have the same phase [63]. Fitting

with this constraint results in an |r5| = 0.0 ± 0.16 from the fit, and fitting without

the constraint results in |r5| = 0.2 ± 0.3 with a relative phase angle to φ+ of 0.15 ±
0.27 rad [63].

The plot in Fig. 17, [85] shows results on the measurement of AN as a function

of −t from E704 experiment at 200 GeV/c along with preliminary results from the

same experiment at 185 GeV/c [86]. There are other data points on the same plot

from polarized target experiments at different lab momenta: 300 and 100 GeV/c by

Snyder et. al., [87]; 176 ± 12 GeV/c by Corcoran et. al., [88] and at 150 GeV/c by

Fidecaro et. al., [89].
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FIG. 16: The data points on AN as a function of −t in GeV/c. The solid curve is
the best fit with the hadronic amplitude φ5 constrained to be in phase with hadronic
φ+ and the dotted curve is the best fit without this constraint [63].

FIG. 17: AN results for pp elastic scattering as a function of −t. The solid curve
is the theoretical prediction [90] in the CNI-region. The data points represented
by (◦) are measured at 185 GeV/c [86] and the results those represented by (•) at
200 GeV/c [85]. The other data points: (×) are measured at lab momentum 300
GeV/c (

√
s = 24 GeV) and (3) at 100 GeV/c [87]; (4) at 176 ± 12 GeV/c [88]; and

(black-box) at 150 GeV/c [89] using a polarized target.
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Investigation of Polarized pp Scattering at Specific Momentum Transfer

Squared −t Regions

Several specific−t regions are relevant to the measurement of different observables

in the study of polarized pp scattering, [139]. In addition, information from different

kinematic −t regions helps us understand the t-dependence of the observables.

• Forward direction (|t| ' 0 region), is relevant to the measurement of the total

cross section σtot and ∆σT

• Coulomb-Nuclear Interference (CNI) region, is relevant for the measurement

of the analyzing power AN , because this is the region of maximal interference

between the electromagnetic and hadronic amplitudes, which results in a mea-

surable asymmetry in pp scattering.

• Measuring in the small-t region (0.05 to 0.15 (GeV/c)2), where there is a pro-

nounced lack of data (see Fig. 17, is important in order to understand the

possible spin dependent amplitudes that survive at high energies even in the

small-t region.

• AN shows a unique structure in the region where the so called ”diffractive dip”

is observed, starting around
√
s ≈ 15 GeV. This region can also be further

explored by measuring the double spin correlation parameter ANN , [139].

• The region of |t| > 2 (GeV/c)2 is unexplored and measurements in this region

can help understand the hard regime spin effects, [139].

The AN results presented by E704 experiment in 1993, showed for the first time

that a theoretically predicted interference between the hadronic non-spin flip ampli-

tude and the electromagnetic spin-flip amplitude is present at high energies in the

four-momentum transfer squared region of 1.5 × 10−3 to 5.0 × 10−3 (GeV/c)2 [85].

AN has been measured also at lower energy experiments: at lab momentum 10, 14

and 17.5 GeV/c [91], at 11.8 GeV/c [92], at 24 GeV/c [93] and at 45 GeV/c [95].

The following Table 3, lists the experiments that have contributed since 1966

to polarized pp elastic scattering data. The table gives information on the loca-

tion (accelerator facility) of the experiment, the year of the experiment (in reverse-

chronological order), the
√
s and t ranges, the observables measured in each ex-

periment and the corresponding reference. The table contains information from the
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FIG. 18: AN results for pp elastic scattering as a function of
√
s at three different |t|

regions: (|t| < 0.5 (GeV/c)2, 0.5 ≤ |t| < 1.0 (GeV/c)2 and |t| ≥ 1.0 (GeV/c)2). The
data points are measured in experiments using different incident proton beam with
lab momentum spanning from 6 - 300 GeV/c. [139]

summary made by [14] in 2001. In Table 3, AGS stands for Alternating Gradient Syn-

chrotron accelerator at Brookhaven National Laboratory; SPS is the Super Proton

Synchrotron accelerator at CERN; ZGS is the Zero-Gradient Synchrotron accelerator

at Argonne National Laboratory and LRL is the Lawrence Radiation Laboratory in

Berkeley, CA.

Polarization measurements in elastic scattering have been performed up to 300

GeV/c (
√
s = 24 GeV), with polarized proton beam on a polarized fixed target, in

different experiments [87, 88,102,104,105] and at lower energies [91, 94,95,106–108].

Figure 18 illustrates AN as a function of center of mass energy
√
s in three different

|t| regions [139], measured at several different experiments given in Table 3.



61

TABLE 3: Overview of experiments performed to measure polarized proton elastic
scattering. P0 indicates the polarization parameter measured at several designed
experiments with polarized beam on a polarized target. The polarization parameter,
P0, in elastic scattering complements the differential cross section as a parameter
which is sensitive to the spin dependence of the scattering amplitude [94].

Collider cms |t| Spin
Accelerator Energy Range Dependent

Year Facility (Exp.)
√
s (GeV) (GeV/c)2 Observable Ref.

2012 BNL (STAR) 200 0.003 - 0.035 AN [81]
2011 BNL (H-jet) 7.7, 21.7 0.002 - 0.008 AN [97]
2009 BNL (H-jet) 6.8, 13.7 0.001 - 0.032 AN , ANN [98]
2007 BNL (STAR) 200 0.01 - 0.03 ANN , ASS [79]
2006 BNL (H-jet) 13.7 0.001 - 0.032 AN [99]
2005 BNL (PP2PP) 200 0.01 - 0.03 AN [96]
1993 FNAL (E704) 19.4 0.0015 - 0.050 AN [85]
1989 AGS 5.3 - 6.2 0.3 - 4.7 AN , ANN [100]
1989 FNAL (E704) 19.2 0.001 - 0.01 AN [86]
1981 CERN 7.1 0.7 - 5.0 P0 [101]
1981 CERN SPS 200 0.5 - 4.0 P0 [102]
1980 FNAL 6.3 - 19.7 0.6 - 1.0 P0 [88]
1980 CERN SPS 17 0.4 - 3.0 P0 [103]
1980 FNAL 14 0.15 - 1.10 P0 [104]
1980 FNAL 24 0.15 - 2.0 P0 [104]
1978 FNAL 14, 24 0.18 - 2.0 P0 [87]
1978 CERN SPS 17.3 0.2 - 3.0 P0 [105]
1978 CERN 7.1 0.1 - 0.9 P0 [94]
1976 CERN 9.6 0.08 - 1.1 P0 [95]
1974 ZGS 3.5 - 5.2 0.5 - 6.5 P0 [106]
1971 CERN 4.7 - 6.1 0.1 - 2.9 P0 [91]
1966 LRL 1.63 - 1.86 P0 [107]
1966 LRL 2.3 - 3.78 0.1 - 1.0 P0 [108]
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If we look at the AN data at different energy and t ranges, we observe the following

features.

• At small t values (|t| ≤ 0.5 (GeV/c)2, the analyzing power AN is positive and

decreasing as ∼ 1/
√
s up to

√
s ≈ 50 GeV. At higher energies AN shows a

flattening.

• For
√
s≥ 50 GeV, AN changes sign in the t range between 0.4 and 1.0 (GeV/c)2,

reaching a negative minimum. This is followed by a sharp zero-crossing (to the

positive values) in the region of the diffractive dip of the differential cross section

(around |t| ≈ 1.2 (GeV/c)2. Then, AN most probably remains positive at larger

|t| values.

The features exhibited by AN at large-t may indicate that the hadronic spin-flip

contribution φhad5 does not decrease as 1/
√
s. It was suggested that at large

√
s,

the diffractive scattering with the exchange of two pions could become important,

an exchange mechanism which can cause a non-vanishing φhad5 because one of the

two pions can couple with spin-flip [109,139]. In addition, φhad5 may remain non-zero

at high energies if the nucleon contains a dynamically enhanced compact diquark

component [75].

If we look at more recent experiments dedicated to the measurement of AN in the

CNI region, we point out (mentioned before), the measurements by the PP2PP ex-

periment at RHIC, at
√
s = 200 GeV but with limited statistics: on the measurement

of AN [96] and on the measurement of ANN & ASS [79].

Other experiments, performed at significantly lower energies include: the FNAL

E704 experiment at
√
s = 19.4 GeV (mentioned in this section); high precision exper-

iments with RHIC polarimeters (hydrogen-jet absolute polarimeter at RHIC): [99]

using proton beam with momentum 100 GeV/c (
√
s = 13.7 GeV), [98] using proton

beam with momentum 24 and 100 GeV/c (
√
s = 6.8 and 13.7 GeV, respectively)

and [97] using proton beam with momentum 31 and 250 GeV/c (
√
s = 7.7 and 21.7

GeV, respectively). Figure 19 shows the measurement of the analyzing power AN in

pp elastic scattering using a polarized atomic hydrogen gas jet target and the RHIC

proton beam from the three experiments. Similarly results from [97] are shown in

Fig. 20 and 21, together with the measured r5-parameter in each case.

The data from the measurement of AN by the H-jet polarimeter at RHIC at 13.7

GeV (Fig. 19(a) and 19(c)) are well described by the CNI prediction, in which AN
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is generated by the proton’s anomalous magnetic moment alone and do not support

the presence of a large hadronic spin-flip contribution, [99]. The AN data at 6.8

GeV (Fig. 19(b)) indicate the presence of a non-zero hadronic spin-flip amplitude

φhad5 and suggest a significant energy dependence for this amplitude compared to the

measurement at 13.7 GeV, [98]. In addition, Fig. 19(d) shows the measurement of

the double spin asymmetry ANN at both center of mass energies. The measured

ANN data points are small and the data do not support a sizable double spin-flip

amplitude φhad2 at these energies, [98]. Finally, the AN results shown in Fig. 21 are

consistent with no hadronic helicity flip amplitude contribution within experimental

1σ uncertainty, while the AN results shown in Fig. 20, require the presence of a

hadronic helicity flip amplitude contribution at a (∼ 2.5 σ) confidence level, [97].

To complete the reverse chronological order of this discussion, we finally introduce

the results from the experiment which is the subject of this thesis, high precision and

very recent measurements from the STAR experiment at RHIC at
√
s = 200 GeV:

on the measurement of AN [81] (very recently published) and on the measurement

of ANN & ASS [80].

The analyzing power has also been measured in proton-Carbon scattering at 6.4

GeV by the BNL AGS [110] (in the CNI region of momentum transfer 9.0 · 10−3 < −t
< 4.1 · 10−2 (GeV/c)2 with a 21.7 GeV/c polarized proton beam) and later by [111].

The usage of carbon target, as was pointed out by Kopeliovich and Trueman [112],

has an important advantage of eliminating the contribution of the isovector Reggeons

and thus allows one to probe the Pomeron spin-flip amplitude through AN at medium

energies [110]. A non-zero value of r5 was obtained for the first time in pC elastic

scattering in the CNI region, at the given energy and t-range, [110].

2.9 MEASUREMENT OF TRANSVERSE SPIN ASYMMETRIES

AN , ANN , ASS IN POLARIZED pp ELASTIC SCATTERING AT

RHIC

In this section we will summarize the measurements of AN , ANN and ASS in pp

elastic scattering by the PP2PP experiment at RHIC at
√
s = 200 GeV. Bültmann

et al., performed the first measurement of the single spin analyzing power AN at
√
s = 200 GeV and 0.01 ≤ |t| ≤ 0.03 (GeV/c)2, using polarized proton beams at

RHIC [96]. The result on AN and the measured r5 parameter are shown in Fig. 22.

The statistic of these measurements was limited.
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The AN result presented by the PP2PP collaboration in 2005, is about one stan-

dard deviation above the theoretical calculation which uses only the interference

between electromagnetic spin-flip amplitude and hadronic non-flip amplitude. The

difference could be explained by an additional contribution of a hadronic spin-flip

amplitude [96]. Based on these results with limited statistics, Bltmann etal. con-

clude that the results are suggestive of a hadronic spin-flip term, by cannot definitely

rule out the hypothesis that only hadronic non spin flip amplitudes contribute. After

PP2PP physics program was integrated with the STAR physics program at RHIC,

the necessity and the strong motivation for a precise measurement of AN at the

energies available at RHIC (especially at
√
s = 200 GeV with improved statistics),

motivated the STAR collaboration to perform a statistically significant measurement

of AN , and this was achieved during 2009 RHIC run. This thesis presents AN results

from 2009 RHIC run by the STAR collaboration. The results have been published

very recently in Phys. Lett. B, [81].

The double spin asymmetries ANN and ASS, were also measured for the first time

at
√
s = 200 GeV and 0.01 ≤ |t| ≤ 0.03 (GeV/c)2, by the PP2PP collaboration at

RHIC. the measured asymmetries are consistent with zero and allow the estimation

of the upper limits on the double helicity-flip amplitudes φ2 and φ4 at small |t|, as well

as on the difference ∆σT between the total cross sections for transversely polarized

protons with antiparallel and parallel spin orientations, [79]. These measurements

have been complemented by the RHIC 2009 run data. The analysis of this data

to extract the double spin asymmetries has been carried out by the ITEP group at

STAR and preliminary results have been presented by the STAR collaboration [80].

Preliminary results on the double spin asymmetries at
√
s = 200 GeV using RHIC

Run09 data, shown in Fig. 23, show that the double spin effects are small and

comparable with the luminosity normalization uncertainty, [80]. Preliminary results

agree with the hypothesis that only Pomeron exchange which contributes to spin

non-flip amplitudes φ1 and φ3, survive at high energies [80].
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(a) AN vs −t at
√
s = 13.7 GeV (2006) (b) AN vs −t at

√
s = 6.8 GeV

(c) AN vs −t at
√
s = 13.7 GeV (2009) (d) ANN vs −t at

√
s = 6.8 and 13.7 GeV

FIG. 19: AN as a function of −t for pp↑ → pp (a) at 13.7 GeV [99], the solid curve is
the prediction of AN with electromagnetic spin-flip only, the dashed curve is the fit
to the data allowing a hadronic spin-flip contribution to AN , the inset is the r5 plot
with the 1-, 2- and 3-σ confidence contours; (b) and (c) at 6.8 & 13.7 GeV (repeated),
respectively, [98], the solid curve again corresponds to the QED prediction with no
hadronic spin-flip contribution and the dashed curve allows this contribution, r5

parameter is extracted from the best fit to the data; (d) AN as a function of −t
at 6.8 GeV (filled circles) and 13.7 GeV (open circles), the solid curve is the fitting
result for 6.8 GeV and the dashed curve for 13.7 GeV; valid for all the plots shown
above: statistical errors are shown on the data points, the lower band represents the
total systematic error.
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FIG. 20: AN as a function of −t for pp↑ → pp at 7.7 GeV, [97], statistical errors are
shown on the data points, the lower band represents the total systematic error, solid
curve is the prediction of AN with electromagnetic spin-flip only, the dashed curve is
the fit to the data allowing a hadronic spin-flip contribution to AN , the r5 plot with
the 1-, 2- and 3-σ confidence contours is also shown.

FIG. 21: AN as a function of −t for pp↑ → pp at 21.7 GeV, [97], the rest (details on
the errors, solid and dashed curves, r5 plot) are the same as in Fig. 20.
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(a) AN vs −t at
√
s = 200 GeV (PP2PP) (b) r5: Imr5 vs Rer5 (PP2PP)

(c) Raw Double Spin Asymmetry vs φ
(PP2PP)

FIG. 22: First measurement of AN and the double spin asymmetries ANN and ASS,
by the PP2PP collaboration at

√
s = 200 GeV, at RHIC. (a) AN as a function of

−t for three t intervals. Vertical error bars show statistical errors. The solid curve
corresponds to the theoretical calculations without hadronic spin-flip and the dashed
curve represents the best r5 fit [96]; (b) the measured r5 parameter: full circles
represent the fitted values of r5 with contours corresponding to different confidence
levels. The red triangle corresponds to no hadronic spin-flip; (c) the raw double spin
asymmetry δ(φ) measured in pp elastic scattering at

√
s = 200 GeV, [79].
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FIG. 23: Preliminary double spin asymmetry results using RHIC 2009 run data at√
s = 200 GeV and 0.003 ≤ |t| ≤ 0.035 (GeV/c)2, by the STAR collaboration. The

plots shows the raw asymmetries ε as a function of φ (in rad). [80].
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CHAPTER 3

EXPERIMENTAL SETUP

3.1 THE RELATIVISTIC HEAVY ION COLLIDER (RHIC)

The Relativistic Heavy Ion Collider (RHIC) is located at Brookhaven National

Laboratory (BNL). Figure 24 shows an aerial view of the BNL facility, located in

Long Island, New York, USA.

The complete RHIC (see Fig. 25) facility is a complex of accelerators intercon-

nected by beam transfer lines. The collider is located in a 3.8 km circumference tun-

nel. The main physics program of RHIC is to provide head-on collisions at energies

up to 100 GeV/u per beam for heavy ions, like 197Au79, but the physics program also

includes lighter ions all the way down to protons, including polarized protons [118].

RHIC is distinctive in the capability to collide spin polarized proton beams. More-

over, RHIC is known for the large versatility: the ability to collide A wide variety

of atoms/particles (Au-Au, d-Au, Cu-Cu, polarized proton), with a high luminosity:

reaching 1031 cm−2s−1 in 200 GeV pp operation, in a wide and previously not accessi-

ble energy range: 50 GeV ≤
√
s ≤ 500 GeV, and with a high polarization for proton

beam: achieving 70 % in 200 GeV pp operation.

The primary motivation for colliding heavy ions at ultra-relativistic energies is

the creation of macroscopic volumes of nuclear matter at temperatures and energy

densities high enough to induce a phase transition from hadronic matter to a con-

fined plasma of quarks and gluons [118]. RHIC is presently the world’s only polarized

proton collider, therefore RHIC is unique in its capability to collide spin polarized

protons, with a high average polarization of 0.7 per beam. RHIC started opera-

tion in 2000, consisting of five large experiments: BRAHMS (2 o’clock), PP2PP (2

o’clock), STAR (6 o’clock), PHENIX (8 o’clock) and PHOBOS (10 o’clock), (see

Fig. 25). Presently there are only two physics experiments in operation, STAR and

PHENIX. The physics program of the two experiments/collaborations consists of two

main areas: Heavy-Ion and Spin-Physics programs. This is directly related to the

main motivations that lead to the construction of RHIC and the development of the
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FIG. 24: An aerial view of Brookhaven National Laboratory, Long Island, New York.
A birds eye view of RHIC can be seen in the top left corner of the picture.
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FIG. 25: Layout of Brookhaven National Laboratory accelerator complex, consisting
of a LINAC, Booster, Alternating Gradient Synchrotron (AGS) which is the injector
to RHIC and RHIC (north of AGS). The proton beam originates at the polarized
hydrogen source and then follows these stages before being injected into RHIC.
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capabilities that RHIC possesses as a high-energy collider-accelerator facility. While

in the heavy-ion program the experiments focus on the study of the properties of

the quark-gluon plasma and the search of the QCD critical point, in the spin-physics

program experiments are designed to study proton’s intrinsic properties (i.e proton’s

spin), which has been a long standing puzzle in physics. The study of elastic and

inelastic pp processes in the forward region are also part of the spin-physics program.

The STAR collaboration consists of 59 institutions from 12 countries, with 572

collaborators in total. The STAR physics program has three areas:

• Heavy-Ion Physics Program (Au-Au, Cu-Cu, d-Au, p-p), which focuses in

studying the hot and dense medium properties created in high-energy (at 200

GeV top energy) heavy-ion collisions and the study of the pQCD regime. In

the recent runs, STAR has been successful in performing a beam energy scan

(BES), reaching as low as 5 GeV in Au-Au collisions. The motivation for the

beam energy scan is the search for QCD critical point and the study of QCD

phases (quark-gluon plasma, hadron gas, color superconductor).

• Forward Physics Program (p-p, d-Au), which focuses in the study of the low-

x (Bjorken x) medium properties and the non-perturbative regime of QCD.

The physics program of PP2PP was incorporated with the forward physics

program at STAR, and, as mentioned before, it focuses in the study of elastic

and inelastic diffractive processes in pp.

• Polarized pp Physics Program (200 and 500 GeV), focuses on the study of the

proton’s intrinsic properties, i.e. the investigation of the proton’s spin (1/2),

as given by:
1

2
=

1

2
∆Σ + ∆G+ Lq + Lg (126)

where ∆Σ is the contribution due to all quarks and anti-quarks within the

proton, ∆G is the contribution due to gluons in the proton and Lq & Lg is the

orbital angular momentum of the quarks and gluons, respectively.

A fundamental requirement of a collider is to operate over long periods of time

with the beams stored at high energies. RHIC is composed of two identical quasi-

circular intersecting storage rings (see Fig. 25), named Blue and Yellow. The two

intersecting storage rings have individual transport magnets except in the intersec-

tion regions where the beams are brought into collision after passing through and
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being bent by a common bending magnet. This configuration allows RHIC to collide

identical particles such as protons. A detailed description of RHIC as a polarized

proton collider will be given later in the next section. A unique feature of the pro-

gram is to collide beams of different species at the same energy per nucleon. This

is achieved by having two separate rings that can operate at two different magnetic

field settings to maintain the necessary equal rotation frequencies. The beams are

oriented to intersect at six locations. The collisions occur in the center of the inter-

action region (IR), where the beams are focused to a small spot and collide head-on.

The IRs are spaced equidistant around the circumference and are separated by arc

sections. One function of the IR optics is to bring the two counter-rotating beams,

from separate beam pipes into a common beam-pipe, so that they can collide head-on

at the intersection point (IP) [118].

3.1.1 RHIC AS A POLARIZED PROTON COLLIDER

In addition to the heavy ion collisions, RHIC has the capability to collide high-

energy polarized proton beams and can achieve proton-proton collisions with both

transversely and longitudinally polarized beams at
√
s energies of up to 500 GeV. At

present RHIC is the highest-energy polarized proton facility in the world.

An optically pumped polarized ion source (OPPIS) produces 1012 polarized pro-

tons per pulse. The protons pass through several stages of boosters before they reach

the RHIC storage ring. After being produced at the source, protons are accelerated

by a linear accelerator (LINAC) to 200 MeV and then by booster to 1.5 GeV (see

Fig. 25). The booster then feeds the beam into the Alternating Gradient Synchrotron

(AGS) where the proton beam is accelerated to 24 GeV. The AGS injects the proton

beam into the RHIC storage ring over the AGS-to-RHIC Transfer Line (ATR). The

proton beams are accelerated further to 100 GeV/c momentum.

Polarized Proton Beam Source at RHIC

The optically pumped polarized H− ion source (OPPIS) at RHIC, was con-

structed at TRIUMF from the KEK OPPIS source [121]. OPPIS technique has

been developed in the early 1980’s and is based on charge-spin-transfer collisions be-

tween a proton of a low energy (2-5 keV) beam, produced in the electron cyclotron

resonance (ECR) ion source and optically pumped alkali metal vapors [122]. At the

RHIC OPPIS a pulsed laser is used to optically pump the rubidium vapor, to produce
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polarized electrons. The polarized electrons are then picked up by the unpolarized

ionized hydrogen gas, and a hyperfine interaction results in the transfer of polariza-

tion from the electron to the proton [124]. The goal of providing at least 0.5 mA H−

ion current with 80% polarization during a 300 µs pulse (corresponding to 9 × 1011

protons) and within a normalized emittance of 2π has been achieved [120]. The po-

larized H− are stripped of their electrons and accelerated to 200 MeV using a Radio

Frequency Quadrupole (RFQ) and the 200 MHz LINAC (Linear Accelerator) (see

Fig. 25), before being injected in the Booster. Further acceleration to 1.5 GeV and

capturing to a single bunch occurs in the AGS Booster. After being accelerated in

the Booster, the single bunch of polarized protons is transferred to AGS, where it is

accelerated to 24 GeV, before being injected in the RHIC rings. There are typically,

up to 2 × 1011 protons in each filled beam bunch. The beam bunches are injected

one at a time into the RHIC rings, allowing the configuration of the spin direction of

each bunch independently. RHIC rings can have up to 112 of the 120 available RF

buckets filled. The remaining 8 bunches are left unfilled, to provide an abort gap for

the beam. At full RHIC designed intensity, the bunches have a 2 ns duration and

are 106 ns apart [120]. Proton bunches are further accelerated to 100 GeV/c or 250

GeV/c, in the RHIC ring.

Acceleration and Storage of Polarized Proton Beams at RHIC

To achieve high energy polarized proton collisions, polarized beams first have to

be accelerated and this requires an understanding of the evolution of the spin during

acceleration and the tools to control it [120]. The evolution of the spin direction of a

polarized proton beam, in external magnetic fields, that exist in a circular accelerator

is governed by the Thomas-BMT equation [125]:

dP̃

dt
= −

(
e

γm

)
[Gγ ~B⊥ + (1 +G) ~B‖ × ~P (127)

where the polarization vector ~P is expressed in the frame that moves with the par-

ticle, G = 1.7928 is the anomalous magnetic moment of the proton and γ = E/m.

The Gγ factor gives the number of the spin precessions for every full revolution, a

number which is also called the spin tune νsp [118,120]. During acceleration, a depo-

larizing resonance is crossed when the spin precession frequency equals the frequency

of the spin-perturbing magnetic fields. There are two main sources of depolarization:

imperfections resonances, driven by magnet errors and misalignments, and intrinsic
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resonances, driven by the focusing fields [120]. When a polarized beam is accelerated

through an isolated resonance, the final polarization can be calculated by [126]: Pf/Pi

= 2e
π|ε|2
2α - 1, where Pi and Pf are the polarizations before and after the resonance

crossing, respectively, ε is the resonance strength obtained from the spin rotation

of the driving fields, and α is the change of the spin tune per radian of the orbit

angle [118,120].

Siberian Snakes and Spin Rotators

The introduction of magnetic configurations, named Siberian Snakes [127], was

very beneficial to the acceleration and storage of polarized proton beams. Siberian

Snakes correct for the depolarizing effects in the polarized proton beam caused by

acceleration, and therefore serving to maintain the polarization of the proton beam

at high energies. A Siberian Snake generates a 180◦ spin rotation about a horizontal

axis and the spin direction remains unperturbed, as long as the spin rotation from

the Siberian Snake is much larger than the spin rotation due to the resonance driving

fields [120]. Two full Siberian Snakes were inserted on opposite sides of the RHIC lat-

tice (at 3 and 9 o’clock locations), for each of the two counter-rotating rings (see Fig.

25). In addition to the Siberian Snakes, spin rotator magnets are located on each side

of the two major interaction points (STAR and PHENIX, see Fig. 25), and serve to

alter the spin orientation from vertical (transverse) to horizontal (longitudinal) plane

at the collision points. Another magnetic component of the polarized beam project

at RHIC, is the spin flipper, which is used for the manipulation of the spin orien-

tation during a store. For lower energy synchrotrons, such as AGS at RHIC, which

produces weaker depolarizing resonances, a partial snake is used. A partial snake

rotates the spin by less than 180◦. Two full Siberian Snakes, positioned on opposite

sides of the two RHIC rings, are utilized to avoid depolarization fro imperfection and

intrinsic resonances, up to the top energy of 250 GeV/c [120].

Each Siberian Snake consists of four superconducting helical dipole magnets,

which are capable of producing a central field of up to 4 T, which spirals around

360◦ over a length of ≈ 2.4 m [120]. Fig. 26 shows the proton spin direction being

rotated as it passes through a full Siberian Snake.

The spin rotators rotate the polarization from the vertical to horizontal on one

side of the IP, and restore it to the vertical direction on the other side [120]. Similar

to Siberian Snakes, Spin Rotators consist also of helical dipole magnets, however,

while the four helical dipole magnets of the Siberian Snake are right-handed, with
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FIG. 26: Position and spin direction tracking for a proton as it passes through the
four helical magnets of a Siberian Snake. The spin tracking shows the reversal of the
vertical polarization. [118,120]. The three axes are in m.

the field at the end being vertical, for the Spin Rotators the helices alternate between

right and left handedness (see Fig. 27), with the field at the end being horizontal.

RHIC Polarimetry: Beam Polarization Measurement Methods at RHIC

Precise knowledge of proton beam polarization is important for both STAR and

PHENIX experiments. The physics program requires precision of beam polarimetry

∼ 5 %. There are two main polarimeters at RHIC measuring proton beam polariza-

tion: the relative p-Carbon polarimeters (one per ring) and the absolute hydrogen-jet

polarimeter, located at 12 o’clock at RHIC (see Fig. 25), and both are used ”com-

plementing each-other”, to measure the polarization of the proton beam.

p-Carbon Polarimeter Two identical p-C polarimeters are positioned in the

yellow and blue rings, in the straight beamline section at a distance from IP12 at

RHIC. The approach of measuring the beam polarization is based also on, as in

our experiment, the asymmetry in proton-Carbon elastic scattering in the Coulomb-

Nuclear Interference (CNI) region [120]. While the PP2PP experiment was designed

to measure the transverse single spin asymmetry AN in the CNI region, using the

knowledge of the proton beam polarization provided by RHIC polarimetry, in p-

C polarimeter we measure the beam polarization using the best knowledge of the

asymmetry at a given energy. This relative measurement of the beam polarization

in p-C elastic scattering is normalized by the absolute beam polarization measured

in elastic p + p scattering of a proton beam off a transversely polarized H-jet target.
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FIG. 27: View of RHIC with emphasized interaction regions, showing the location
of Siberian Snakes and Spin Rotators, around STAR and PHENIX. The polarization
directions around the rings and around the detectors for collisions with longitudi-
nal polarization are also shown [120]. The handedness of the dipole magnets that
constitute the Siberian Snakes and Spin Rotators is shown as L-left and R-right,
handedness.
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In general, the vertical beam polarization is measured by determining the left-

right scattering asymmetry in the cross-section, using a reaction with a known ana-

lyzing power Ap [120]:

Pb =
1

Ap

NL −NR

NL +NR

(128)

where Pb is the beam polarization, NL and NR are the number of particles scattered

left and right, normalized by luminosity and Ap can be known from experiment or

theory. Elastic scattering in the small-angle (small-t) CNI region is predicted to have

a calculable analyzing power of about 4%, assuming negligible contribution from

hadronic spin-flip, as well as large cross section over the whole RHIC range from 24

GeV/c to 250 GeV/c [64,83]. The analyzing power is given by [118,120]:

Ap(t) =
Gt0t
√
t

mp(t2 + t0
2)

(129)

where G = 1.7928, the anomalous magnetic moment of the proton, mp is the proton

mass, and t0 = 8παZ
σtot

and Z the atomic number. The total cross section is only weakly

energy dependent over the relevant energy range [118,120]. The calculated analyzing

power for hydrogen target (Z = 1, σtot = 35 mb) and a carbon target (Z = 6, σtot =

330 mb [136]).

For p-C CNI at high energy (0.002 - 0.01 GeV2), the scattering results in the

proton scattering with a very small forward angle, and the carbon recoil with a

very low kinetic energy (0.1 - 1 MeV). Since it is very impractical to measure the

forward scattered proton, the identification of the elastic scattering relies only on

the measurement of the carbon nuclei. Ultra-thin ribbon carbon targets, developed

at Indiana University Cyclotron Facility (IUCF) [137], are being used in the p-C

polarimeters at RHIC. The detectors are placed so that the carbon arrives between

the passage of beam bunches, thus avoiding any prompt background [118]. The

recoiling carbon ions are measured by six-silicon detectors located at 45◦, 90◦ and

135◦ on each side of the beam and perpendicular to the beam direction, and at a

distance of 15 cm away from the interaction point, see Fig. 29. Since, it is necessary

to have both horizontal and vertical beam polarization profiles, separate targets are

used, in order to scan the beam both vertically and horizontally [120]. Relative

polarization measurements are fast, typically taking only a couple of minutes, and

are performed periodically during the lifespan of a store. A typical RHIC physics

store is 8-10 hours.
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FIG. 28: Coulomb-nuclear interference analyzing power for pp and p-C scattering as
a function of momentum transfer −t [118].

FIG. 29: Schematic layout of the p-C polarimeter at RHIC. The thin carbon ribbons
are held in a target assembly, which is movable, thus positioning the target into the
beam during the measurement. The silicon detectors are positioned perpendicular
to the beam direction. The thin carbon ribbons used as targets are 6-8 µg/cm2 in
diameter, 10-20 µm wide and 2.5 cm in length [118].
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The silicon detector contains 12 (10 mm × 2 mm) strips, which are used to

detect recoil carbon ions with kinetic energy 0.4 ≤ E ≤ 0.9 MeV [130]. The number

of counts from p+ and p− bunches are measured for each strip, giving information

on the scattering asymmetry. An averaged strip polarization PB is measured by

fitting the measured asymmetries Ai, for each silicon detector strip i, with respect to

azimuthal angle, such as: PB(φ) = Ai
ĀN

= PBsinφ, where ĀN is the weighted average

analyzing power within the energy range [131]. Without normalization from the H-

jet polarimeter, the RHIC p-C polarimeters measure the average beam polarization

from multiple measurements with a relative uncertainty of about 10%.

The analyzing power has been measured in p-C CNI scattering, in the BNL

AGS [110] with proton beam energy 21.7 GeV/c and [132]. Knowledge of the beam

polarization from the polarized hydrogen jet target polarimeter was used in [132].

These measurements provided data to calibrate RHIC p-C polarimeter at the injec-

tion energy 24 GeV and at 100 GeV. Predicted properties of AN (sizable analyzing

power), the large cross section and the weak
√
s dependence in the 24-250 GeV,

makes this process ideal for beam polarization measurement [110, 134]. Simultane-

ous measurements in p-C and H-jet polarimeters, provide the calibration from p-C

analyzing power. Fast p-C polarimeter measures possible polarization losses during

the store duration [161].

In addition to the beam polarization measurement, the thin carbon target width

compared to the beam size allows for measurement of the proton beam polarization

profile. In a scanning mode of polarimeter operation the counting rate dependence

on the target positions can be used for the beam polarization and transverse beam

intensity profile measurements.

H-jet Polarimeter

The hydrogen-jet polarimeter at RHIC is located at 12 o’clock intersection point

at RHIC, where it intersects both beams. A transversely polarized H-jet is produced

by an Atomic Beam Source (ABS), in which the molecular hydrogen is dissociated by

a radio frequency (RF) discharge [99]. Nuclear polarization of the atoms is obtained

using two RF transitions that induce spin-flips in the hydrogen atoms [99]. The mean

values for nuclear polarization of the atoms: |P±| = 0.958 ± 0.001 [135]. The H-jet

travels in the vertical direction and intersects with only one of the RHIC polarized

proton beams, while the other beam is displaced (see Fig. 30). The polarization of

the target protons in the H-jet are measured with a Breit-Rabi polarimeter [128].
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FIG. 30: Schematic layout of the H-jet polarimeter at RHIC. Six silicon strip detec-
tors are placed one each side of the interaction point, with strips oriented perpendicu-
lar to the beamline [133]. The atomic hydrogen goes from the top to the bottom, and
in routine operation, one for the two RHIC beams is displaced. Forward strips are
used to measure the recoil proton from the interaction of the jet with one RHIC beam,
and backward strips measure the recoil proton from the interaction with the other
RHIC beam. The non-signal strips can be used to estimate the background [133].

The detector system consists of six silicon strip detectors positioned 80 cm away,

left and right of the intersection point, with strips oriented perpendicularly to the

beam direction. Two identical sets of 3 silicon strip detectors, 50 × 80 mm2 were

placed in vacuum on each side of the beam (see Fig. 30). Each detector is arranged

in 16 channels. The detectors measure only the recoil protons from the interaction

of the jet with the RHIC proton beam. Forward scattered protons are not detected,

since their trajectory is too close to the beam direction.

After measuring the recoil protons, pp elastically scattered events are selected.

Recoil protons from pp elastic scattering are identified by the scattering angle-kinetic

energy correlation. The silicon detectors detect recoil protons with kinetic energies

0.6 ≤ E ≤ 17 MeV [135]. Selection of pp elastic events, results in the measurement

of the left-right asymmetry taking into account the jet polarization and averaging

over the beam polarization. Combining the measured raw asymmetries εtarget and

the known jet polarization Ptarget, provides the measurement of the analyzing power

of the process, such as:

AN =
εtarget
Ptarget

(130)
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The reverse process measures the asymmetry taking into account the beam polar-

ization direction and averaging over the jet polarization. The ratio of the measured

raw asymmetries εbeam and εtarget, and the known target polarization Ptarget, gives

the average beam polarization over the run:

Pbeam = − εbeam(TR)

εtarget(TR)
Ptarget (131)

where ε are the observed asymmetries as a function of recoil energy TR [133, 135].

The raw asymmetries are measured by using the square-root formula, where the

contributions from different left-right detector acceptances and different luminosities

in the measurements with up (+) and down (-) target polarization states to the

asymmetry cancel [78]:

ε =

√
N+
LN

−
R −

√
N+
RN

−
L√

N+
LN

−
R +

√
N+
RN

−
L

(132)

where N are the recoiled proton counts, scattered left and right denoted by L(R),

and +(−) are the beam polarization state.

The absolute polarization measurement requires data accumulation for about a

day typically, thus measurement is performed during multiple physics stores. The

relative beam polarization measurements from the p-C polarimeters are calibrated

by the H-jet polarimeter measurements to an accuracy of about 5 %.

The jet was first implemented in RHIC and collected first data in 2004, which

provided a precise measurement of the analyzing power of pp elastic scattering in the

CNI region with 100 GeV/c proton beam [99].

3.2 VERY-FORWARD DETECTORS AT STAR DETECTOR AT

RHIC

The STAR experiment at RHIC is equipped with insertion devices (Roman Pots)

that allow the detectors to be moved close to the beam, in order to measure protons

scattered in the forward direction (at very small scattering angles). The Roman pots

were originally used by the PP2PP experiment, which started as a separate experi-

ment and was one of the five experiments at RHIC between 2000 - 2008. The PP2PP

experiment was designed to study pp elastic scattering in the forward direction. Af-

ter beginning operation in 2000, RHIC had its first proton run in December 2001 -

January 2002. PP2PP with its very-forward detectors was initially located on both

sides of the interaction point (IP2), the BRAHMS experiment (see Fig. 25) at RHIC.
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PP2PP completed its first physics run in May 2003 and performed the first measure-

ment of elastic scattering at
√
s = 200 GeV [138]. The very-forward proton detectors

were then later relocated near IP6, the STAR experiment at RHIC (see Fig. 25) and

thus PP2PP physics program was integrated with the STAR experiment. The very-

forward detectors are installed in either side of the interaction point at the STAR

detector. The very-forward detectors are designed to study the dynamics and the

spin-dependence in polarized proton-proton elastic scattering at a previously unex-

plored
√
s energy range of 50 GeV ≤

√
s ≤ 500 GeV and four-momentum transfer

squared of 4 · 10−4 ≤ |t| ≤ 1.5 (GeV/c)2. The kinematic range can be divided into

three regions (Coulomb, CNI and Hadronic), according to which interaction is dom-

inant in each region. The three regions are listed below in increasing t order, with

various spin-averaged and spin-dependent observables that can be measured

in each region:

• Coulomb interaction region: |t| ≤ 10−3 (GeV/c)2

– Measure the total cross section σtot and access the imaginary part of the

forward scattering amplitude by using the optical theorem (see Appendix

A).

• Interference between Coulomb and hadronic interaction, the CNI region:

5 · 10−4(GeV/c)2 ≤ |t| ≤ 0.12 (GeV/c)2

– Measure and study the
√
s dependence of the total σtot and elastic cross

sections dσel/dt

– Measure the ratio of real and imaginary part of the forward elastic scatter-

ing amplitude ρ (see Eq. 28) and extract its real part by using the optical

theorem (see Eq. 26) and the measured σtot

– Spin-dependent observables

∗ By using polarized proton beams with transverse polarization: mea-

sure the transverse single spin asymmetry AN and the double spin

asymmetries ANN and ASS

∗ By using polarized proton beams with longitudinal polarization: mea-

sure the double spin asymmetry ALL

• Hadronic interaction region: 5 · 10−3(GeV/c)2 ≤ |t| ≤ 1 (GeV/c)2
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– Measure the forward diffraction cone slope or the nuclear slope parameter

b

3.2.1 ROMAN POTS AND SILICON DETECTORS

The use of Roman pots [144] in the detection of particles scattered in the very-

forward direction in a collider experiment, is a technique that first originated at

the European Organization for Nuclear Research, CERN (Conseil Européenne pour

la Recherche Nucléaire). The name Roman was chosen because this technique was

first used by a CERN group from Rome in the early 1970’s to study proton-proton

collisions at CERN’s intersecting storage rings (ISR). CERN ISR is the world’s first

high-energy proton-proton collider and presently the Large Hadron Collider (LHC)

at CERN is the most powerful hadron collider in the world, reaching a
√
s energy of

14 TeV in proton-proton collisions. The Roman pot has the shape of a cylindrical

vessel in which the detectors can be mounted. This is the reason that it is called

a ”pot”. The pots are connected to the vacuum chamber of the collider by bellows,

which are compressed as the pots are pushed towards the particles circulating inside

the vacuum chamber. In their retracted position, the Roman pots do not obstruct

the beam, leaving the aperture of the vacuum chamber free for the beams during

their injection and ramp. Once the beams are brought into collisions, the Roman

pot is moved inside the beam-pipe as close as a few mm to the beam, without

disturbing the stability of the circulating beams. Thus, the Roman pots are moved

during operation, approaching the detectors close to the beam and enabling detection

of forward scattered particles, while they (the detectors) remain isolated from the

beam vacuum.

In order to detect scattered protons at small-|t|, PP2PP developed its own version

of Roman pots [140]. Figure 31 (a) and (b) show a picture of a Roman pot and a

vertical Roman pot station in the RHIC tunnel, respectively. The Roman pots in the

vertical RP station are positioned just above and below the outgoing beam-pipe. The

window of the Roman pot is made of stainless steel with a thickness of 300 µm. The

thin stainless steel is used to minimize the material through which the proton passes,

but must maintain its strength, preserving the beam pipe vacuum, in the event the

proton beam is accidentally dumped directly into the pot [140]. As the interior of

the pot is at atmospheric pressure and the exterior is exposed directly to the beam

vacuum, the window frame serves to prevent the thin window from deforming into
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the beam [140].

The detector package/assembly, mounted inside the RP, is composed of four sili-

con strip detectors, 2 x− view (with horizontally oriented Si strips) and 2 y − view
(with vertically oriented Si strips) detectors. This configuration of the detectors al-

lows the measurement of the positions of the scattered protons in the transverse plane

(x − y) plane. Having two detector planes of the same kind in each RP, provides

redundancy in measuring each coordinate. An assembled detector package is shown

in Fig. 32 (a). Figure 32 (b) shows a detector package mounted inside the Roman

pot. An 8 mm thick trigger scintillator, read out by two photomultiplier tubes is

mounted on each detector package.

Figure 33 (a) shows a picture of the four silicon detector boards that form a

detector package and Figure 33 (b) shows a picture of an x− view Si strip detector

board. Detectors have a sensitive/active area of 79×48 mm2 and a thickness of 400

µm. The trigger scintillator covers the sensitive area of the detectors. The edge of

the detector closest to the beam was cut to within 500 µm of the first Si strip, in

order to minimize the dead area and increase the low-|t| acceptance [140].

Silicon Microstrip Detectors

Silicon strip detectors have been widely used in experimental particle physics as

high-resolution particle trackers, becoming an essential part of the detector systems

as a vertex tracker in the central region of the experiment. The particle tracking

system requires a good position measurement resolution and the silicon microstrip

detectors can have a position measurement resolution in the order of 5 µm, which

is 10 times better than the resolution of other detectors such as: wire chambers or

scintillators. Silicon is the preferred material for high-precision tracking detectors,

as well as for a wide range of radiation detectors, for a number of reasons [143]:

• A condensed medium is essential if position measurement precision less than 10

µm is required. For this reason, silicon and other solids are generally preferred

• Silicon is chosen among other solid state detection media, because silicon has

a band gap of 1.1 eV, which is low enough for a minimum ionizing particle

(MIP) to produce liberated electron-hole pairs (about 80 electron-hole pairs

per micron of track length). Simultaneously the band gap of silicon is high

enough to avoid very large dark current generation at room temperature (kT
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(a)

(b)

FIG. 31: (a) Roman Pots. The RP window frame and the stainless steel window (300
µm thick) is shown. The RP edge is machine channeled to allow a closer approach
of the RP to the beam. (b) A vertical RP station consisting of two RPs, above and
below the outgoing beam-pipe.
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(a)

(b)

FIG. 32: (a) A detector package/assembly (b) Detector assembly inserted in RP.
A detector assembly/package consists of 4 Si detector boards (figure shows side-
view of the detector package installed inside the RP). The triggering system for one
detector package consists of a trigger scintillator connected to two photo-multiplier
tubes (PMT). The 5th plane (the right-most plane) represents the trigger scintillator
connected to the PMTs.
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(a)

(b)

FIG. 33: (a) A disassembled silicon detector package consisting of four silicon detector
boards, 2 x− view and 2 y − view detectors.
(b) An x-view Si detector board. The silicon strips (horizontally oriented) are con-
nected to 6 ADC readout chips, called SVXIIE.
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at room temperature is 0.026 eV).

• Silicon is a low-Z element (Z = 14), which is important for it’s use in tracking

detectors, where multiple scattering is of concern [143].

• Furthermore, a vast integrated circuit (IC) technology has been developed for

silicon.

• Silicon, which as a material is cheap and easy to be found, at the same time

brings unique combination of assets such as: the possibility of negative n-

type (n-) and positive p-type (p+) doping, the possibility of selective growth of

highly insulating layers (SiO2 and Si2N3) and the possibility of using techniques

which allow to feature sizes of ∼1 micro (and decreasing with time and IC

technological developments).

The silicon crystal can be made n-type or p-type by doping with atoms such as

phosphorus or boron, respectively. The majority of the charge carriers are elec-

trons in an n-type and holes in a p-type material. The number of the majority

of charge carriers, which depends on the doping concentration, determines the

resistivity (conductivity) of the material.

These characteristics make it possible for the silicon detectors to be a part of the

most sophisticated tracking systems where the ability to measure small dimensions

is essential.

When conducting materials are brought in electrical contact with each-other, the

charge flows from high energy region to low energy region until the same Fermi energy

is established. This important rule applies also to n-type and p-type systems. In a

p − n junction of a semiconductor such as silicon, electrons in the n-type silicon

diffuses into p-type silicon leaving positively charged ions (donors) behind, while

holes in the p-type silicon diffuses into n-type silicon leaving negatively charged ions

(acceptors) on the other side. This creates a depletion region in silicon, a region

with no free charges, which can be used as a detection medium for ionizing particles

passing through silicon. The ratio of the dopant concentrations on both sides is

inversely proportional to the ratio of the depletion ranges at the two sides of the

junction [143]. By applying a voltage difference across the junction, the previous

equal Fermi levels are separated by an amount equal to the bias voltage.
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A good detection region in silicon can be created by constructing a reverse biased p−n
junction with appropriate doping concentrations at each side of the p − n junction.

This is the basic idea of the silicon strip detectors, which is a series of p−n junction

diodes. A silicon microstrip detector is constructed by implementing thin strips of

highly doped p-type silicon over an n-type silicon wafer [142]. All the p+ strips in

the silicon microstrip detector are connected to ground via resistors for biasing the

detector. The silicon detectors used in our experiment use a general method for this

purpose, the polysilicon resistors. The depth of the depletion region in the silicon

bulk can be calculated by the formula:

d = (2εV (Nn +Np)/eNnNp)
1/2 (133)

where ε is the permitivity of silicon (ε = 11.7ε0, ε0 = 8.85 × 10−18 F/µm), V is the

bias voltage, Nn/Np is the concentration of dopant atoms for n/p-type silicon. Since

Np is much larger than Nn in the case of silicon microstrip detectors, Eq. 133 can be

written as:

d ≈ (2εV/eNn)1/2 (134)

which shows that the depletion depth from the junction point is directly proportional

to the applied voltage difference across the junction until full depletion is reached.

When an ionizing particle enters the depletion region of silicon with enough en-

ergy, it creates (electron-hole) pairs. If a strong enough electric field is created the

pairs will not be recombined, however the holes will be collected by the p+ strips

while the electrons end up at the backplane. Our aim is to determine the spatial co-

ordinates of the ionizing particle which entered the silicon and the spatial resolution

of the track followed by the ionizing particle depends on the distance between the

adjacent p+ strips. Thus, in order to determine the spatial coordinates of the parti-

cle which passed through the silicon, first we need to determine the p+ strips which

collected the holes that were created during this passage. The spacing between the

p+ strips is called the pitch, an important parameter which determines the position

measurement resolution of the silicon microstrip detector.

Figure 34 shows a cross sectional view of a silicon microstrip detector. The

dimensions of separate parts in Fig. 34 are given in Table 4. The top surface of

the silicon wafer is oxidized in a controlled manner to create a layer of silicon glass,

SiO2 (see Fig. 34) [142]. The silicon glass has a bandgap of 9 eV, which makes it

an excellent insulator. Above the SiO2 layer, aluminum strips run along the length
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FIG. 34: Cross Sectional View for a Silicon Microstrip Detector

of the p+ strips, generating a series of capacitors. The induced charge/current in

the Al strip can be detected by the charge/current sensitive preamplifier, which is

connected to the Al strips (see Fig 34). This is an AC coupled silicon detector. The

preamplifiers are implemented in the SVXIIE readout chips, which will be discussed

later in this section.

The strip pitch is 100 µm. This strip pitch provides a spatial precision of 100/
√

12

= 28.8 µm, where 1/
√

12 is the sigma of the uniform probability distribution. Ideally

all the charge created in the vicinity of the strip would only be collected by that strip,

however in reality the data shows (this will be discussed in details in Chapter 6 that

the charge is distributed neighbor strips as well and thus clusters with strip number

bigger than 1 are observed in the data. This effect of charge sharing among strips is

considered carefully in the selection of hits in the silicon microstrip detector. Other

factors related to the charge sharing, apart from the strip pitch, are the strip width

and the angle of the trajectory of the ionizing particle. The p+ strip width for our

detectors is 70 µm, so the gap between two adjacent strips is 30 µm. Although,

the track trajectories of the particles are expected to be almost perpendicular to the
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detector plane, charge sharing between two adjacent strips is still possible.

Another important parameter in the silicon microstrip detector is the detector

capacitance. The total capacitance depends on the thickness of the silicon bulk (400

µm in our case), the thickness of the oxide layer (100 nm), the length (typical length

is 8 cm) and the width (70 µm) of the strips. There are two capacitors contributing

to the total detector capacitance: (1) the capacitor formed by the n+ backplane and

p+ strip, which we refer to as Cwafer and (2) the capacitor formed by the p+ strip

and Al strip, the coupling capacitance Ccoupling. The total detector capacitance is the

equivalent capacitance of both since to a good approximation, these two capacitors

are connected in series. The first capacitor resembles a parallel plate capacitor,

therefore the value of Cwafer can be calculated by:

C = εA/d (135)

where ε is the permitivity of silicon (ε = 11.7ε0), A is the total strip area (8 cm ×
70 µm) and d is the depletion depth, which depends on the applied bias voltage.

Therefore, Cwafer depends on the wafer thickness and the depletion depth. The

capacitance of the single p+ to backplane capacitor is expected to be around 600

pF/µm [142]. Ccoupling can also be calculated using Eq. 135, where the permitivity of

silicon dioxide (SiO2) is (ε = 4.4ε0), the separation distance is 100 nm, giving a result

of 2000 pF, which is much large than Cwafer. The bigger the coupling capacitance is

the better the charge induction in the Al strip [142]. This capacitance is required to

be much larger than the inter-strip capacitance in order to decouple the neighboring

strips from each other [142].

When a charged particle passes through the silicon detector, energy of the particle

will be lost mostly in the form of ionization. The quantum-mechanical description

of the energy loss is given by the Bethe-Bloch formula (see Appendix A), [173]. For

non-relativistic energies, the energy loss per distance dE/dx (also called the stopping

power) decreases by c2/v2, where v is the velocity of the charged particle and c is

the velocity of light in vacuum. For relativistic energies such as v ≥ 0.96c, however,

the dependence of dE/dx on energy can be considered almost constant. Energy loss

per distance dE/dx for minimum ionizing particles (MIP) such as muon (µ), pion

(π), proton (p) at the relativistic energies is almost the same, except the alpha (α)

particle [173]. Energy loss of a MIP when passing through the silicon detector is a

statistical process, which can be described by the well-known Landau distribution.
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TABLE 4: Parameters and their Dimensions of the Silicon Microstrip Detectors

Strip width 70 µm

Strip pitch (center to center) 100 µm

Resolution = Strip pitch/
√

12 ∼29 µm

SiO2 layer 100 nm

Al width 72 µm

p+ width 70 µm

Wafer thickness 400 µm

Cwafer 600 pF/µm depletion (1.7 pF for full depletion)

Cinterstrip 2 nF

Ccoupling ∼2000 pF
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The average energy loss for a MIP in silicon is proportional to the distance the particle

travels through the silicon.

Drawbacks of the Silicon Microstrip Detectors Used in Our Experiment

In this section we are going to list the drawbacks and possible problems that can

occur with the silicon microstrip detectors use in our experiment.

• Radiation Damage

The silicon detectors are located inside the RHIC tunnel, an area which during

operation can be considered as a high radiation zone. Because of this the

detectors are susceptible to be affected by the high radiation environment. The

high radiation can cause change in the doping concentration in the silicon bulk,

leading to an increase in the leakage current. Another effect of radiation can be

the increase of the surface leakage current due to charge buildup in the surface

layers.

• Unreliable Oxide Layer

The oxide layer between p+ strips and Al strips can break if a voltage difference

higher than 10 V is applied across it.

• Inter-strip Capacitance

As mentioned earlier, the coupling capacitance should be kept much larger than

the inter-strip capacitance to prevent fake signals from being observed on the

neighbor strips of the strip which was hit by the particle.

• External Electric and Magnetic Fields

External electric field of the accelerator environment can cause charge induction

on the Al strips leading to surface charge currents. External magnetic field can

cause unexpected deflections in the trajectory of the particle passing through

the silicon detector, disturbing the spatial measurement precision. Because of

this, the detectors should be protected from external fields.

• Edge-related Leakage Currents

The silicon detectors used in our experiment are designed with a small cutting

edge = 500 µm. This is the distance to the first strip closest to the beam, and



95

it is minimized in order to detect particles with scattering angles as small as

possible. However, the cutting edge of the silicon can be a source of leakage

current, which can affect nearby strips. To prevent this a guard/bias ring is

used around the strips, to serve as a leakage current drain and minimize the

inactive area.

For more details on the drawbacks refer to [142].

Silicon Detector Readout System

The silicon detectors are being readout by SVXIIE chips. The SVXII chip (earlier

version) is a 128 channel device, developed by a collaboration of engineers at Fermi-

lab and Lawrence Berkeley Laboratory (LBNL) [141]. The SVXII chip was designed

to meet the silicon strip upgrade requirements for both CDF and D0 experiments

at Fermilab. The SVXIIE chip features a 32-cell analog pipeline, programmable

test patterns, downloadable settings for ADC ramp, pedestal, bandwidth and polar-

ity [142]. The SVXII chip is designed for daisy chained operation with silicon strip

detectors, to reduce the number of control and readout connections in a multichip

system [141]. Figure 35 shows a simplified diagram of one of the 128 channels of

electronics. The silicon strips/channels are wire-bonded to the SVXIIE chips, thus

charge is received from the silicon strip detector via the input bond wire and inte-

grated on a small feedback capacitor, Cf, which sets the gain of the input to be 5

mv/fc. The output of the preamplifier feeds the analog pipeline which has a maxi-

mum length (32 stages) set by the minimum interaction time and maximum required

time delay [141]. The SVXII is designed to accept both positive and negative current

input signals.

Control of the SVXII is handled by digital and bias pads, called MODE0, MODE1

and CHANGE-MODE, which are used to select one of the four possible operating

modes (Initialize, Acquire, Digitize and Readout) for the SVXII during the Readout

Mode [141]. Eight pads, called BUS0-7, are used to output address and data infor-

mation from the SVXII during the Readout Mode [141]. Figure 36 shows a floorplan

and pinout diagram of the SVXII chip. Starting from the left, the preamplifier sec-

tion is followed by the analog pipeline section and the A/D section. The SVXIIE is

a radiation hard chip, with its substrate at AVDD1 potential [141].

Although the SVXIIE is designed to be connected and read 128 channels, only 126

silicon strips/channels were connected to the chips in our detector setup, leaving the
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FIG. 35: Single Channel Block Diagram for SVXII chip

first and last silicon strip in each 128 group of strips disconnected. Since the first and

last strips have offset pedestals (lower than other strips), they were excluded in order

to optimize the readout of the SVXIIE chip. The readout system of all the detectors

boards/planes was tested in the lab prior to installation and also after installation in

the actual setup. During the testing of the detectors, important parameters of the

readout system were set and the SVXIIE chips were programmed appropriately.

For more details on SVXIIE chips used in our experiment refer to [142].

3.3 MEASUREMENT TECHNIQUE

To detect scattered protons at small scattering angles, it is necessary to position

the detectors where the scattered protons are well separated from the outgoing beam.

For this reason the detectors are placed far from the interaction region (IR), where the

beam and the scattered protons have passed through bending and focusing magnets.

Each roman pot station contains two Roman pots opposite to each-other across

the beam, with one detector package in each pot. A set of one vertical and one

horizontal RP stations is located on each side of the IR, at 55.5 and 58.5 m away

from the IP, respectively, with the horizontal RP being closer to the IP. Figure 37

shows the location of the RPs for the experimental Phase I configuration. The RPs

are located in the outgoing blue and yellow rings, equidistant from the IP and after
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FIG. 36: Floorplan and pinout diagram of an SVXII chip. The inputs for 128 silicon
strips are on the left hand side.
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FIG. 37: Experimental Phase I: the RPs are located on both sides of the IP at the
STAR detector (shown in the center), in the outgoing beam pipes and after two
dipole magnets and the quadrupole triplet, in the RHIC tunnel. Experimental phase
II is a future upgrade of the experiment, where new RPs are planned to be installed
between the two dipole magnets on both sides of the IP.

the dipole magnets and three quadrupole magnets. The beams are separated into

two beam pipes after they leave the first dipole magnet, then while passing through

the second dipole magnet their trajectory is bent, before entering the quadrupole

triplet. In experimental phase II configuration, new RPs will be installed between

the two dipole magnets, at a distance of ∼18 m from the IP. Phase II configuration

will provide an increase in the high-|t| acceptance.

Figure 38 shows the experimental layout for phase I configuration in more details.

Elastic scattering is detected in either collinear detector pair (elastic arm): A, B, C or

D (see Fig. 38), (note: C and D arms are not shown in the Fig. 38). For an observer

looking away from the IP at STAR towards the outgoing beam direction, the left/right

RP of the horizontal RP station in the East of STAR (yellow beam) and the right/left

RP of the horizontal RP station in the West of STAR (blue beam), form arms A/B,

respectively. The top/bottom RP of the vertical RP station in the East and the

bottom/top RP of the vertical RP station in the West, form arms C/D, respectively.

This grouping of the RP stations and the detectors is used in the trigger logic for

the elastic trigger, since the elastic trigger is based on the collinearity condition for

elastic events. An elastic event implies that the two coordinates of the scattered

protons, obtained from the silicon detectors on either side of the interaction point

are coincident. Thus, the collinearity condition requires a collinear pair of detectors,

one on each side of the IP, to be triggered simultaneously by the incident protons.

Measurement Method: The two protons collide at the IP in a local coordinate
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FIG. 38: Experimental Layout for Phase I. The RPs are located on both outgoing
RHIC rings, Blue and Yellow. Two RP stations, one horizontal (55.5 m) and one
vertical (58.5 m), with two RPs in each station, are located on both sides of the IP
at STAR. Elastic scattering is detected in either collinear arm: A, B, C and D (C
and D are not shown in the figure). The composition of the detector package placed
in each RP (four Si strip detector planes and one trigger scintillator) is also shown.
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system at a vertical position y∗ from the reference orbit and scatter with an angle θ∗y.

The scattered particles pass through various magnetic lenses (two dipole magnets DX

and D0 and the focusing triplet Q1-Q3, see Fig. 38) of the accelerator lattice before

they reach the detectors, which measure the positions of the scattered particles with

respect to the reference orbit [139]. In order to measure the scattering angle of the

protons, the scattering angle has to be larger than the angular spread/divergence of

the beam at the collision point, which given by:

σ∗θx,y =

√
εN

6π(βγ)β∗x,y
(136)

where βγ = 106.8, εN is the normalized emittance and β∗x,y is the betatron function

at the IP. The betatron tune is the number of oscillations a particle makes in one

revolution of the accelerator. Equation 136 shows that a large betatron function at

the IP is required to minimize the angular spread of the beam. The betatron function

determines also the size of the beam spot at the IP:

σ∗x,y =

√
εNβ∗x,y
6π(βγ)

(137)

Therefore, special beam optics with β∗ = 22 m, were chosen to minimize the

angular beam divergence at the IP [168]. Data taking with the Phase I experimental

setup and with this magnet configuration, however, requires special beam optics and

a dedicated running time. In addition, the beam needs special scraping/collimation

in order to lower its emittance, since the detectors need to be moved very close to the

beam for data taking. The protons scattered at small scattering angles will follow

trajectories determined by the beam transport magnets. The large β∗ at the IP, infers

a large beam size at IP, which lowers the luminosity for our run, but provides a small

beam size at the detection point. Having a small beam size at the detection point

allows us to approach the detectors close to the outgoing beam, in order to measure

small scattering angles [140]. The luminosity (L) and emittance (εN) of the beam

during 2009 RHIC run (Run09) are given in Table 7. In addition, the beam needs

special scraping/collimation in order to lower its emittance and since the detectors

need to be moved very close to the beam for data taking.

The protons scattered at small scattering angles will follow trajectories deter-

mined by the beam transport magnets. By using the known parameters of the accel-

erator lattice explained above, we can calculate the deflection y∗ and the scattering
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angle θ∗y of the scattered proton at the IP, after measuring the deflection y and the

angle θy at the detection point. To a good approximation the equations relating these

two sets of coordinates are:

y = a11y
∗ + Lyeffθ

∗
y (138)

θy = a12y
∗ + a22θ

∗
y (139)

The coefficients (a11, Lyeff , a12 and a22) are the transport matrix elements, which

vary with z, the distance from the IR. The coefficients depend on the betatron func-

tion at the interaction point and the phase advance from the interaction point, Ψ, as

follows:

a11 =

√
β(s)

β∗
(cos Ψ + α(s)∗ sin Ψ)

Leff =
√
β∗β(s) sin Ψ (140)

where β∗ = β(s = 0) and α(s) is the derivative of the betatron function:

α(s) = −1

2

dβ

ds
(141)

The optimum condition of the experiment is to have a11 (the transport matrix

element which magnifies the beam size at IP) as small as possible and Leff (the

transport matrix element which magnifies the scattering angle) as large as possible.

The optics during data taking period of the experiment is optimized such that these

conditions are fulfilled. In this case the position and angles at the detection point

are independent of the position, which are unknown. This is called ”parallel-point-

focusing”, or in other words, when this condition is fulfilled, all the parallel rays at

the interaction point are focused at the same point at the detection point. Thus, the

coordinate of the scattered proton at the detection point can be approximated as:

y ≈ Lyeffθ
∗
y. The optimum condition is achieved when

√
ββ∗ is large and when the

phase advance Ψ is the odd multiple of π
2
, (see Eq. 140).

The smallest measured scattering angle θ∗min determines the smallest value of the

four-momentum transfer squared:

tmin ∼ θ∗min =
dmin
Leff

(142)
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where dmin is the minimum distance of approach to the beam and depends on the

beam size at the detection point and d0 is the dead space of the detector:

dmin = kσy + d0 (143)

where k is a constant that is optimized by beam scraping. The smallest four-

momentum transfer squared tmin is reached by having β∗ as large as possible and

by reducing the k-factor and the emittance [139].

Phase II configuration (see Fig. 37) will not only provide an increase in high-|t|
acceptance, but will also allow running without requiring special running conditions.

In this way the experiment can run simultaneously with the other STAR experiment,

which normally operate at small-β∗ in order to have a high luminosity.

3.3.1 EXPERIMENTAL LAYOUT DURING 2009 RHIC RUN

The STAR experiment with the Roman pots positioned as in Phase I configuration

(see Fig. 37) had a successful data taking period during RHIC 2009 run (Run09). In

this section, we will give a detailed description of the detector system set-up and the

numbering scheme during Run09. Firstly let us define the coordinate system used in

this experiment: the STAR coordinate system.

The STAR coordinate system, is defined as follows:

• East of STAR or 5 o’clock (Yellow Beam)

Positive ”X” is away from the center of RHIC

Positive ”Y” is up

Positive ”Z” points westward (Blue Beam)

• West of STAR or 6 o’clock (Blue Beam)

Positive ”X” is towards the center of RHIC

Positive ”Y” is up

Positive ”Z” points westward (Blue Beam)

The detector configuration and the numbering scheme used during 2009 RHIC

run is given in Fig. 39.

During RHIC 2009 run, eight Si detector packages were installed in eight RPs in

the actual setup in the RHIC accelerator tunnel, (see Fig. 39). The detector packages
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FIG. 39: Detector configuration and numbering scheme during RHIC 2009 run.
There are 4 RP stations, 2 on each side of the IP at STAR: RP1 and RP2 in the
West; RP3 and RP4 in the East. There are 8 detector packages consisting of 4
Si detector planes and inserted in each RP. Brown planes represent the Si detector
boards/planes, blue planes represent the trigger scintillator attached behind the four
Si detector boards in each detector assembly. There are 2 y-view (chains A and C)
and 2 x-view (chains B and D) detectors in each detector assembly. The number of Si
strips in each detector is given in the bottom-right legend. All detector packages and
Si planes are numbered and labeled. The orientation of the Si strips in the x-y plane
is also shown for each detector plane. The SVXIIE readout chips in each detector
plane are labeled 0-5 for x− view and 0-3 for y− view detectors. The 1st Si strip in
a detector plane (important for survey and alignment) is the 1st strip connected to
SVXIIE-0 in each detector plane.
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TABLE 5: Silicon detector installation map during RHIC 2009 run

Detector
Readout Package Roman Pot Roman Pot

Sequencer Notation Notation Station

1 A-3 RPEHI East Horizontal Inner

2 B-4 RPEHO East Horizontal Outer

3 A-1 RPEVU East Vertical Up

4 B-1 RPEVD East Vertical Down

5 B-3 RPWHI West Horizontal Inner

6 A-2 RPWHO West Horizontal Outer

7 A-4 RPWVD West Vertical Down

8 B-2 RPWVU West Vertical Up

are named either A or B according to their orientation. Each detector package was

installed in one RP and connected to one readout sequencer board according to the

the numbering scheme in the layout shown in Fig. 39 and the map given in Table 5.

There are two RP vessels in each RP station, vertical (up & down) and horizontal

(inner & outer), with one Si detector assembly installed in each RP. For horizontal

RP stations, Inner (Outer) corresponds to Left (Right) RPs in the East (5 o’ clock);

and Right (Left) RPs in the West (6 o’ clock), with respect to an observer looking

away from the IP at STAR and towards the outgoing beam direction (+ve z in the

West and −ve z in the East).

In each detector package, the 1st and 3rd detector planes (planes A & C) are y-view

detectors, whereas 2nd and 4th planes (planes B & D) are x-view detectors. Thus,

silicon strips/channels in planes A and C are parallel to each-other, but perpendicular

to the silicon strips in planes B and D, and vice-versa. In addition, the silicon strips in
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horizontal RPs are perpendicular to the strips in vertical RPs, for the same plane (A,

B, C, D). Each silicon micro-strip detector consists of either 512 individual Si strips,

for y-view detectors (planes A & C), or 768 strips for x-view detectors (planes B &

D). The Si strips are readout by 4 SVXIIE chips in a y-view detector plane and by 6

SVXIIE chips in a x-view detector plane. In total, 126 silicon strips are wire-bonded

to one SVXIIE readout chip, (see Fig. 39), thus 504/756 out of 512/768 strips are

wire-bonded to SVXIIE chips in a y-view/x-view detector plane, respectively.

The strip width is 70 µm, whereas the strip pitch/resolution, the distance between

two silicon strips (center to center) is 105.0 µm for x-view detectors and 97.4 µm for

y-view detectors.

Each detector plane (A, B, C, D) is used to measure either x or y coordinate of

the scattered particle, depending on the orientation of the Si strips. The detectors in

all the packages follow the same order (y-view, x-view, y-view, x-view), (see Fig. 38).

However, depending on the Roman pot in which the package is inserted (horizontal or

vertical RP), the orientation of the strips in each plane is either vertical or horizontal

in the x−y plane. Table 6 gives a summary of the detector planes and the coordinates

measured by each plane, in both horizontal and vertical RPs. On each side of the IP

at STAR, 16 silicon detectors (8 y-view and 8 x-view detectors) were used to measure

each coordinate, x and y.

Further details on the detector setup and infrastructure, can be found in Figures

101, 102 and 103 of Appendix D. The detector installation map and detailed infras-

tructure is shown for the East setup. Similar maps exist also for the West setup.

Stand Alone Sequencer boards (SAS) which are installed in a VME crate located

in the tunnel near the Roman pots, are used to control SVXIIE chips. A detector

package (4 Si detector planes) is connected to a SAS board (see Fig. 101 in Appendix

D). The signals are sent via twisted pair differential cables, the use of which mini-

mizes the noise during the signal transmission. The readout of SVXIIE chips from

a detector package is then put into the SAS FIFO, which is read by MOTOROLA

controller and sent to memory via Ethernet for offline process. The communication

between the STAR counting house and the detector system in the tunnel is done via

fiber optic cables.
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TABLE 6: Order of the detector planes and their measured coordinates in Horizontal
and Vertical RPs

Coordinate Coordinate
Detector Measured Measured
Plane in Horizontal RP in Vertical RP

Plane A (y − view)
504 strips readout by 4 SVXIIE chips x y

Plane B (x− view)
756 strips readout by 6 SVXIIE chips y x

Plane C (y − view)
504 strips readout by 4 SVXIIE chips x y

Plane D (x− view)
756 strips readout by 6 SVXIIE chips y x
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CHAPTER 4

STUDY OF THE DETECTOR ACCEPTANCE USING

SIMULATION OF THE TRANSPORT OF PROTONS IN

THE RHIC BEAMLINE

4.1 DESCRIPTION OF THE SIMULATION METHOD

The main purpose of this simulation is the study of the acceptance and the kine-

matic range of the detector system used in this experiment. To accomplish this, we

have simulated the transport of protons in the RHIC beamline, from the interaction

point (STAR IP) to the detection point (position of the Roman pots along the RHIC

beamline). Simulations have been performed by using HECTOR, a fast simulator for

the transport of particles in beamlines [146]. HECTOR computes the trajectories of

particles in beamlines using information of the physical parameters of the beamline

elements (dipole and quadrupole magnets, drift spaces etc.) that exist between the

IP near the STAR detector and the very-forward detectors at about 60 m away from

the IP, and through which the generated particles pass. Therefore, one of the require-

ments for the performance of this simulation is the knowledge of the actual physical

parameters (magnetic field strength, beamline element’s position in z-position along

the beamline, length and apertures of the beamline element etc.).

Fig. 37 illustrates the experimental layout for two experimental phases. As

mentioned also in Section 3.2, Phase I is the present experimental layout (also the

layout used in RHIC Run09), while Phase II belongs to the future detector upgrade

plans of the experiment at STAR. Our experiment is also referred to as Physics

with Tagged Forward Proton Detectors at STAR, because it uses very-forward proton

detectors (Roman Pots), to study pp elastic scattering in the very-forward region at

STAR.

Simulation studies were done for the two phases of the experiment and the detec-

tor acceptance was studied in each scenario and for two beam momenta: 100 and 250

GeV/c in both scenarios. Results of the simulation study, which will be explained in
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FIG. 40: Expanded layout of RHIC magnets from IP to Q10 (from RHIC Configu-
ration Manual [156]).

details in this chapter, can be found in conference proceedings [147]. Here, however,

we will show results on the detector acceptance for experimental Phase I, the present

experimental setup and the setup used during RHIC Run09.

Fig. 38 shows the detector layout for experimental phase I, with Roman Pot de-

tectors located at 55.5 m (horizontal RP station) and 58.5 m (vertical RP station), at

each side of the STAR IP, at RHIC. The scattered protons pass through several drift

spaces and other beamline elements before they reach the detectors: two dipole mag-

nets (DX and D0, see Fig. 38) and a quadrupole triplet (Q1, Q2 and Q3). The dipole

magnets are magnets for the path/trajectories on the beam and scattered protons in

the horizontal direction, while the quadrupole magnets serve as focusing/defocusing

elements for the particle trajectories. The Roman Pots are located at about 20 m

away from the center of the third quadrupole magnet. Fig. 40 shows an expanded

layout of RHIC magnets from IP to Q10, in the RHIC beamline. Fig. 41 shows a

simple layout of the magnets and drift spaces, between the IP6 at STAR and the RP

location in the RHIC beamline. Fig. 41 illustrates only one side (i.e. East of IP),

the other side (West) is similar.

4.1.1 SIMULATION METHOD

The HECTOR simulator [146] is based on linear approach of the beamline optics,

implementing transport matrices from the optical element magnetic effective length,

and with correction factors on magnetic strength for particles with non nominal
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FIG. 41: Optical beamline elements (drift spaces and magnets: DX and D0 - dipole
magnets and Q123 is the quadrupole triplet) between the IP and the RP location
along the RHIC beamline. RP’s are located at ∼ 60 m away from IP and the distance
between center of Q3 (last quadrupole magnet) and RP location is ∼ 20 m. Figure
shows beamline elements only in one side of the (i.e. East of IP), West side looks
similar.

energy. HECTOR deals with the computation of the position and angle of the beam

particles, and the limiting aperture of the optical elements [146]. It is a program

primarily dedicated to LHC beamlines, but it can be used for the transport of particles

through generic beamlines. From the computational point of view, is has an object

oriented structure, using the ROOT framework [171, 172]. In forward physics, for

example, HECTOR links the information on the measured position and angle of the

particles in dedicated detectors (i.e. Roman Pots), located meters away from the

IP, with the position and angles of the particles at the IP, by precisely calculating

particle trajectory.

Trajectories of particles are computed using information of the physical parame-

ters of the optical elements in the beamline. The content of this information (readout

in the code) specifically is: name and type of the optical element (drift space; dipole:

rectangular dipoles with a straight shape used in the straight sectors of the beamline

and sector dipoles, which are bent to match the beam curved trajectory and used in

the bending sections; quadrupole magnets focus the beam either vertically or horizon-

tally; kicker magnets dedicated to produce the crossing angle at the IP, etc.), position

and length in z, magnetic field strength for dipole, quadrupole fields and any multi-

pole field effects, any kicker magnet effect, geometrical aperture shape of the element

(circle, rectange, ellipse etc.) and aperture dimensions. This information is provided

to us by the Collider-Accelerator (C-A) Department at BNL, in a format that is also
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compatible in MADX software [154, 155]. We use this information to construct the

beamline, where each optical element is represented by a transport matrix M , and

Mbeamline is the multiplication of the transport matrix of each element: Mbeamline =

M1M2.....Mn, for n elements.

4.1.2 PROCEDURE AND INPUT PARAMETERS

In our simulation study we follow the general procedure and input parameters

(beam parameters and detector geometry related parameters, for our case and for

experimental Phase I setup) given below:

• Parametrize all beamline elements, as explained above. Construct beamline

from IP to detector position (RP), specify beamline length: Lbeamline = 58.496

m.

• Determine positions of detectors, detector characteristics and physical param-

eters, distance of approach of the detector to the beam.

- Horizontal/Vertical RP station: z = 55.496/58.496 m, respectively.

- Silicon detector area: 74 × 45 mm2

- Distance of approach of detector to the beam center: dmin. This depends

on the Roman pot position with respect to the beam-pipe center. The Roman

pot position relative to the beam-pipe center (assuming beam center is the

center of the beam-pipe), can vary from fully retracted RP position (∼ 70 mm)

to inserted RP position (as close as 6 mm). Here we need to take into account

also the dead-space (d0) between the bottom of the RP and the first silicon-strip

position, which is ∼ 1.8 mm. So, depending on the beam position and beam

width at the RP position, the first silicon strip can be as close as ∼ 10 mm to

the center of the beam. During the actual experimental run, the distance of

approach dmin, is determined by looking at the beam conditions during the run

(specifically by observing the single event rate during the run as the Roman

pot is inserted close to the beam for data taking). This will be explained in

more details in Chapter 5. In general the minimum distance of approach is

taken to be: dmin = kσx,y(RP ) + d0, where k is a constant optimized by beam

collimation and σx,y(RP ) is the beam size at the detection point (RP position).

• Determine beam parameters (the following parameters are given for our case):



111

- Proton mass: mp = 0.938 GeV

- Proton charge: q = +1e

- Beam momentum: pbeam = 100 GeV/c or 250 GeV/c

- Beam energy divergence: σpbeam = 0 (for this simulation)

- Beam position at IP: (x, y, z or s) = (0, 0, 0) m

- Beam longitudinal dispersion: σs = 0 m

- Beam lateral width (beam transverse size) at IP (s = 0): σx,y(0) = 701.623

µm for pbeam = 100 GeV/c and 265.270 µm for 250 GeV/c. This is calculated

using Eq. 137, where β∗ (the betatron function at IP) is 22 m (as required

by the special beam tune for our experiment) and βγ = 106.8 for 100 GeV/c

protons and 266.5 for 250 GeV/c protons.

- Beam angular divergence/spread at IP: σθx,y(0) = 33.359 µrad for 100

GeV/c and 35.370 µrad for 250 GeV/c, calculated similarly using Eq. 136.

The horizontal and vertical emittances εx,y ≈ 15π mm-mrad is used as input

in Eq. 137 and Eq. 136. The emittance is constant along the orbit according

to Liouville’s theorem [158,159].

- Beam dispersion: D = 0 (for this simulation), so we assume that there

are no off-momentum particles.

- Beam crossing angle: θB = 0 (we assume this for simplification, although

in reality a beam crossing angle exists). We can also change this parameter

and study the effect of the measured particle positions at the detection point

on the beam crossing angle. A study to see the effect of a crossing angle was

also done, for various possible crossing angles values: 3-, 4- and 5-σθx,y(0).

• Generate beam particles (protons) with randomized momentum-t in a given t-

range (0 - 0.04 (GeV/c)2) and φ (0 - 2π). The maximum value of t is determined

by the known aperture just before the detectors (the aperture of the quadrupole

magnets), and the minimum t value from the minimum distance of approach

to the beam (dmin). Number of generated particles: N = 2M. Calculate other

kinematic variables using the above:

- Scattering angle: θ =
√
t
p

from Eq. 19 for forward scattering.

- θx = N*θ*cosφ and θy = N*θ*sinφ
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FIG. 42: Beam crossing geometry at one of RHIC IP’s (magnetic lengths are shown).
DX dipole magnet is common to both beams, D0 of inner and outer insertions are
separately excited to accommodate variations in beam crossing angles, as well as
collisions between unequal species [156]. Beam crossing angle can vary from 0 - 7.7
mrad [156].
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- Each beam particle is then represented by a 6-component phase space

vector X = (x, θx, y, θy, E, 1), with horizontal and vertical coordinates and

angles, E is the particle energy and 1 is just a factor used to add an angular

kick on the particle momentum direction [146]. In our case we set the initial

particles position and angles at the IP such as: X(s = 0) = (0, θx, 0, θy).

• Propagate generated protons through the beamline. The propagation of a single

particle through the constructed beamline (with n optical elements), is the

rotation of the phase space vector by n optical elements matrices, such as:

X(s) = X(0)M1M2.....Mn (144)

• Compute the transverse position (x, y) of the propagated protons at the detec-

tion point. This can be done in HECTOR.

• Study detector acceptance for proton positions (y vs x) and kinematic variables

(t vs φ) etc.

In our case, the generated protons travel through the accelerator lattice consist-

ing of drift space, two dipole and three quadrupole magnets, as shown in Fig. 41,

before they reach the detectors. The trajectories of particles are limited by mag-

nets’ apertures and detector acceptance. When a particle is propagated through an

optical element, two tests check whether its path is compatible with the element’s

acceptance or not, at its entrance and exit [146]. If the particle does not pass through

the element’s acceptance, it is stopped and HECTOR allows us to learn the stopping

element. The particle trajectory is calculated by using a transport matrix multiplica-

tion method given in Eq. 144. The whole beamline is modeled as a single transport

matrix acting on each particle phase space vector X, assuming no intrabeam inter-

actions [146].

In electromagnetism, the effect of an external electric ( ~E) and magnetic field ( ~B),

on a charged particle with charge (q) and traveling with velocity (~v), is given by the

Lorentz force: ~F = q( ~E + ~v × ~B). The Taylor’s expansion of the vertical component

of magnetic field By, around its central value is:

e

p
By(x) =

e

p
By +

e

p

δBy

δx
x+

1

2

e

p

δ2By

δx2
x2 + ... (145)

where p is the momentum of the particle and e its charge [146]. The terms of this

sum are interpreted as dipolar: ( 1
R

= e
p
By ; quadrupolar: ( k = e

p

δBy
δx

; and
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sextupolar fields... In the co-moving coordinate system, neglecting small deviations

(x � R, y � R) and small momentum loss (∆p � p), this leads to the following

equations of motion for a for a particle traveling along the path s, through a magnetic

element [159]:

x
′′
(s) +

(
1

R2(s)
− k(s)

)
x(s) =

1

R(s)

∆p

p

y
′′
(s) + k(s)y(s) = 0 (146)

The transport matrices for various optical elements are given in [146, 158, 159].

The transport matrix for a horizontally focusing quadrupole (k < 0):

MQF =


cos Ω 1√

|k|
sin Ω 0 0

−
√
|k| sin Ω cos Ω 0 0

0 0 cosh Ω 1√
|k|

sinh Ω

0 0
√
|k| sinh Ω cosh Ω

 (147)

where Ω =
√
|k|s [159], and for a vertically focusing quadruple is given as:

MQD =


cosh Ω 1√

|k|
sinh Ω 0 0

−
√
|k| sinh Ω cosh Ω 0 0

0 0 cos Ω 1√
|k|

sin Ω

0 0
√
|k| sin Ω cos Ω

 (148)

[159].
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The transport matrices for a zero-field drift space (k = 0) and dipole magnet (k

= 0, R > 0), are given below:

Mdrift =


1 s 0 0

0 1 0 0

0 0 1 s

0 0 0 0

 (149)

[159].

Mdipole =


cos s

R
R sin s

R
0 0

− 1
R

sin s
R

cos s
R

0 0

0 0 1 s

0 0 0 1

 (150)

[159]. The dispersion function can be defined from Eq. 146, for horizontal dipoles

(k = 0), taking ∆p/p = 1:

D
′′
(s) +

1

R2
D(s) =

1

R
(151)

[146]. The solution of this equation leads to a correction term for the deflection of

off-momentum particles in the dipoles: xoff−mom.(s) = x(s) + D(s)∆p
p

.

4.2 ACCEPTANCE OF THE DETECTOR SYSTEM, PHASE I -

EXPERIMENTAL SETUP

p = 100 GeV/c and β∗ = 21 m

Fig. 43 shows in details the trajectories of 100 GeV/c beam particles and scat-

tered particles, computed for a sector of the RHIC beamline (West and up to 80

m away from the IP at STAR). The trajectory of the scattered particles is actually

the term θLeff [x, y] from Eq. 139, neglecting the first term (the term dependent

on transport matrix element a11. This plot illustrates the optimization of the optics

for our experiment (as explained also in Chapter 3, using large-β∗ to minimize the

angular beam divergence at IP (remember Eq. 136. The matrix elements are also

optimized such that a11 is as small as possible at the RP location (60 m) and Leff

is as large as possible, in order to achieve parallel-to-point focusing as accurately as

possible, meaning the (x, y) position of the scattered protons at the RP, depends

almost only on their scattering angles and is nearly independent to the transverse

position at the IP.
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FIG. 43: Trajectories of 100 GeV/c beam particles (dashed line) and scattered par-
ticles (solid line), computed for a sector of the RHIC beamline (West and up to 80
m away from the IP at STAR). The betatron function at the IP (β∗ ≈ 21 m), the
special beam tune required for experimental Phase I setup. The plot has two different
axes: horizontal axis is in mm, showing the trajectory in x and y for both beam and
scattered particles, while the vertical axis is the z(s) position in m. Red and black
refer to y and x coordinates of the particles, respectively. The beamline elements:
two dipole and a quadrupole triple are shown in cyan. Trajectory of the 6σ of the
beam (dashed line) is shown, including the focusing and defocusing effects on the
beam particles. The beam emittance of the beam is taken to be ε = 10π mm-mrad.
The trajectory of the scattered particles is also shown for a particle scattered with
a scattering angle θ = 400 µrad. The deflecting effect of the dipole magnets on the
trajectories is not shown in the plot, as it is purposefully removed in the software
used to produce the plot. The magnitude of the matrix element a11(x, y) is also
shown in the figure (the graph below 0), where a11(x, y) is optimized to be as small
as possible at the RP location (60 m). Figure courtesy of Dr. Steve Tepikian from
the C-A Dept. at BNL.
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The purpose of displaying Fig. 43 is to show the optimization of the beam optics

required for Phase I, and also to illustrate an example of the trajectories of 100 GeV/c

protons from IP to the RP location. It can be seen in Fig. 43, that the Roman pots

are located at a position where the scattered protons are well separated from beam

protons, which is needed to allow the Roman pots to be moved close to the scattered

beam particles, without coming very close to the outgoing beam particles, while the

RP is inserted inside the accelerator beampipe.

After propagating generated protons and computing their trajectories and trans-

verse positions (x, y) through the constructed beamline, as described in the simu-

lation procedure above, we can study the acceptance of the detector system, with

the given detector specifications. Fig. 44, shows the computed (y vs x) coordinates

of the protons at two RP locations (55.496 and 58.496 m, horizontal and vertical

RP stations respectively). Every point in the plot corresponds to a particle with

specific x and y coordinates, computed at the detection point. The elliptical shape

of the plot is due to the different focusing in x and y by the quadrupoles. The outer

edges are limited mostly by the apertures of the quadrupole magnets. The simu-

lated acceptance shows that we have full acceptance in azimuthal space φ, which is

important for the measurement of spin-dependent observables. It can also be seen

very clearly in Fig. 44 that there are overlapping regions between the horizontal and

vertical detectors (shown darker in the plot). The overlapping regions are important

for detector alignment studies.

Fig. 45 shows the acceptance as a function of |t|. There is a region in |t|, where

the acceptance is independent of |t|, this is the region of 100 % and flat/constant

acceptance: 0.003 ≤ |t| ≤ 0.02 (GeV/c)2.

p = 250 GeV/c and β∗ = 7.5 m

Fig. 46 shows the simulated acceptance for 250 GeV/c protons (thus
√
s = 500

GeV). In this case a different beam tune is used, β∗ = 7.5 m. Fig. 46(a) shows

the geometrical acceptance and Fig. 46, the acceptance as a function of |t|. Higher

|t| acceptance is extended to 0.2 (GeV/c)2. The region of 100 % and flat/constant

acceptance in this case is about: 0.06 ≤ |t| ≤ 0.145 (GeV/c)2.
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FIG. 44: The geometrical acceptance: coordinates y vs x (mm) of 100 GeV/c protons
at the RP location, for Phase I (β∗ = 21 m). The outer boundaries are limited by the
apertures of the quadrupoles, the vertical coordinate is limited by the width of the
detector (37 mm). The inner boundaries are related with the minimum distance of
approach of the beam dmin, relative to the beam center. dmin in this case was set to
15 mm. The detectors are shown by red rectangles: horizontal (inner and outer) and
vertical (up and down). The vertical RP station is 3 m away from the horizontal RP
station, with the horizontal station being closer to IP for an observer looking away
from the IP and towards the RP location. The overlapping regions of the detectors
are shown in darker black.
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FIG. 45: Normalized number of particles (acceptance) plotted as a function of |t|
for 100 GeV/c protons and for Phase I. The region of 100 % and flat acceptance is
indicated in the plot.

(a) Geometrical Acceptance: y vs x in mm (b) Acceptance as a function of t

FIG. 46: Acceptance for 250 GeV/c protons, for Phase I and with β∗ = 7.5 m: (a) y
vs x in mm, and (b) acceptance as a function of |t|. Note: in (a) horizontal RPs are
insterted twice a close to the center, compared to vertical RPs.
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CHAPTER 5

DATA COLLECTION DURING RHIC 2009 RUN

5.1 RUNNING CONDITIONS DURING DATA COLLECTION

During the second half of RHIC Run09, the Relativistic Heavy Ion Collider

(RHIC) provided polarized proton collisions at two interaction points (IP) and col-

lider experiments, STAR and PHENIX [164]. The spin orientation of both proton

beams at the collision points was controlled by helical spin rotators, and physics data

were taken with different orientations of the beam polarization [164]. The final week

of the run was devoted to the polarized proton-proton elastic scattering experiment

at RHIC, originally named PP2PP and now part of the STAR experiment.

During the RHIC run of spring 2009 (Run09), the STAR collaboration was able

to record a total of 33 million elastic triggers. The data was taken during 4 dedicated

RHIC stores, between June 30 and July 4, 2009 with special beam optics of β∗ =

22 m. The luminosity was L ≈ 2·1029cm−2s−1. The data was collected during 46

runs and the closest approach of the first Si strip to the center of the beam pipe was

∼ 10 mm. The four momentum transfer squared t range covered during Run09 was

0.003 ≤ |t| ≤ 0.035 (GeV/c)2.

The main objective of this data analysis is the measurement of the transverse

single spin asymmetry AN in the elastic scattering of two transversely polarized

protons at
√
s = 200 GeV. Measurement of AN in the CNI region and at the high

energy range available at RHIC, will help us attain a better understanding of the

spin-dependence of the diffractive processes, and the involved exchange mechanisms.

A summary of the running conditions, i.e. beam parameters, during Run09 is

given in Table 7.

The runs taken during Run09 are listed in Fig. 104 in Appendix D, according

to Ref. [165]. The run list given in Appendix D provides information on several

important running conditions, such as: run number; starting and stopping date and

time of each run; duration of the run; number of events taken in each run; number

and fraction of elastic events for each run; run type/comment; store number and
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TABLE 7: Beam parameters and other running conditions during Run09

Parameter Symbol Value

Beam Momentum p 100 GeV/c

Beam Polarization (Blue) PB 0.60

Beam Polarization (Yellow) PY 0.62

Fill Pattern
(No. of Bunches/Ring, Blue×Yellow) 120 × 120

No. of Filled Bunches/Ring, Blue×Yellow 90 × 90
(after excluding the abort gap in the fill pattern)

N. of Colliding Pairs 64

No. of Bunches with Both Beams Polarized 64

No. of Bunches with Polarization Pattern 16
either ↑↑, ↓↓, ↑↓ or ↓↑ for PB and PY , respectively

No. of Events with Polarization Pattern
(for PB and PY , respectively) ↑↑ 5,402,069

No. of Events with Polarization Pattern ↓↓ 5,738,377

No. of Events with Polarization Pattern ↑↓ 5,435,231

No. of Events with Polarization Pattern ↓↑ 5,535,183

No. of Protons/Bunch (Beam Intensity) Ibeam 5·1010 protons/bunch

Beam Emittance εN 15π mm mrad

Betatron Function at IP β∗x,y 22 m

Beam Lateral Width at IP σ∗x,y 701.62 µm

Beam Angular Divergence at IP σ∗θx,θy 33.36 µrad

Closest Approach of the first Si strip dmin ∼ 10 mm ≈ 12 σbeam
to the center of beam-pipe
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Bunch Structure (Run 10183028)

FIG. 47: Bunch structure for run 10183028, showing the number of scattering events
as a function of bunch number.

RP position (Pos) for each run. Note that, not all the runs taken during Run09 are

physics runs, only 13 out of 17 RP positions correspond to physics runs and more than

one run was taken with the RPs inserted close to the beam at certain RP positions

(this corresponds to one RP Pos in the run list in Appendix D). This set of physics

runs is used for data analysis. Figure 105, also in Appendix D, provides a list of the

RP positions for each run together with information on the: run number; starting

and stopping date and time for each run; RP position; distance of approach (mm) of

each RP to the RHIC accelerator beam-line center. The distance of approach of the

RP to the center of the beam-line during the run was measured by using a device

called Linear Variable Differential Transformer (LVDT).

The 4 RHIC stores during data collection (11020, 11026, 11030, 11032) had the

same bunch structure for both the counter-circulating beams, Blue and Yellow (90 ×
90), respectively. Figure 47 shows the bunch numbers for a typical run, run 10183028.

Events coming from the collision of the first 7 bunches were excluded from the anal-

ysis, because the timing of these bunches corresponded to the time when the pre-

amplifier of the SVX readout chip of the silicon detectors was resetting. The pream-

plifier must be reset once per revolution of the proton beam. After the reset, it takes

a short amount of time for the preamplifier output to settle. The resetting occurred

during the collision of bunches 1-7. Thus, another bunch number was introduced

after the exclusion of the first 7 bunches of the beams (bunch numbers: 1-7) due to
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FIG. 48: Bunches with spin for run 10183028, spin orientation is transverse, either
positive (up) ↑ or negative (down) ↓

the RP data acquisition system.

To provide an abort gap for the beams, 30 out of 120 bunches are purposefully left

unfilled (see Fig. 47). If we look at the polarization of the bunches we see that only

64 out of the 90 bunches per beam provide bunch combinations where both Blue and

Yellow beams are polarized, (see Fig. 48). Thus, only 64 out of 90 bunches have

usable polarization pattern for both beams. This includes four bunch combinations

(all possible spin direction combinations): 16 ↑↑, 16 ↓↓, 16 ↑↓, 16 ↓↑, for Blue and

Yellow beams, (see Table 7). The number of events coming from collisions of each

of these bunch combinations, is also given in Table 7. The polarization direction of

every RHIC bunch is determined by the spin-flip control system in the polarized ion

source [161], and every single pulse is accelerated and becomes the RHIC bunch with

a specific polarity: ↑ (+) or ↓ or (-). Selected patters of spin direction sequences are

the loaded in the rings. Having all possible spin directions combinations for colliding

bunches, enhances the systematic error control greatly. The polarization pattern

for the Blue beam was: -+-++-+-..., and for the Yellow beam was: ++–++–...,

with 90/90 bunches for Blue/Yellow. The polarization measurement during the run

was performed by the CNI Polarimeter group at RHIC, refer to the analysis note in

Ref. [166].

Figure 49 and 50, show the bunch numbers for the four spin combinations for Blue
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FIG. 49: Bunches with spin orientation: (a) ↑ ↑ (b) ↓ ↓, for run 10183028

and Yellow beams: ↑ ↑, ↓ ↓, ↑ ↓, ↓ ↑.



125

bunches_with_spinUD

Entries  644875
Mean     54.5
RMS     28.02

0 20 40 60 80 100 120
0

10000

20000

30000

40000

50000

60000

bunches_with_spinUD

Entries  644875
Mean     54.5
RMS     28.02

 (Run 10183028)↓↑ = YP
B

Bunches with Spin: P

(a)

bunches_with_spinDU

Entries  751780
Mean    47.97
RMS     28.51

0 20 40 60 80 100 120
0

10000

20000

30000

40000

50000

60000

70000

80000

bunches_with_spinDU

Entries  751780
Mean    47.97
RMS     28.51

 (Run 10183028)↑↓ = YP
B

Bunches with Spin: P

(b)

FIG. 50: Bunches with spin orientation: (a) ↑ ↓ (b) ↓ ↑, for run 10183028
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The transverse single spin asymmetry AN is defined as the left-right cross section

asymmetry with respect to transversely polarized beams. With the available bunch

combinations given above, various asymmetries could be built:

1. We can measure an asymmetry using ↑↑ and ↓↓ bunch combinations. This

includes 32 bunch combinations out of 64 bunches when both beams are polar-

ized. In this case the measured asymmetry is proportional to the sum of the

Blue and Yellow beams’ polarization values, Pb + Py.

2. Another asymmetry can be measured when we consider one beam polarized and

we do not look at the polarization of the other beam, or we consider the other

beam unpolarized. For example we consider the Blue beam to be polarized and

the Yellow beam to be unpolarized and vice-versa.

In this case, there are: 45 out of 90 colliding bunches when the spin orientation

of the Blue/Yellow beam bunches is positive and the spin orientation of the

Yellow/Blue beam bunches is either positive, negative or zero; 45 bunches when

the spin orientation of the Blue/Yellow beam bunches is negative and the spin

orientation of the Yellow/Blue beam bunches is either positive, negative or

zero. One could measure a transverse single spin asymmetry in this case, but

the measured asymmetry is proportional to the polarization value of one beam

only, Pb or Py, rather than the sum of Blue and Yellow beams’ polarization

values as in the first case.

3. We can also use the opposite bunch spin combinations: ↑↓ and ↓↑. This again

includes 32 bunch combinations out of 64 bunches when both beams are po-

larized. In this case, the measured asymmetry is proportional to the difference

of the Blue and Yellow beams’ polarization values, Pb − Py. The difference in

the polarization values should be very small, close to zero, leading to a small

measured asymmetry in this case. In other words, the measurement of an

asymmetry in this case can be used as a systematics check for the asymmetry

measurement.

In order to reduce the background from the beam halo, the beam was scraped

during the run by using beam collimators. The Roman Pots were positioned to the

closest position allowed by the beam envelope, depending on the beam conditions.

The single event rates measured by the scintillator counters of our detectors were
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monitored while the RP was being moved close to the beam. The RP was moved

slowly, ∼10 mm each time and the single event rates were constantly checked.

As the RP moves close to the beam, the distance of the RP relative to the beam center

decreases, allowing the detection of particles scattered at small scattering angles, or

small momentum transfer t. As t decreases, approaching |t| ∼ 10−4 (GeV/c)2 or less,

the Coulomb amplitude starts to dominate the differential elastic cross-section and

the cross-section increases as 1/t2. The approach of the RPs to the beam halo and

maybe the fast increase of the cross-section due to the dominance of the Coulomb

amplitude at small-t (if RPs move close enough to reach the Coulomb region), makes

the singles rates in the scintillator counters increase quickly as the RP is moving closer

to the beam. Because of the limited trigger rate of the data acquisition system, the

RP movement was stopped by the operator, whenever the single event rate reached

the maximum allowed rate ∼ 30 kHz. In this way the RP was moved to the limit of

the rates, assuring that the RP was positioned to the closest distance possible relative

to the center of the outgoing beam, without approaching the Coulomb region.

Since the beam conditions (i.e. position of the beam center) are different for

different stores/fills, the position of the RPs and thus the distance of approach of

the detectors with respect to the center of the beam-pipe, changed mainly from one

store/fill to the other. Considering the position of all the Roman Pots, there are 13

different RP positions during the 4 stores, (see Appendix D). At least one of the

Roman Pots were moved to a closer position during the same store, whenever the

beam envelope allowed this approach.

5.1.1 BEAM PARAMETERS

The luminosity of the beam can be calculated using the following expression:

L =
3

2

µ

β∗
(βγ)

NBN
2

ε
(152)

where µ is the revolution frequency, β∗ is the betatron function at the IP, γ = 106.8

for 100 GeV protons, NB is the number of bunches per beam, N is the number of

protons per bunch or the beam intensity and ε is the beam emittance. Given the

conditions of our experiment: µ = 78.4 kHz, β∗ = 22 m, βγ = 106.8, NB = 64

colliding bunch pairs, N = 5·1010 protons/bunch, ε = 15π mm mrad, therefore we

get for the luminosity of our run is L = 1.9 × 1029 cm−2s−1.
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TABLE 8: Polarization Values and Errors during Run09

Stores Blue Beam Error Yellow Beam Error
Pb (stat. + syst.) Py (stat. + syst.)

11020 0.6234 0.0516 0.6211 0.0712
11026 0.5477 0.0511 0.5900 0.0484
11030 0.6199 0.0531 0.6438 0.0508
11032 0.6186 0.0540 0.6178 0.0480

TABLE 9: Sum and Difference of Polarization Values and Errors during Run09

Stores Sum Difference Error
Pb + Py Pb - Py (stat. + syst.)

11020 1.2445 0.0023 0.0879
11026 1.1377 -0.0423 0.0703
11030 1.2637 -0.0239 0.0735
11032 1.2364 0.0008 0.0722

Beam Polarization

The beam polarization values for Run09 run can be found in [166] and [167]. The

polarization values and errors (including statistical and systematic), for the Blue and

Yellow beams and for each RHIC store/fill during Run09 are given in Table 8. The

sum and difference of the polarization values of the two beams Pb and Py are given in

Table 9. The statistical and systematic errors for each beam and for the individual

stores are added in quadrature.

The overall luminosity weighed average polarization values for the 4 RHIC stores

during Run09 (sum, difference of Pb and Py and the respective errors) are calculated

as:



129

〈
Pb + Py

〉
=

Σ(Pb + Py)× Li
ΣLi

= 1.224 (153)

δ2
Pb+Py

(stat.+ syst.) =
Σδ2

i (Pb + Py)× L2
i

(ΣLi)2
= 0.0383 (154)

〈
Pb − Py

〉
=

Σ(Pb − Py)× Li
ΣLi

= −0.0157 (155)

δ2
Pb−Py(stat.+ syst.) =

Σδ2
i (Pb − Py)× L2

i

(ΣLi)2
= 0.0383 (156)

where Li is the luminosity for each store i.

In addition to the above mentioned statistical and systematic errors of the po-

larization values, there is a global error in the measurement of the polarization,

δPb+Py(global)/ 〈Pb + Py〉 = 4.4%. After adding the global polarization error, the

total polarization error δPb+Py(total)/ 〈Pb + Py〉 = 5.4%.

5.2 TRANSPORT MATRIX

In order to describe the transport of beam particles in a beam-line, first each

beam particle is represented by a 6-component phase-space vector, such as X =

(x, x
′
, y, y

′
, E, 1), where (x, x

′
) are the horizontal and (y, y

′
) are the vertical coor-

dinates and angles, respectively; E is the particle energy and the sixth component

is a factor used to add an angular kick on the particle momentum direction. Each

optical element in the beam-line (dipole or quadrupole magnet, drift space etc.), is

represented by a transport matrix. Refer to Ref. [158] and [159] for definitions of

the transport matrices of different optical elements used in particle accelerators. The

beam-line from one point to another along the z axis (or as commonly used in accel-

erator physics along s, where s = 0 is at the interaction point), can be modeled as

a single transport matrix acting on each particle phase space vector, assuming there

are no intra-beam interactions. The single transport matrix is the multiplication of

the transport matrices of each optical element which make up a particular segment

along the beam-line or the whole beam-line. In general, for n optical elements in the

beam-line, the propagation of a single particle through the beam-line is the rotation
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of the phase space vector by n transport matrices as given in Eq. 157.

X(s) = M1M2...Mn︸ ︷︷ ︸
Mbeam−line

X(0) (157)

The whole beam-line can be represented by the multiplication of each transport

matrix, where Mbeam−line is the product of the multiplication.

The full, 6×6 matrix of the particle transport can be decomposed into blocks as

given in Eq. 158.

Munits =



A A 0 0 D K

A A 0 0 D K

0 0 B B 0 K

0 0 B B 0 K

0 0 0 0 1 0

0 0 0 0 0 1



=



1 m 1 m m/GeV 1

1/m 1 1/m 1 1/GeV 1

1 m 1 m m/GeV 1

1/m 1 1/m 1 1/GeV 1

GeV/m GeV GeV/m GeV 1 1

1 1 1 1 1 1


(158)

where A and B blocks (2×2 matrices) refer to the action (focusing, defocusing, drift)

on horizontal and vertical coordinates and angles of particles, respectively; D terms

reflect the dispersion effects of the dipole magnets on off-momentum particles and K

factors are the angular action of kickers. The diagonal terms are equal to 0 in this

description of the full transport matrix.

The full 6×6 transport matrix calculated for the special running conditions during

Run09 is given below:
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Blue Transfer Matrices:

---------------------------------------------------------------------------------------------------

"RP" at 55.49553423

-0.09132371863 25.25660678 -0.003407342595 0.07645145495 0 -0.083472914

-0.03964361056 0.01373531561 -0.0001382548495 0.00566210853 0 0.004625655462

-0.003294203268 -0.1001110115 0.1043509155 24.75980174 0 0.002785759922

0.0001857690455 0.008293503463 -0.04305702299 -0.6331964563 0 -3.340383325e-05

0.003732007221 -0.1179551283 -8.915908038e-05 -0.00176313181 1 0.007538433453

0 0 0 0 0 1

---------------------------------------------------------------------------------------------------

"RP" at 58.49552823

-0.2102543124 25.29781264 -0.003822106314 0.09343774656 0 -0.06970129271

-0.03964361056 0.01373531561 -0.0001382548495 0.00566210853 0 0.004625655462

-0.002736897246 -0.07523055083 -0.02481989511 22.86021617 0 0.002950183901

0.0001857690455 0.008293503463 -0.04305702299 -0.6331964563 0 -3.340383325e-05

0.003736231542 -0.1179543801 -0.000100538927 -0.001931294249 1 0.007800908246

0 0 0 0 0 1

---------------------------------------------------------------------------------------------------

Yellow Transfer Matrices:

---------------------------------------------------------------------------------------------------

"RP" at 55.49553525

-0.09038891985 25.30270237 -0.0001006373282 -0.1086595919 0 0.08506090227

-0.03957787452 0.01587988506 7.33399047e-05 -0.002158444287 0 -0.00457448534

0.0001727273093 0.05167789227 0.1061795437 24.80043304 0 -9.877115174e-05

-0.000169938049 -0.003448997213 -0.04302630665 -0.6317527953 0 -1.662777594e-05

-0.003779992848 0.1170987983 1.179328201e-05 -0.0002058859334 1 0.00753116186

0 0 0 0 0 1

---------------------------------------------------------------------------------------------------

"RP" at 58.49552925

-0.2091223059 25.35034193 0.0001193819458 -0.1151349118 0 0.07150878975

-0.03957787452 0.01587988506 7.33399047e-05 -0.002158444287 0 -0.00457448534

-0.0003370858179 0.04133092133 -0.0228991181 22.90517845 0 -0.0001783223269

-0.000169938049 -0.003448997213 -0.04302630665 -0.6317527953 0 -1.662777594e-05

-0.003786768132 0.1171016211 1.30823485e-05 -0.000187512901 1 0.007793349465

0 0 0 0 0 1

---------------------------------------------------------------------------------------------------

Notice that in reality the diagonal terms are not equal to zero, however, they are

small.

5.3 OVERVIEW OF THE COLLECTED DATA SAMPLE

The following graphs show the total number of elastic triggers collected during

the four days of data period, from June 30 - July 4, 2009, (see Fig. 51). The pattern

in the graph resembles an inclined ladder with four steps, which correspond to the

four RHIC stores and the time between the stores, when the data taking was stopped.

The graph in Fig. 52 shows the number of elastic triggers taken with RPs inserted

at different distances, as close as ∼ 6 mm to the beam center.

The total number of triggers (N tot
triggers) is ∼72 M triggers, recorded at a rate of

∼660 Hz and during a total period of 34 hrs and 50 min. Among these, the total

number of elastic triggers (N el
triggers) is ∼33 M, about 46% of N tot

triggers. The elastic
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FIG. 51: Integrated number of elastic triggers during Run09. The steps in the graph
correspond to the time between the four RHIC stores/fills during Run09, when there
was no beam circulating at RHIC and data taking was stopped. Figure courtesy of
S. Bültmann.

FIG. 52: Integrated number of elastic triggers for RP minimum position, during
Run09. Figure courtesy of S. Bültmann.
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trigger rate was ∼350 Hz.

5.4 ACCEPTANCE DURING RUN09

We have studied the acceptance of the RP system, for each RP position during

Run09, using the simulator program HECTOR (as described in Chapter 4). Accep-

tance for all RP positions (see Appendix D) is given in [160]. Fig. ?? and 53(b) shows

the minimum-t reached by the silicon detectors for all RP positions during Run09,

based on vertical and horizontal RP positions, respectively. Minimum-t is calculated

from the minimum distance of approach of the detector to the beam (dmin) such as:

|tmin| = p2θ2 ≈ p2

(
dmin
25 m

)2

(159)

where 25 m is the approximate value of one of the transport matrix element, the

magnification of the scattering angle, also referred to as the effective length or Leff

(see the transport matrix in Section 5.2). As explained also in Chapter 4, dmin

depends on the beam size at the detection point, such as: dmin = kσD + d0, where d0

is the dead-space between the bottom of RP and the first silicon strip. d0 is usually

taken to be 1.8 mm, and is included in the calculation of the minimum-t. It should be

mentioned that, what is shown in Fig. 53(a) and Fig. 53(b) is an estimate. Analysis

of elastic events (Chapter 6), will give exact information of the minimum-t reached

during Run09. Fig. 53(c) and 53(d) show the geometrical acceptance and acceptance

as a function of t, for RP Position 2 during Run09. The ellipses shown in Fig. 53(c),

indicate the min-, max-t values and scattering angles reached during the run set in

Run09 RP Position 2.

5.5 ALIGNMENT OF THE SILICON DETECTORS

Precise knowledge of the alignment of the detectors is required in this experiment.

The preliminary alignment was done by surveying the detector packages. The silicon

strip detectors were surveyed in the lab after being assembled. The detector packages

were also surveyed in the actual setup in the RHIC tunnel at the end of 2009 RHIC

run. The final alignment (Local Alignment) was done by using elastic events in the

overlapping regions of the horizontal and vertical RPs. However, this was followed

by a study (Global Alignment) based on the collinearity of the elastic events and

Monte-Carlo simulations of the acceptance boundaries. The acceptance boundaries

of the detectors are limited by the apertures of the quadrupole magnets positioned in



134

front of the RPs in the outgoing RHIC rings. The study of the acceptance boundaries

was used to further constrain the geometry and to finalize the alignment of the silicon

detectors.

When the detector packages are installed in the RP, they are sled inside the RP

by using two rails and fixed in place by screws. The rails inside the RP, on which the

detector packages slide in, define the plane perpendicular to the beam pipe central

axis. The position of the detectors inside the RP may be slightly tilted in the x − y

plane. The survey of the detector packages in the actual setup enabled us to measure

the angle of tilt of the detectors in the x − y plane. The information provided by

the survey of the detector packages, both in the lab and in the actual setup during

the experiment, was used to calculate the position of the 1st silicon strip/channel

in each Si detector plane, relative to the RHIC beam-line center. The position of

the 1st silicon strip relative to the beam-line center in the actual setup during the

run, is needed to translate the measured coordinate of the scattered particles at the

detection point from silicon strip/channel# notation to x − y coordinates relative to

the beam-line center.

5.5.1 SURVEY ALIGNMENT

All the detector packages were surveyed in the lab (table-top setup) in 2003. Two

detector packages, A-1 (installed in RPEVU) and A-2 (installed in RPWHO), were

reassembled in March 2009, before installation in the RHIC tunnel. After completion

of RHIC 2009 run, all the detector packages were surveyed in the actual setup in the

RHIC tunnel and also resurveyed in the lab setup to also correct for the survey of

the two packages that were reassembled before the run.

Initial Survey of the Detectors in the Lab Setup

Figure 54 shows a detector package being surveyed in the lab (table-top setup).

The table-top survey of the detectors performed in the lab, provides information on

the positions of the two survey points on the package (the tooling balls), with respect

to a previously established reference point on the package, shown by the centering

pin in Fig. 54. Refer to [157] for a detailed explanation on the steps followed during

the initial survey of the detectors in the lab. Four cross points on each corner of the

silicon detector plane were made by lithography on the silicon during manufacturing,

in order to be used for alignment of the silicon strips. The positions of these four



135

points on the silicon with respect to the centering pin were measured for each detector

plane before assembly. These measurements provide the positions of the 1st silicon

strip/channel on each plane with respect to the centering pin. By combining these

measurements with the positions of the tooling balls with respect to the centering

pin on each detector package, we can calculate the positions of the tooling balls with

respect to the 1st silicon strip/channel on each plane.

Survey of the Detectors in the RHIC tunnel

The survey of the detector packages in the actual setup in the RHIC tunnel was

performed in August 2009, after the run. During the survey, RHIC or local coordinate

system was used. The RHIC coordinate system is defined as follows:

• East of STAR or 5 o’clock (Yellow Beam)

– Negative ”X” is away from the center of RHIC

– Positive ”Y” is up

– ”Z” origin is the insertion point for O05Q03 (the marker which defines

the center of the 3rd quadrupole magnet downstream of IP6 at RHIC

and towards East, Q03, located ∼ 34.780 m away from IP6) and positive

”Z” is towards O05Q04 (the marker which defines the center of the 4th

quadrupole magnet downstream of IP6 at RHIC and towards East, Q04,

located after Q03 when looking away from IP6 and towards East)

• West of STAR or 6 o’clock (Blue Beam)

– Negative ”X” is towards the center of RHIC

– Positive ”Y” is up

– ”Z” origin is the insertion point for O06Q03 (the marker which defines

the center of the 3rd quadrupole magnet downstream of IP6 at RHIC

and towards West, Q03, located ∼ 34.780 m away from IP6 at RHIC) and

positive ”Z” is towards O06Q04 (the marker which defines the center of the

4th quadrupole magnet downstream of IP6 at RHIC and towards West,

Q04, located after after Q03 when looking away from IP6 and towards

West)
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During the survey, the Roman pots were positioned at their fully retracted posi-

tion (∼ 70 mm) and then moved to 16 different positions relative to the beam-line

center from their fully retracted position. Measurements of the positions of the tool-

ing balls in each RP, were performed at each RP position. The RP displacement was

measured by using a position measuring device, Linear Variable Differential Trans-

former (LVDT). We will use this notation ”LVDT position”to refer to the RP position

relative to the beam-line center. The LVDT positions during survey were chosen to

be close, but not exactly the same, to the LVDT positions of the RPs during the

run. The two furthest LVDT positions during survey were ∼ 70 mm and the next

15 LVDT positions varied from ∼ 20 mm to as close as ∼ 6 mm from the beam-line

center. Thus, in order to eliminate any possible small change in position of the RP

when moved to different LVDT positions, the survey information for the two furthest

LVDT positions was not used because of the large difference (∼50 mm) between these

positions and the other 15 LVDT positions. Another reason of the exclusion of the

two furthest LVDT positions during survey is to use survey LVDT positions that are

closer to the LVDT positions of the RPs during the run.

The coordinates of the tooling balls relative to the beam-line center were measured

at a precision of 30 µm. The survey in the actual setup provides (x, y, z) coordinates

of the tooling balls on each detector package, relative to the beam-line center, for 15

different RP positions (LVDT positions).

Angles of Tilt of the Detector Packages in x− y Plane

The survey information in the actual setup was first used to calculate the angles

of tilt of the detector packages in the x− y plane, as positioned inside the RP during

the run. The sign convention for the tilt angle, for an observer looking away from

the IP and towards the 1st silicon detector plane is positive for clockwise and negative

for counterclockwise. Initially the tilt angle of all the detector packages is calculated

when the RP is at the fully retracted LVDT position. Refer to [157] for a detailed

explanation on this calculation. Then, the same calculation was repeated for the

other RP positions. Since the orientation of the detector package inside the RP does

not change when the RP is moved (up-down) or (left-right) to a different LVDT

position, it is expected that the tilt angle of the detector package in the x− y plane

remains constant for different LVDT positions. After calculation of the tilt angles

of each detector package for all the LVDT positions during survey, it was observed
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that the standard deviation between the measurements of the tilt angle of the same

detector package for different LVDT positions was small, in the order of ∼ 10−5 [157].

The final calculated tilt angle of the detector package is the average of the angles

calculated for each LVDT position:

αpackagetilt (in the x− y plane) =

∑
i α

package
tilt (i)∑
i(i)

(160)

where i = LVDT-position.

Each detector plane can be slightly tilted relative to the package itself in the x − y
plane. This angle is also added to the calculated tilt angle of the detector package.

Thus, for each detector package and plane:

αplanetilt (in the x− y plane) = αpackagetilt (in the x− y plane) + βplanetilt (161)

where βplanetilt is the tilt angle of each detector plane relative the the detector package,

in the x − y plane. Since each plane in the same detector package may be tilted

slightly differently relative to the package, then the final calculated tilt angle for each

of the four planes in one package is slightly different. Table 10 gives a summary of

the final calculated tilt angles of all the detector planes.

1st Silicon Strip/Channel Position Calculation

By combining the information provided by the survey performed in the actual

setup, (position of the tooling balls relative to the beam-line center) and the tabletop

setup (position of the tooling balls relative to the 1st silicon strip), we can calculate the

position of the 1st silicon strip/channel in each detector plane relative to the beam-

line center. The angle of tilt of the planes is taken into account in the calculation of

the 1st Si strip position, to include the tilt/rotation of the silicon strips in the x− y
plane.

The SVX readout chips in each detector plane are labeled 0 - 5 for x − view

and 0 - 3 for y − view detectors. Definition of the 1st Si strip/channel: The 1st Si

strip/channel in each detector plane is the 1st Si strip connected to SVX0 in each

detector plane. We will use (x0, y0) notation to refer to the (x, y) coordinates of the

opposite edge (edge closer to the beam) of the 1st Si strip connected to SVX0 (see

Fig. 39).
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TABLE 10: Calculated final tilt angle for all detector planes in the x− y plane.

Plane A Plane B Plane C Plane D
Tilt Angle Tilt Angle Tilt Angle Tilt Angle

(mrad) (mrad) (mrad) (mrad)

RPEHI 1.803 1.803 1.903 1.903

RPEHO -0.659 -0.659 -0.759 -0.659

RPEVU 0.366 0.566 0.466 0.466

RPEVD -2.041 -2.041 -2.041 -2.041

RPWHI -0.896 -0.996 -0.896 -0.796

RPWHO 0.607 0.507 0.507 0.607

RPWVD 1.320 1.420 1.420 1.220

RPWVU -2.472 -2.472 -2.472 -2.572
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Firstly, the positions of the 1st strip in each plane, relative to the beam-line center

(either x0 or y0 depending on the coordinate measured by each plane), (see Table 6),

were calculated for the furthest LVDT position. Refer to [157] for an example and

a detailed explanation on this calculation. Then, the same calculation was repeated

for the other LVDT positions during survey. The two furthest LVDT positions were

again excluded from this calculation, since they differ from the other survey LVDT

positions and the LVDT positions during the run by ∼50 mm. The final calculated

positions, x0 (y0) of the edge of the 1st silicon strip connected to SVX0 in each

detector plane is the average of all the x0 (y0) calculated for each RP position during

survey, (see Eq. 162).

x0(y0)(1st Si strip) =

∑
i x0(y0)(i)∑

i(i)
(162)

where i = LVDT-position.

For planes A and C in each detector package, the calculated y0 for vertical RPs

and x0 for horizontal RPs was compared to the LVDT position of the RP during

survey. The plot in Fig. 55 (a) shows the linear relation between the calculated x0

for RPEHI plane-A and the LVDT position of RPEHI during survey. This relation

is needed to get the 1st silicon strip positions during the run, knowing the LVDT

positions of the Roman pots during the run. For planes B and D in each detector

package, the calculated x0 for vertical RPs and y0 for horizontal RPs is the same for

all the RP positions during survey. This measurement will be used directly to refer

to the x0 (vertical RPs) and y0 (horizontal RPs) of the 1st silicon strip in a particular

Roman pot during the run. The plot in Fig. 55 (b) shows the calculated y0 for

RPEHI (detector package A3) plane-B and for 13 different RP positions of RPEHI

during survey.

The calculated positions x0 (y0) of the 1st silicon strip in all the detector planes

and their relation with the LVDT positions of the RPs are given in Table 11. For

planes A & C, one can use the given linear relation between the calculated x0 (y0)

and the LVDT position for each run# during Run09 to get the x0 (y0) of the 1st

silicon strip during the run. For planes B & D, the calculated x0 (y0) is the same for

all the runs.

The LVDT positions of each RP during RHIC 2009 run, given in Appendix D,

were used together with the equations given in Table 11, to get the positions x0 (y0)

coordinates of the 1st silicon strip in all the detector planes during the run. The 1st
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TABLE 11: Calculated 1st silicon strip/channel positions x0 (y0) in each detector
plane during Run09. For planes A & C, one can use the given relation between the
calculated x0 (y0) and the LVDT position for each run# during Run09 to get x0 (y0)
of the 1st silicon strip during the run. For planes B & D, the calculated x0 (y0) is the
same for all the runs.

Roman Plane A Plane B
Pot (mm) (mm)

RPEHI x0 = (1.001∗LVDT + 1.619)∗(-1) y0 = -39.287

RPEHO x0 = 1.016∗LVDT + 3.096 y0 = 39.635

RPEVU y0 = 1.013∗LVDT + 2.645 x0 = -39.017

RPEVD y0 = (1.001∗LVDT + 2.076)∗(-1) x0 = 40.745

RPWHI x0 = (0.992∗LVDT + 1.885)∗(-1) y0 = 39.188

RPWHO x0 = 0.997∗LVDT + 2.993 y0 = -38.621

RPWVD y0 = (1.005∗LVDT + 2.178)∗(-1) x0 = -40.530

RPWVU y0 = 0.989∗LVDT + 3.733 x0 = 40.064

Roman Plane C Plane D
Pot (mm) (mm)

RPEHI x0 = (1.001∗LVDT + 1.638)∗(-1) y0 = -39.323

RPEHO x0 = 1.016∗LVDT + 3.096 y0 = 39.635

RPEVU y0 = 1.013∗LVDT + 2.670 x0 = -38.989

RPEVD y0 = (1.001∗LVDT + 2.080)∗(-1) x0 = 40.742

RPWHI x0 = (0.992∗LVDT + 1.887)∗(-1) y0 = 39.250

RPWHO x0 = (0.997∗LVDT + 2.976) y0 = -38.651

RPWVD y0 = (1.005∗LVDT + 2.197)∗(-1) x0 = -40.470

RPWVU y0 = 0.989∗LVDT + 3.735 x0 = 40.030
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silicon strip positions for each RP position that correspond to only physics runs are

given in Appendix E.

In this section, the survey and the initial alignment of the silicon detectors was

explained. The maximum measured tilt angle is ∼2 mrad and each detector plane in

the same detector package has a slightly different tilt angle. Given the dimensions of

the detector plane (area covered by the Si strips) to be 79 × 48 mm, the difference

in the x(y) coordinates between the two edges of the same Si strip is ∼ 158 µm and

96 µm, respectively. Considering that the strip pitch of the Si detectors is 97.4 µm

for x− view detectors and 105 µm for y-view detectors, the impact of the tilt angle

on the change in coordinates x(y) is on the order of or slightly bigger (by ∼53 µm)

than the strip pitch. To summarize, the preliminary alignment involved using the

survey information to calculate the position of the 1st silicon strip/channel in each Si

detector plane, relative to the beam-line center for the RP positions during the run.

This is needed to translate the measured coordinates of the scattered particle at the

detection point, from silicon strip/channel# to positions (x, y) with respect to the

beam-line center.

5.5.2 LOCAL ALIGNMENT

Corrections were introduced to the survey alignment by study carried out by

I. Alekseev et al. at ITEP. The study [162], made use of the selected elastic events

which fall in the overlapping regions between the vertical and horizontal RPs (see

Fig. 44 for an example), to understand the relative alignment between vertical and

horizontal detectors. The study is described in details in [162]. The survey alignment,

explained in the previous section, provides knowledge of the 1st silicon strip position

(x and y coordinates) with respect to the center of the beam-pipe, assuming the

beam itself is centered with respect to the center of the beam-pipe and that the

beam crossing angle at the IP is zero. However, the position of the beam at the

detection point may be shifted from the center and the beam crossing angle at IP

may be non-zero. These factors contribute to the uncertainties in the alignment of

the silicon detectors, which is crucial in this experiment.

The purpose of the ITEP group study is to use the elastically scattered proton

tracks detected in the overlapping regions of the detectors, to find constraints on

the alignment of the silicon detectors relative to each-other, and also to use selected

elastic events to understand the overall/global alignment of the detectors. Elastic
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events are characterized by the collinearity condition, requiring a simultaneous hit of

the scattered proton on a collinear pair of detectors positioned on opposite sides of

the interaction region, i.e. East and West of the STAR IP. The selection process for

elastic events will be discussed in Chapter 6.

The study of relative/local alignment by I. Alekseev et al., is based on the fact

that there are four overlapping regions between RPs in each side of the IP (eight in

total), with silicon detectors measuring x and y coordinates of the scattered protons.

Therefore, in terms of relative alignment, there are 16 unknown shifts between the

detectors (8-x and 8-y shifts) [162]. By looking at the differences of the x and y

coordinates of the protons in the detectors in one of the overlapping regions, for

example (RPEVU RPEHI), we can form two equations, such as: δx = xEV U - xEHI

and δy = yEV U - yEHI . For 8 overlapping regions (4 on each side of the IP, see Fig.

44), we then have 16 equations in total, four equations for each side of the IP and

for each coordinate (x/y). Since we are measuring relative alignment, we assume

that 3 out of 4 of these equations (for each side of the IP and for each coordinate)

are independent, giving only 2 unknown shifts for each side of the IP, and thus 4

unknown shifts out of the initial 16. Using the collinearity of the elastic events, δx =

xEast - xWest and δy = yEast - yWest, we are the left with only 2 unknowns, I. Alekseev

et al. [162]. In the study, it is also assumed that the errors associated with the survey

alignment, the survey errors of the positions measurements, are not correlated. A

simplified (2 × 2) form of the transport matrix is used for the purposes of this study,

taking into account the fact that the beam size at the IP is small and the transport

matrix elements that magnify the beam size at the IP are also small (see Eq. 139),

these terms are neglected in the transport matrix equations, and only the relation

between the coordinate at the RP and the angles at the IP is used. It is also assumed

that the RPs were no tilted.

By using the relation between the coordinates at the RP and the angles at the IP,

given by the transport equation in their simplified form, I. Alekseev et al. calculated

the positions of the scattered protons (detected simultaneously in the overlapping

regions between vertical and horizontal RPs) in the horizontal RP, projected from

their measured positions in the vertical RP, i.e. EVU-EHI overlapping region and

x-coordinate, we have: TEV U
−1 · (x)EV Umeasured = (θx)IP and similarly, TEHI · θIP =

xEHIprojected, and combining the two we obtain:

(x)Hprojected = TH · T V −1 · (x)Vmeasured (163)
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TABLE 12: Local/Relative Alignment Corrections for the Survey Alignment in (mm)
+ corrections due to kicker magnets, also in (mm).

RP Plane A Plane B Plane C Plane D
EHI -0.95 -0.75 -0.95 -0.75
EHO -0.77 -0.15 -0.77 -0.15
EVU -0.22 0.14 -0.22 0.14
EVD -0.42 -1.51 -0.42 -1.51
WHI -0.10 0.86 -0.10 0.86
WHO -0.11 1.32 -0.11 1.32
WVD 1.90 -0.21 1.90 -0.21
WVU 1.77 -0.27 1.77 -0.27

which is similar for the y coordinate, resulting in x and y positions of the scattered

protons in the horizontal RP station, calculated from their positions in the vertical

RP station. The projected positions provided by this method are then compared to

the measured positions in the horizontal RPs and differences are calculated: δxshift

= xEHIcalculated - xEHImeasured. This was done for every run during Run09, where Roman

pots were moved to different positions. The set of shifts obtained in this way for each

coordinate and side, are then forced to a minimization so that the average shift from

the survey position is zero [162]. The precision of the method used is about 0.1 mm.

This results in a set of corrections to the survey alignment, given in Table 12 [162],

(note: planes A and C measure x coordinates in horizontal RPs and planes B and D

measure y coordinate, and vice-versa for vertical RPs).

Continuing the study, I. Alekseev et al. introduced another set of corrections after

taking into account the effect of the kickers magnets on the protons trajectories.

These corrections are also included in the corrections given in Table 12. By studying

the differences in the measured angles of elastic events East and West of the IP,

δθx(East-West) and δθy(East-West), a global/overall shift of 0.30 mm in x and -0.07

mm in y was calculated and it is applicable to all RPs [162].

5.5.3 GLOBAL ALIGNMENT

After introducing the corrections from the local alignment study, where correc-

tions were calculated with respect to a common reference point in the East and on
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in the West, the measured scattering angle difference distributions of selected elastic

events δθx(East-West) and δθy(East-West) were examined and they were found to

be non-zero [163]. Therefore, a final correction was applied to align the RP system

with respect to the position of the un-scattered beam at the detection point, which

is also referred to as t = 0 trajectory, refer to the global alignment study performed

by W. Guryn [163]. As given by the transport matrix equations [?], the position at

the detection point (xD, yD) depends on the position of the collision point (x0, y0)

and on the proton’s outgoing angle at the IP, where the latter includes the scattering

angle (θx, θy) and the unknown beam crossing angle (θBx , θBy ) [163]. To calculate

the correction, W. Guryn studied the measured (x, y) distributions of elastic events

at the RP and by observing the edges of the distributions, it was noticed that the

distribution was not centered for the East RPs and a correction of x = 2.5 mm and

y = -1.5 mm was necessary [163]. No correction was found for the West RPs.

All the above corrections, resulted from the local and global alignment studies,

were added to the positions from the survey alignment and corrected positions were

used in data analysis. The overall uncertainty of the alignment correction is estimated

to be about 0.4 mm [163], which will be taken into account for the calculation of the

systematic errors in the determination of t.
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(a) Min.-t per RP position (Vertical RP’s) (b) Min.-t per RP position (Horizontal RP’s)

(c) y vs x in mm for RP Pos-2 (d) Acceptance as a function of t for RP Pos-2

FIG. 53: Minimum-t reached by detectors in (a) Vertical RPs: West Up/Down and
East Down/Up, EA and EB elastic arms, respectively; (b) Horizontal RPs: West
Outer/Inner and East Inner/Outer, EC and ED elastic arms, respectively; for each
RP position during Run09 (as given in Appendix D). Minimum-t was calculated
from the minimum distance of approach of the RP to the center of the beam (+ the
dead space from the bottom of RP to the silicon detector). (c) y vs x acceptance
for RP Position 2 during Run09, min-t and max-t values and angles are indicated by
ellipses; (d) Acceptance in t for RP Position 2 during Run09.
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FIG. 54: A detector package being surveyed in the lab (table-top setup). The center-
ing pin and reference point or point (0,0) on the detector package is shown (top-left
corner). Two tooling balls, used as survey points during the survey of the detector
package, are also shown (top and bottom right corners).
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(a)

	
  

(b)

FIG. 55: (a) Calculated x0 of the 1st silicon strip in RPEHI plane-A vs the LVDT
position of RPEHI during survey, (b) Calculated y0 of the 1st silicon strip in RPEHI
plane-B for 13 different RP positions during survey.
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CHAPTER 6

DATA ANALYSIS

6.1 DATA SAMPLE

In the previous chapter, the data collection process and the conditions during

Run09 are discussed. The conditions include the special setup of the RHIC acceler-

ator (special beam optics with β∗ = 22 m) and the beam conditions during Run09.

The collected data contains information about both elastic and double diffractive

(central production) processes in pp scattering, (see Fig. 1 (a) and (c)). These scat-

tering processes are distinguished by the triggering criteria that characterizes each

process. An elastic event requires two coincident proton hits in a collinear pair of de-

tectors on both sides of the STAR IP. A central production event, however, requires

the detection of a central mass in the central system of the STAR detector, as well as

two proton hits in a collinear pair of detectors on both sides of the IP. The triggering

criteria for elastic events will be described in more details later in this chapter.

During Run09 we accumulated about 33M elastic triggers with transversely po-

larized proton beams at
√
s = 200 GeV. The collected data is first stored in a raw

data format in the STAR data storage system. All the runs taken during Run09 are

listed in Appendix D. The Roman pots were positioned at different distances close

to the beam and several runs were taken with the RPs at a certain RP position.

There were 13 different RP positions during 4 RHIC stores. The physics runs (46

runs in total) can thus be grouped in 13 sets according to the RP position referred

to as ”Pos” in Appendix D. The 13 sets, also grouped in 4 main groups according to

the RHIC store/fill they correspond to, are shown in Table 13.

The diversity of the RP positions provides an overall kinematic coverage in |t|, during

the run of 0.003 ≤ |t| ≤ 0.035 (GeV/c)2, which includes the CNI region, crucial for

the measurement of the transverse single spin asymmetry AN . After analyzing the

scattered proton data sample, we obtain a data set of 20M elastically scattered proton

pairs or elastic events. In this chapter we will describe the analysis process in details.
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TABLE 13: Physics runs per RP position and RHIC store/fill during Run09

RP Position
Store # (see Appendix D) Physics Run #
11020 1 10181085, 10181086, 10182001, 10182002, 10182004,

10182005, 10182006
2 10182015, 10182016, 10182021, 10182025

11026 3 10183013, 10183014, 10183015, 10183016, 10183017
4 10183018, 10183020, 10183021
5 10183027, 10183028
6 10183034
7 10183035, 10183037, 10183038

11030 10 10184016, 10184017, 10184018, 10184019, 10184020,
10184021

11 10184030, 10184031, 10184032, 10184033
11032 12 10185001, 10185002, 10185003

14 10185004, 10185005, 10185006
16 10185016
17 10185018, 10185019, 10185020, 10185023
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6.2 SELECTION OF ELASTIC EVENTS

To calculate the transverse single spin asymmetry in elastic scattering (AN), the

raw data first needs to pass through a selection process of elastic events. At the end

of this selection process we obtain a sample of elastic events that can be used for

further analysis and for the calculation of physics observables. In this section, I am

going to discuss in details the selection criteria and the cuts that were applied to the

data sample, and, in general, the process that was followed during data analysis.

The raw data with particle hits in the detector system, was first converted to a

standard format used in STAR, µDST format [169]. The raw data was processed

into µDST format by using a package called St pp2pp Maker, written by Kin Yip

of Brookhaven National Laboratory [170]. This package has been included in the

standard reconstruction chain in STAR. The following main steps are followed in

order to select the sample of elastic events and to use this sample in the calculation

of AN :

1. Pre-selection of proton hits from the raw data. This step also includes refor-

matting the raw data into StEvent format, as required by the standard µDST

format.

2. Selection of proton hits from the set of data stored in µDST format. This step

also includes reformatting the data stored in µDST format into initial ROOT

data files [171] and [172].

3. Selection of elastic events and track reconstruction from the data set stored in

ROOT files.

4. Assigning kinematic parameters, momentum transfer squared-t and azimuthal

angle φ to the selected elastic events

5. Calculation of the raw asymmetries (various combinations)

6. Calculation of AN

7. Comparison of the measured AN with the theoretical model
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The following terms need to be defined before continuing with the explanation of

the selection criteria for proton hits and elastic events.

Definitions:

• Hit

When a proton hits the silicon detector, it deposits energy while passing through

the material with a thickness of 400 µm for each silicon detector plane, and

charge is accumulated. The dE/dx of the proton hit passing through matter,

can be calculated by the so called Bethe−Bloch formula, basic expression used

for energy loss calculations of charged particles passing through matter [173].

Refer to Appendix A for the calculation of the energy loss of a proton which

passes through a Si detector plane, where the parameters that describe the

material through which the proton passes are the parameters of the detector

system used in our experiment. After going through the four silicon detector

planes, the proton is detected by the scintillator and an event is triggered. A

triggered event produces an ADC (Analog to Digital Converter) signal read out

in the silicon strips, which is digitized from the silicon strips by the SVXIIE

chips. An SVXIIE chip is connected to 126 Si strips and there are 4(6) chips

for y − view(x− view) planes. The digitized signal for each strip/channel in a

given Si detector plane is stored. A valid hit is defined as a recorded signal with

energy deposited (ADC value) of at least 5 σ above the pedestal-per-channel

value:

Valid hit/Si strip with energy ADC ≥ Pedestal per strip/channel +

5σpedestal

Pedestals are charges collected by the connected capacitors in the SVXIIE

readout chips. When we measure pedestals, we measure the channel readout

when there is no trigger or signal. The electronic noise is defined as the RMS

value of the ADC distribution. ADC value and distribution is a measure of the

energy deposited in the silicon.

• Cluster

An elastically scattered proton detected by the silicon detector, may deposit

its energy in several neighbor Si strips of the hit strip. A cluster is a set

of consecutive strips with an ADC read out value above a certain threshold.
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Below, we will define three important parameters which we use to describe a

cluster:

– Cluster Length (Lcls) is the number of consecutive strips in a cluster.

While analyzing the data it was decided that Lcls cannot be bigger than

5, so clusters with length > 5 are rejected. The reason for this cut will be

explained later in this section.

– Cluster Energy (Ecls)

Energy value of a cluster is an ADC value required to be above a certain

threshold, where the threshold depends on cluster size/length. A threshold

depending on the cluster length is applied to the total charge of the cluster,

while wider clusters are rejected. The energy threshold of clusters with

different size/length was determined and can be found in Ref. [174].

– Cluster Position (Poscls)

The position of a cluster is the weighed average of the position of each

strip that make up the cluster:

x̄ =

∑
xiEi∑
Ei

(164)

where xi is the strip position of cluster i and Ei is its ADC readout value.

– Number of Clusters in one Si Detector Plane (Nplane
cls )

It was observed that a detector plane can have multiple detected clusters

per event. If the number of detected clusters is relatively big, this can be

an indication of an inefficiency or may indicate that the hit is not related

to a real event. Thus, a cut is applied to the number of clusters detected

in one plane, such as:

max. number of clusters in one Si detector plane (Nplane
cls ) ≤ 5.

• Track

At least 1 cluster detected in detector planes A/C or B/D in each RP form a

track. Planes A(B) and C(D) measure the y(x)-position of clusters in vertical

RPs and x(y)-position of clusters in horizontal RPs.

Cluster Matching

The position of the clusters measured in planes A(B) and C(D) is matched,

meaning that the difference between the two clusters’ positions, coming from
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the same event, in the two silicon detector planes which measure the same

coordinate, is required to be within a certain distance. This distance was

decided to be not bigger than 2 strip pitch. So, for example, if x1(y1) and

x2(y2) are the x(y) positions measured in the two x− view (y − view) planes,

respectively, then the position difference of the detected clusters in these two

planes, coming from the same event, is: ∆x = |x1−x2| ≤ 2 · (105 µm) and ∆y

= |y1−y2| ≤ 2 · (97.4 µm). After matching the clusters in this way, an average

value of the cluster position is calculated.

• Elastic Event

Elastic trigger condition requires that a collinear pair of detectors on both sides

of the IP are triggered simultaneously. An elastic event fulfills this trigger con-

dition and the Collinearity Condition which will be discussed later. There

are four collinear detector pairs in our system, which form four elastic arms,

categorized in two groups according to the RP location:

– Two Horizontal Arms:

East Horizontal Inner (EHI) - West Horizontal Outer (WHO)

East Horizontal Outer (EHO) - West Horizontal Inner (WHI)

– Two Vertical Arms:

East Vertical Up (EVU) - West Vertical Down (WVD)

East Vertical Down (EVD) - West Vertical Up (WVU)

6.2.1 SILICON HIT SELECTION

STEP 1. Pre-selection of proton hits from the raw data

In the first step, the data goes through an initial selection process. The signal

measured in the readout system of the detectors is proportional to the energy de-

posited in the silicon due to a detected proton hit. So, firstly we look at the energy

distributions of the proton hits. The measured energy distributions have to be dif-

ferentiated from any possible electronic noise/background in the readout. For this,

pedestal mean values and distributions for each Si strip/channel were identified while

the detectors were tested. The pedestal value for each channel was stored into the

calibration database under the name pp2ppPedestal. This information was used to
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calibrate the detectors readout system and pre-select the proton hits from the raw

data into µDST format.

STEP 2. Selection of proton hits from the set of data stored in µDST

format

Conversion of the data from µDST format to initial ROOT files was done by a

short analysis code, written by Ivan Koralt of Old Dominion University. The data

stored in the initial ROOT files (pre-selected from µDST format) contains informa-

tion on cluster level, after the clusters are selected with proper number of clusters

per plane, cluster length and energy: Nplane
cls ≤ 5; Lcls ≤ 5 and Ecls > ADC threshold

based on Lcls.

Figure 56 (a) and (b) show the number of clusters detected in chain/plane A of

the detector package installed in RPEHI and the overall number of clusters for run

10183028, respectively. The number of clusters detected in one plane is usually less

than 5. The remaining number of events after excluding the planes with more than

5 clusters per event, resulted in an average fraction of 99.88% of all clusters in a

plane [174].

Figure 57 (a) and (b) show the distribution of the length/size (# of strips) of clus-

ters detected in plane A of EHI and the overall length of clusters for run 10183028,

respectively. It is expected that the trajectories of particles scattered at small scat-

tering angles are close to perpendicular to the silicon detector planes. This means

that when a scattered proton hits the silicon plane, most probably it hits on one

silicon strip (which has a width of 70 µm) or between two silicon strips, depositing

its energy on at least one silicon strip. This limits the cluster size/length and thus

the number of strips with measured deposited energy. Data shows that the widest

clusters coming from real events with perpendicular trajectories are not wider than

4 strips and that clusters with size/length of 1 are the most common. Clusters with

size 2 can happen if the particle hits between two silicon strips, however this is not ex-

pected with 100 GeV protons, since the strip pitch of our detectors is relatively large

(∼100 µm). Clusters with size 3 and bigger are suspicious and their origin is unclear.

Various factors for the occurrence of these cases could be: (a) Si strips/channels may

measure an image charge from the neighbor strip or (b) the signal could be due to the

detection of a delta ray which might have been produced in the scattering process.

A delta ray can be defined as a recoil particle produced by secondary ionization. A
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delta ray can be characterized as a fast electron that is produced after an energetic

charged particle (proton in our case) interacts with the atoms of the material it is

going through.

Pedestal and Noise Analysis

Prior to installation of the detector packages in the RPs, all the silicon detector

planes were tested in the lab. While testing, several hardware problems with the

detectors were determined and fixed. In addition, a detailed pedestal and noise study

was performed for all the detector planes prior to installation in the RPs. Pedestal

distributions can also be used to represent the electronic noise/background. Thus,

pedestal and noise study serves to determine the signal to noise ratio of a particular

detector, which in turn is important for the calibration of the detector’s readout

system.

After installation of the detector packages in the RPs in the RHIC tunnel and

also during Run09, we took several pedestal runs to test our detectors in the actual

setup. To calibrate the SVXIIE readout for the hits in the silicon detector, we need

to determine the mean value and the width (σpedestal) of the pedestal distribution.

The pedestal distribution for a silicon strip/channel follows a Gaussian distribution.

The plots given in Fig. 58 show the pedestal distributions, pedestal mean values

in Fig. 58 (a) and pedestal-σ in Fig. 58 (b), for a particular pedestal run during

Run09. The four distributions represent the pedestals measured for each SVXIIE

chip (126 Si strips/channels are wire bonded to each SVXIIE chip) in the four Si

detector planes that make up a detector assembly, planes A and C (4 SVXIIE chips)

and planes B and D (6 SVXIIE chips).

The main source of the noise measured in SVXIIE is the silicon micro-strip de-

tector. What we measure is the total noise, which has two sources, the ”white noise”

σw and the ”common mode noise” σk, [175] and [176]. The later, σk is the σ of the

pedestal distribution for each SVXIIE chip. The common mode noise can be defined

as [175]:

σ2
k =

N∑
i=1

a2
ik/N −

(
N∑
i=1

aik/N

)2

(165)

where aik =
∑126

j=1ADCijk/126 and ADCijk is the number of ADC counts in SVX k,

strip j and event i. aik is the average value of ADC counts for the strips in SVX k

and event i and N is the number of events. The study of the channel noise and gain
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FIG. 56: Distribution of the number of clusters (defined as nCls on the plot): (a)
detected in EHI plane A, for run 10183028 and (b) overall for run 10183028.
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FIG. 57: Distribution of the size/length (# of strips) of clusters (defined as lCls
on the plot): (a) detected in EHI plane A, for run 10183028 and (b) overall for run
10183028. Plots show that clusters of length = 1 are most common and the length
does not exceed 5.
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(a) Pedestal vs strip number

(b) Pedestal σ vs strip number

FIG. 58: (a) Pedestals and (b) pedestal-σ vs strip number for Si detector planes A:
y − view (4 SVXIIE chips), B: x− view (6 SVXIIE chips ), C: y − view (4 SVXIIE
chips), D: x − view (6 SVXIIE chips) detectors, in the detector package connected
to readout sequencer (SEQ 6), see Table 5, for run 10183005 during Run09. Plots
courtesy of Kin Yip.
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of the silicon detectors used in this experiment, which is given in [175], shows that

the RMS value of the pedestal distribution for the one detector plane (4 or 6 SVX), is

approximately equal to the RMS values for each of the pedestal distributions of each

SVX. This indicates that the common mode noise fluctuations are correlated across

the detector and not just within one SVX chip [175]. The study also concludes that

there are no bunch related noise effects.

The white noise is an intrinsic noise (thus uncorrelated) in the SVXIIE chip for

each Si strip/channel connected to the chip. The white noise may be caused by the

thermal properties of the chip. The total noise is the sum of the squares of common

mode noise and white noise:

σ2
tot = σ2

w + σ2
k (166)

A study performed on the same Si detectors in 2003, [176], showed that the typical

white noise σw for an x− view/y − view detector is about 1.7/2 ADC counts, total

noise σtot about 2.3/2.5 ADC and the common mode noise σk is about 1.5/1.5 ADC

counts. Note that the y − view detector has higher white noise than the x − view
detector, as expected, since the y − view detector has higher capacitance due to its

longer strip length [176]. In practice, the common mode noise can be subtracted from

the total noise, in order to improve signal to noise performance. However, during

these studies it was decided that this procedure was not necessary, since the typical

signal is usually large enough.

A small measured σtot, see Fig. 58 (b), indicates small noise in the readout. The

normal range for σtot is ∼ 2 - 2.5. The pedestal distributions of all the detectors were

measured during the tests and pedestal runs and the σ of the pedestal distributions

of all Si channels was determined. The σtot of the pedestal distributions measured

after installing the detectors at RHIC was observed to be slightly higher than those

measured in the lab, the difference is ∼ 0.5 - 1σ.

It was observed that most of the channels have total noise in the range of 2 -

3 ADC counts, with no SVX showing anomalous behavior. This indicates that the

chips were working properly and that there was no strip with leakage current large

enough to affect detector performance. Shifts in the pedestal, occur mainly in groups

of 126 channels (1 SVX chip), as expected. This is due to the process variations in

the manufacturing of the SVX chips [176].

Moreover, it was observed that some Si strips have higher noise than the surround-

ing strips. These strips were marked as inefficient channels. The strip number and
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positions of the inefficient channels were determined and excluded from the analysis.

There are three main cases of inefficient channels:

(a) The Si strip might be an edge strip in the Si detector and the edge strips have

low pedestal which makes them inefficient when running in the sparse mode (a

feature in which only channels above a preset threshold are readout). To take

care of these channels a cut is made to remove 3 strips from the edge in every

silicon detector plane.

(b) The Si strip may just be a noisy strip.

(c) The Si strip may be a dead strip and this might cause the neighbor strips to

be noisy, since the strips are capacitively coupled.

(d) The Si strip may be located in the center of the Si detector plane, which can

be considered as a hot region when the detector is approached very close to the

beam.

Cases (b) and (c) constitute only 5 dead/noisy strips out of ∼14000 active strips,

where the number of active strips is generally limited by the acceptance. The detector

system of the 2009 run setup had 100% acceptance and all the Si strips are inside the

geometric acceptance of the scattered protons. Thus all the Si strips were activated

during the run. The dead/noisy strips therefore constituted only ∼0.04% of the

total number of active strips, which is negligible. Case (d) is usually observed in

the vertical RPs for the runs that there were moved very close to the beam ∼6 mm

close. This observation indicates that the shape of the beam resembles an ellipse

(beam envelope is usually described as ”pancake” shaped), with the longer axis in the

vertical plane. These strips that fall in these so called ”hot regions” are taken care of

by fiducial cuts, which will be explained later in this chapter.

Energy Threshold for a Valid Proton Hit

Figure 59 shows the energy distribution of the clusters in EHI plane A. The energy

distribution follows a Landau distribution (see Fig. 59). The lower peak in Fig. 59

is the pedestal distribution.

Figure 60 shows the energy distributions of the clusters detected in all RPs (top plots

- East RPs and bottom plots - West RPs). The first small peak in the plots represent

the pedestal distribution, which is removed by requiring that the ADC readout of
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FIG. 59: Energy distribution (defined as eCls on the plot) of the clusters detected in
EHI plane A, for run 10183028. The horizontal axis is in ADC units. The pedestal
peak (first peak) is also shown. Figure courtesy of Ivan Koralt.

each Si channel to be: ADC ≥ Pedestal per strip/channel + 5σpedestal, as explained

above in the definition of a valid hit.

Energy Threshold Dependence on Cluster Length

The analysis given in Ref. [175] showed that 3 σ and 4 σ cuts of the pedestal dis-

tribution left some noise hits, while a 5 σ cut eliminates most of the noise without

eliminating any of the signal. However, a constant ADC cut (based on cluster size)

is also needed to eliminate the rest of the noise/background. Table 14 gives a list

of the energy threshold for different cluster size and for each RP/detector package.

For more details on the determination of the energy threshold for each RP refer to

analysis note given in Ref. [174]. The energy distribution depends on cluster size and

tends to shift to higher energy ranges with size [174]. The energy threshold values

given in Table 14 are used to select the detected clusters with size of 1, 2, 3, 4 or

5 strips in the Si detector. Clusters with size bigger than 5 are rejected. Figure

61 shows the energy distribution of clusters detected in EHI dependence on cluster

length.
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FIG. 60: Energy distribution (defined as eCls on the plot) of the clusters detected
in all RPs (namely from right to left and top to bottom: EHO, EHI, EVU, EVD,
WHO, WHI, WVU, WVD) for run 10183016. The horizontal axis is in ADC units.
The first small peak represents the pedestal distribution. Plot courtesy of Kin Yip.
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Cluster length (lcls) vs cluster energy (eCls) for EHI

FIG. 61: Energy distribution dependence on cluster length for EHI for a typical run
during Run09.

TABLE 14: Energy threshold based for different Cluster Size/Length and for each
RP (refer to [174])

RP/Lcls EHI EHO EVU EVD WHI WHO WVD WVU
1 19 18 18 19 20 23 21 19
2 27 24 28 28 27 29 29 25
3 49 45 48 50 50 53 46 46

4 or 5 65 60 69 70 60 64 60 59
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6.2.2 SELECTION CRITERIA FOR TRACK RECONSTRUCTION

In the first and second step of the analysis, an initial selection of the data is

performed. At the ned of this initial selection we obtain a set of hits/clusters of the

scattered protons in the Si detectors with ”proper” number of clusters in a detector

plane, cluster length and energy, according to the cuts explained in the previous

section. This set of data is stored in ROOT files and will be used in the track

reconstruction logarithms and further selection of elastic events.

STEP 3. Selection of elastic events and track reconstruction from the

data set stored in ROOT files.

Measurement of elastic scattering, does not require measurement of the momenta

of the scattered protons, however this analysis necessitates a good characterization

of an elastic event. First, hits/clusters of the elastically scattered protons in the Si

detector are selected. Next, the coordinates/positions of the selected clusters are

calculated, using also the information of the positions of the detectors in the STAR

coordinate system, which is measured from the survey and alignment of the detec-

tors. The clusters are further selected by cluster matching algorithms for one RP (4

detector planes) and one elastic arm (2 collinear pair of detectors across IP). This will

be explained later in this section in detail. In the final step of the characterization

of an elastic event, the positions of the selected clusters are used together with the

transport equations, to calculate the scattering angles of the detected scattered pro-

tons. The scattering angles are then used in the reconstruction of the elastic events

and calculation of physics parameters, such as four momentum transfer squared t and

azimuthal angle φ. The final step of the analysis is to use the selected elastic events,

to calculate physics observables, i.e. spin-dependent and spin-averaged observables.

For spin asymmetry measurements, most of the systematics related to the detectors,

i.e. geometrical acceptance and efficiencies, cancel out. Systematics related to the

bunch polarization does not cancel out in the asymmetry calculation and therefore

needs to be determined.

Elastic Trigger Condition

The elastic trigger during the run was the first bit of the trigger index, with

TriggerId 250101. Elastic trigger bit requires that there is a detected proton in a
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TABLE 15: Elastic Trigger Components/Arms

Definition of Elastic Arms Elastic Arm
EA (Elastic Trigger A - vertical) EA = WVU and EVD
EB (Elastic Trigger B - vertical) EB = WVD and EVU
EC (Elastic Trigger C - horizontal) EC = WHO and EHI
ED (Elastic Trigger D - horizontal) ED = WHI and EHO

TABLE 16: Forbidden Components

Definition of Forbidden Components Combinations
EVF (East Vertical Forbidden) EVF = EVU and EVD
EHF (East Horizontal Forbidden) EHF = EHI and EHO
WVF (West Vertical Forbidden) WVF = WVU and WVD
WHF (West Horizontal Forbidden) WHF = WHI and WHO

collinear pair of detectors in the East and West of STAR IP, i.e. vertical RPs (West

UP - East DOWN and vice-versa) and horizontal RPs (West Inner - East Outer and

vice-versa). There is one trigger scintillator/counter in each RP. Each counter is

read out by two PMTs. Hence, the STAR trigger system receives 16 signals from the

PMTs in the Roman Pots. Both amplitude and timing information of each of the 16

PMTs is recorded. The ADC threshold for the trigger counters was determined and

set to be equal to 5. The range for the TAC (Time to Analog Converter) signal of

the trigger counters was determined to be 100 ≤ TAC signal ≤ 1700. For the elastic

trigger definition, we make basic combinations of the trigger signal as an ”or” of the

two PMTs of the same counter, i.e. RPEVU1 or RPEVU2, refer to [177]. Elastic

trigger components/arms are defined as in Table 15. Forbidden combinations of RPs

are defined as in Table 16. Hence, elastic trigger requires that at least one of the

elastic arms (EA, EB, EC and ED) is triggered simultaneously and not (WVF, WHF,

EVF or EHF).
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Before proceeding with cluster matching, we check if the selected clusters corre-

spond to the identified inefficient (bad/hot) channels. Only 5 out of 14,000 active

strips were identified as inefficient channels. Data coming from inefficient channels

is rejected.

Cluster Matching

Planes A(B) and C(D) in one Si detector package, measure the same coordinate,

respectively. Therefore, the positions of clusters measured in plane A(B) and C(D)

can be compared and matched. The distance between the positions of clusters origi-

nated from the same event and measured in planes A(B) and C(D), respectively, was

decided to be not bigger than 2 strip pitch. So, in order to match a pair of clusters

detected in planes which measure the same coordinate, they must have a position

difference of ∆x = |x1 − x2| ≤ 2· strip pitch. The same applies for the planes which

measure the y coordinate of the particles. Strip pitch depends on plane type, 97.4

µm for x − view and 105.0 µm for y − view planes. After the clusters detected in

the pair of detector planes which measure the same coordinate (redundant detector

planes), are matched with this condition, an average value for the cluster position is

calculated from the positions of clusters in each plane.

Different cases of the number of clusters detected in planes A(B) and C(D) are

observed in the data and can be summarized as shown in Table 17. At least 1 cluster

in A/C or B/D planes is required to form a track. The most probable case was

observed to be case 4 in Table 17, when only 1 cluster is detected on the pair of

planes which measure the same coordinate. For case 2, when there is 1 cluster in

one plane (for ex. plane A) and none on the other plane (for ex. plane C), we use

the existing cluster (the one in plane A in this example) to form a track. For case

3, when there are more than 1 clusters in one plane and none in the other plane, no

track is formed. For cases 5 and 6 in Table 17, when there are more than 1 clusters

in either plane or in both planes, respectively, we examine the closest clusters in A/C

or B/D planes, and calculate the average value of the matched cluster position.

We can look at case 4 (1 cluster in both planes A(C) or B(D)) more closely and

use this case to check the alignment of the redundant planes with respect to each-

other. Figure 62 shows the measured distance of the clusters detected in RPEHO -

planes A and C, which measure the x coordinate, for a typical run. The plot shows

that the distance between the detected clusters is ∼ 0.1 mm. The distributions of the
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TABLE 17: Cluster Matching Case Summary

Case Ncls (plane A or B) Ncls (plane C or D) Average Value of Poscls
1 0 0 NA
2 0 1 use second plane only

1 0 use first plane only
3 0 >1 NA

>1 0
4 1 1 use both planes
5 1 >1 use closest clusters on both planes

>1 1
6 >1 >1 use closest clusters on both planes

distances of clusters (case 4 in Table 17), were plotted and examined for all RPs and

all runs during Run09. The mean of the distributions corresponds to the distance

between the redundant planes in each RP, which is given in Table 18. This distance,

which shows the geometrical misalignment of the redundant planes is corrected for,

before finding the closest clusters in the cluster matching procedure.

After cluster selection and matching, we obtain a set of (x,y) positions for the

selected tracks in each RP. The next step is to check RP combinations on each side

of the IP, East and West, and to reconstruct elastic events by using collinearity

condition. Collinearity condition requires that tracks on each side of the IP are

collinear, in order to be combined and form an elastic event. Collinear pairs of

detectors form 4 elastic arms, as shown also in the elastic trigger condition given in

Table 15. For elastic events selection purposes we categorized the elastic arms as

shown in Table 19.

First of all, using the algorithm given in Table 17, we form various combinations

between two RPs in an elastic arm, for each arm. There are 8 detector planes in

one elastic arm, 4 of which measuring one coordinate (x,y) and 2 of the 4 planes

correspond to one RP and give one average value of the track after cluster matching

in the particular RP. Therefore, we have 2 average values for each coordinate of the

measured clusters across IP, xave(East), xave(West), yave(East), and yave(West).

The data shows that the most probable cluster number combination across IP is when
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FIG. 62: Distribution of the distance (in m) between clusters in planes A and C, for
RPEHO and run 10183028.

TABLE 18: Offset between redundant planes, A(C) and B(D), in each RP

RP [A-C] [B-D]
(m) (m)

EHI 1.658E-5 4.092E-5
EHO -1.415E-6 -4.609E-5
EVU -2.848E-5 -3.382E-5
EVD 7.213E-6 3.991E-8
WHI -3.523E-6 -6.329E-5
WHO -1.854E-5 3.000E-5
WVD 6.532E-6 -6.132E-5
WVU -1.520E-6 4.098E-5
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TABLE 19: Elastic Arms

Arm # Elastic Arm
0 EA = EHI and WHO
1 EB = EHO and WHI
2 EC = EVU and WVD
3 ED = EVD and WVU

there is 1 cluster in each of the 8 planes that form the elastic arm. This combination of

tracks forms what we call a golden event. We used the sample of golden events to plot

distributions of the difference between (x,y) positions of matched clusters/tracks in

each elastic arm, for each run separately. Figure 63 shows the difference in x-positions

(∆x in m) of tracks measured in Arm 0: EHI - WHO for a typical run. The plot

is fit with a Gaussian function. The mean of the distributions for each elastic arm

and for all the runs, was used to determine the collinearity offset between RPs in

each arm and for each run during Run09. The collinearity needs to be studied and

determined for each run, since the beam may be centered differently for different

RHIC stores/fills. A study of the ∆x and ∆y distributions of each elastic arm shows

that the beam might have shifted by several 100 µm also during the same store. The

reason for this may be the change in the magnet strength of the quadrupole magnets

during the store.

STEP 4. Assigning kinematic parameters, momentum transfer squared-t

and azimuthal angle φ to the selected elastic events.

In this analysis step, we need to make use of the beam transport to calculate

kinematic parameters, i.e. polar and azimuthal scattering angles θ and φ from the

measured and selected positions of elastic events. In order to calculate the momentum

transfer squared-t, we first need to calculate the polar scattering angle θ of the elastic

events. The polar, azimuthal angles and momentum transfer squared-t are defined
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as given in Eq. 167:

θx = ~Px/~P

θy = ~Py/~P

θ =
√
θ2
x + θ2

y

cos θ = ~Pz/~P

φ = tan−1(θy/θx)

t = −2p2(1− cos θ) = −4p2 sin2 θ

2
≈ −p2θ2 (167)

where p = 100.2 GeV/c.

Each beam particle is represented by a phase-space vector X = (x, θx, y, θy) of

coordinates and angles in the transverse plane. Each optical element in the RHIC

beam-line from the IP (z = 0) at STAR to the RP location (z = 55.5 and 58.5

m), (namely 2 dipole, 3 quadrupole magnets and drift spaces), is represented by a

transport matrix by which the vector X is multiplied, see Eq. 157 in Section 5.2.

Beam Transport Equations

Equation 157 in Section 5.2 can explicitly be expressed as:
x

θx

y

θy


d

=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



x

θx

y

θy


∗

(168)

where a12 and a34 correspond to the effective length in x and y: Lxeff and Lyeff , ()∗

are the positions and scattering angles at the IP and ()d are the positions and angles

measured at the detection point.

Equation 168 shows that the beam transport is used to correlate positions and

angles of beam protons along the beam-line. Since the scattering angles of the elasti-

cally scattered protons are small, the scattered protons stay within the beam-pipe of

the accelerator and also follow trajectories determined the beam transport magnets.

Therefore, the trajectories of the scattered protons can be described by the same set
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of equations, as follows:

xd = a11 · x0 + Lxeff · θx∗ + a13 · y0 + a14 · θy∗

θx
d = a21 · x0 + a22 · θx∗ + a23 · y0 + a24 · θy∗

yd = a31 · x0 + a32 · θx∗ + a33 · y0 + Lyeff · θy
∗

θy
d = a41 · x0 + a42 · θx∗ + a43 · y0 + a44 · θy∗ (169)

where x0 and y0 are the positions at the IP (vertex).

Solving for the scattering angles at the vertex, we obtain the following equations:

θ∗x =
1

Lxeff − a14a32

Lyeff

·

[
xd − a14

Lyeff
· yd +

(
a14a31

Lyeff
− a11

)
· x0 +

(
a14a33

Lyeff
− a13

)
· y0

]

θ∗y =
1

Lyeff − a32a14

Lxeff

·

[
yd − a32

Lxeff
· xd +

(
a32a13

Lxeff
− a33

)
· y0 +

(
a32a11

Lxeff
− a31

)
· x0

]
(170)

The full transport matrix (6 × 6) for Run09 and the values of the transport matrix

elements are given in Section 5.2. For example, the transport matrix (4 × 4) for the

West Horizontal RP is given in Eq. 171.

M =


a11 Lxeff a13 a14

a21 a22 a23 a24

a31 a32 a33 Lyeff

a41 a42 a43 a44

 =


−0.0913 25.2566 m −0.0034 0.0765 m

−0.0396 m−1 0.0137 −0.0001 m−1 0.0057

−0.0033 −0.1001 m 0.1044 24.7598 m

0.0002 m−1 0.0083 −0.0431 m−1 −0.6332


(171)

After inputting the values of the transport matrix elements in Eq. 170 we obtain

the following equations for the scattering angles at the IP for each beam and RP

station, where B = Blue beam, Y = Yellow beam, H = Horizontal-RP, V = Vertical-

RP:

θ∗x(B,H) = 0.03959 ·
[
xd − 0.0001223 · yd + 0.003615 · x0 + 0.0001477 · y0

]
θ∗y(B,H) = 0.04039 ·

[
yd + 0.0001601 · xd − 0.004214 · y0 + 0.0001477 · x0

]
θ∗x(B, V ) = 0.03953 ·

[
xd − 0.0001616 · yd + 0.008311 · x0 + 0.0001471 · y0

]
θ∗y(B, V ) = 0.04374 ·

[
yd + 0.0001301 · xd + 0.001086 · y0 + 0.0001471 · x0

]
θ∗x(Y,H) = −0.03952 ·

[
xd − 0.0001732 · yd − 0.003572 · x0 + 0.0001477 · y0

]
θ∗y(Y,H) = −0.04032 ·

[
yd − 0.0000824 · xd + 0.004281 · y0 − 0.0000144 · x0

]
θ∗x(Y, V ) = −0.03945 ·

[
xd + 0.0001938 · yd − 0.008249 · x0 − 0.0000002 · y0

]
θ∗y(Y, V ) = −0.04366 ·

[
yd − 0.0000712 · xd − 0.000999 · y0 − 0.0000002 · x0

]
(172)
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The dominating term in the transport matrix is the magnification of the scattering

angle, or Lx,yeff in Eq. 169. The values of Lx,yeff are in the range of 22-26 m, see

Section 5.2. The coefficients which magnify the beam position at the vertex (x0 and

y0) are minimized in the case of ”parallel-to-point focusing”. This is achieved by the

optimization of the beam optics for this experiment. Equation 171 shows that the

values of a11 and a13 are small, -0.0913 and -0.0034, respectively. Therefore, for the

case of parallel-to-point-focusing and in the absence of x − y mixing terms, the Eq.

169 can be simplified to the form given in Eq. 173.

xd ≈ Lxeff · θ∗x → θ∗x ≈ xd/Lxeff

yd ≈ Lyeff · θ
∗
y → θ∗y ≈ yd/Lyeff (173)

Scattering Angle θ and t Reconstruction

The scattering angles θ∗x and θ∗y are calculated using (4 × 4) transport matrix as

given in Eq. 168 and by taking x0 = y0 = 0, since they are expected to be small. By

using Eq. 172 and the measured positions of the scattered particles, we calculate the

scattering angles in the transverse plane, for each side of the IP and each RP station.

Collinearity Condition

After calculating the scattering angles for detected elastic events on both sides of

the IP and for each RP station, we impose a collinearity condition on the measured

angles of the elastic events. The collinearity condition is parametrized by introducing

a parameter χ2, and requiring χ2 to be less than or equal to 9, as given in Eq. 174:

χ2 =

(
δθx − δθ̄x

σθx

)2

+

(
δθy − δθ̄y

σθy

)2

≤ 9 (174)

where δθx,y = θx,y(West) − θx,y(East). Therefore, in order to calculate δθx,y we

histogram the difference between the measured scattering angles in East and West

of the IP, for each elastic arm (given in Table 19) and for each run separately. The

histograms δθx,y are then fitted by a Gaussian function and the mean (δθ̄x and δθ̄y)

and the rms values (σθx and σθy) of the distributions are determined.

Figure 64 shows the χ2 distribution for EHI-WHO elastic arm and for a typical

run. The solid black line shows the boundary when χ2 = 9.

The plots given in Fig. 65 and Fig. 66 show the measured x and y positions

of the scattered protons horizontal and vertical RPs, respectively, for a typical run
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FIG. 64: χ2 distribution for EHI-WHO arm and run 10183028.

and for χ2 ≤ 18. The inner boundaries of the distributions are determined by the

distance of approach of the detectors close to the beam. The outer boundaries are

determined by the apertures of the quadrupole magnets located before the detectors

along the beamline from IP (both East and West) to the RP location.

Some visible characteristics are observed in the transverse position distributions

given in Fig. 65 and Fig. 66. The bands (regions in the distributions with less events)

visible in both vertical and horizontal RPs are an example of the characteristics seen

in the data, which is common for all the runs. The horizontal bands in horizontal

RPs (see Fig. 65, are not very visible on the plots), are most probably caused by a

trigger bias effect. An event/track which goes through the horizontal-RP and then

hits the stainless steel frame of the vertical-RP may produce secondary tracks which

may hit the both vertical-RPs simultaneously, causing a trigger veto as defined in the

elastic trigger definition (see Table 16). This causes the trigger bias which in turn

is manifested as the bands/shadows seen in the data. The vertical bands/shadows

visible in the vertical RPs (see Fig. 65, more easily visible than the horizontal bands

in horizontal RPs) have two causes. One cause is the same as above, the trigger bias
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FIG. 65: Measured x and y positions of scattered protons in Horizontal RPs: (a)
East Horizontal RPs and (b) West Horizontal RPs, for run 10183028 and χ2 ≤ 18.
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FIG. 66: Measured x and y positions of scattered protons in Vertical RPs: (a) East
Vertical RPs and (b) West Vertical RPs, for run 10183028 and χ2 ≤ 18.
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effect and the other cause is the shadowing of the frames of the horizontal-RPs which

are 3 m in front of the vertical-RPs in the RHIC tunnel, as looking away from the

IP at STAR.

The measured transverse positions of the scattered protons, were used to calculate

the scattering angles (θx and θy), for each RP station. Calculated scattering angles

for run 10183028 and χ2 ≤ 18, are shown in Fig. 67 and Fig. 68.

The plots given in Fig. 69 show δθy vs δθx distributions of scattering angles for

various χ2 cuts, for a pair of collinear detectors (EHI-WHO elastic arm) and for run

10183028.

Figures 70 and 71 show δθx and δθy distributions for horizontal elastic arms and

vertical elastic arms, respectively, for run 10183028 and χ2 ≤ 9. The distributions are

fitted using a Gaussian function. The mean and σ of the distributions are extracted

from the fit.

In the above figures, measured positions and angles of scattered particles were

shown for each RP station. To reconstruct elastic events we need to ”match”, by

using the collinearity condition, positions and angles on collinear pair of detectors

with respect to IP (elastic arms as shown in Table 19). The plots given in Fig. 72

and Fig. 73 show measured positions of scattered protons in each Horizontal Elastic

Arm and Vertical Elastic Arm, respectively, for run 10183028 and χ2 ≤ 9. Likewise,

the plots given in Fig. 74 and Fig. 75 show measured angles of scattered protons

in each Horizontal Elastic Arm and Vertical Elastic Arm, respectively, also for run

10183028 and χ2 ≤ 9.

Elastic Events Selection Table

Table 20 gives the total number of events processed in 46 runs and the number

of events after each major selection criteria: elastic trigger; cluster matching and

co-linearity condition.
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FIG. 67: Calculated scattering angles (θx and θy) of protons in Horizontal RPs: (a)
East Horizontal RPs and (b) West Horizontal RPs, for run 10183028 and χ2 ≤ 18.
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FIG. 68: Calculated scattering angles (θx and θy) of protons in Vertical RPs: (a)
East Vertical RPs and (b) West Vertical RPs, for run 10183028 and χ2 ≤ 18.
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TABLE 20: Elastic Event Selection Table

Total number of events processed 58,068,295
(in 46 runs)

Total number of elastic/scintillator triggers 32,729,261
∼44% less than

total # of events

Total number of events after matching 25,195,897
∼23% less than

total # of elastic triggers

Total number of elastic events 22,130,570
(after χ2 ≤ 9 co-linearity cut) ∼12% less than

total # of ”matched” events

Total number of ”golden” events 18,452,103
∼83% of all

selected elastic events
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6.3 EFFICIENCY OF THE SILICON STRIP DETECTORS

The efficiency of all the silicon detector planes used during data taking was studied

and determined. The optimization of selection cuts, such as the minimum energy

threshold Emin and the maximum number of clusters per plane is important since it

directly affects the efficiency of the silicon detectors. The determination of optimal

cuts, improves the signal to noise ratio, which in turn improves the efficiency of the

detectors.

Method

Before determining the efficiency of the silicon detectors used in Run09, first

inefficient silicon strips/channels (noisy/dead strips) were determined and excluded

from analysis. Overall, from this analysis it was found that only 5 out of 14,000

active silicon strips/channels were marked as noisy/dead channels. The exclusion

of the inefficient channels is not very critical since there are two redundant planes

(2 planes measuring the same coordinate in each detector package). Apart from

excluding the determined inefficient channels, the first edge strip in the first and

third detector plane in each detector package was also excluded from analysis. The

reason for this is because the edge strips in this planes have lower gain than the other

strips.

The method (algorithm) used for studying the efficiency of the silicon detectors

is shown in Fig. 76. For example (see Fig. 76), in order to determine the efficiency

of silicon detector plane A in the East, we select events when there is a cluster in

each of the 7 other detector planes which make up an elastic arm (collinear detectors

with respect to IP). Transverse positions of selected clusters (x, y) are determined

and matched in each pair of detector planes which measure the same coordinate (A-C

and B-D). Selected clusters in these pair of detector planes are matched requiring

that their position minus the geometric offset between the planes is within 2 strip

pitch distance. Average values of the matched cluster positions are calculated using

cluster positions from the detectors on each side of the IP. Then, scattering angles

are calculated using measured cluster positions and transport matrix coefficients.

Scattering angles from collinear detector pairs with respect to IP are then compared.

This is done by first plotting distributions of the difference of scattering angles (δθx

and δθy distributions), fitting them with a Gaussian function and determining the
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mean value and σ of the distributions. Events that fall within 3σ of the δθx and δθy

distributions are selected for further use in the efficiency study. The next step is to

look for detected clusters in the 8th plane (plane A in Fig. 76), when there is a cluster

in each of the 7 other planes in one particular elastic arm. The same procedure is

followed for the other planes in the same elastic arm and for other elastic arms. Two

parallel studies of the detector efficiencies were performed using Run09 data, from I.

Koralt and T. Obrebski, see Ref. [174] for the later.

Result

According to the study by T. Obrebski, see Ref. [174], the plane efficiency after

determination of the optimal cluster selection cuts, oscillates between 99.1 % and

99.8 %. It was also shown in the same study that the plane efficiency improved by

0.1 % after optimization of selection cuts, such as minimum cluster energy threshold

Emin and accepted maximum number of clusters per plane. In the study performed

by I. Koralt, the overall plane efficiency was determined to be above 99 %, after

the exclusion on the inefficient and edge silicon strips/channels. Figure 77 shows

the determined inefficiency of all the detector planes for run 10183028, in the study

performed by I. Koralt.

Figure 78 shows the efficiencies of all detector planes, resulted after the determi-

nation of optimal cuts in the study given in [174].

6.4 SELECTED ELASTIC EVENT DISTRIBUTIONS

6.4.1 SCATTERING ANGLES

The plots given in Fig. 79 show the measured scattering angles distributions

(average θy vs average θx) for each elastic arm (Figures 79(a), 79(b), 79(c) and

79(d)) and for all arms together (Fig. 79(e)), for all the runs during Run09.

6.4.2 t VS φ DISTRIBUTIONS

Using the measured scattering angles and Eq. 167 we can calculate the azimuthal

angle φ and the four-momentum transfer squared-t of the reconstructed elastic events.

Calculated Mandelstam-t distributions and azimuthal angle φ for each elastic arm

and all runs are given in Fig. 80 and Fig. 81. The plots given in Fig. 82 show t vs



183

φ distributions for each elastic arm (Figures 82(a), 82(b), 82(c) and 82(d)) and all

elastic arm together (Fig. 82(e)), for all runs during Run09.

6.5 BACKGROUND AND FIDUCIAL CUTS

Backgrounds affecting the data are due to several factors: beam halo particles

(since the detectors are moved close to the beam for data taking), products of beam-

beam and beam-gas interactions and detector noise. The detector noise was taken

into account and minimized by applying appropriate pedestal and energy cuts during

the elastic event selection process. The inefficient silicon strips/channels were iden-

tified and excluded from the analysis, providing an excellent ( > 99%) silicon plane

efficiency. The collinearity condition used in the identification of elastic events (elas-

tic trigger) and the elastic event selection process was chosen in order to minimize

the non-linear background affecting the elastic events. The collinearity condition of

χ2 ≤ 9 eliminates ≈ 12 % of the total number of elastic events. In addition to the

collinearity condition, fiducial cuts were applied in certain areas of the detectors to

remove the so-called ”hot” regions. Hot regions are areas in the detectors with con-

siderably more events than the other parts of the same detector. The fiducial cut

removes the events detected in these areas. The ”hot” regions are observed usually in

the center of the vertical-RPs, see Fig. 66. These regions are the lowest acceptance

boundaries of the detectors, where the detector approaches the beam and thus are

most probably caused by beam-halo events (tail of the outgoing beam). For data

analysis purposes we will the azimuthal angle φ as follows:

• East of STAR (Yellow Beam)

φ = 0 → Center of RPEHI

Proceeding counterclockwise:

φ = π/2 → Center of RPEVD

φ = π → Center of RPEHO

φ = 3π/2 or -π/2 → Center of RPEVU

• West of STAR (Blue Beam)

φ = 0 → Center of RPWHO

Proceeding clockwise:
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φ = π/2 → Center of RPWVU

φ = π → Center of RPWHI

φ = 3π/2 or -π/2 → Center of RPWVD

• Elastic Arms

-π/2 ≤ φ ≤ π/2 → EHI - WHO arm (see Fig. 82(a))

-π ≤ φ ≤ π → EHO - WHI arm (see Fig. 82(b))

-π ≤ φ ≤ 0 → EVU - WVD arm (see Fig. 82(c))

0 ≤ φ ≤ π → EVD - WVU arm (see Fig. 82(c))

The center of the vertical RPs is the region where the azimuthal angle φ = ±
π/2, the region where the ”hot” spots are observed. These events may dilute the

asymmetry, thus it is safer if these events are rejected.

6.5.1 IDENTIFICATION OF FIDUCIAL CUT REGION

To determine the fiducial cut region, all the x and y distributions of the events

in all RPs were studied carefully for all runs during Run09. Figure 66 shows the

transverse position distribution (y vs x) in East and West Vertical RPs for run

10183028 and collinearity condition χ2 ≤ 18. The ”hot” spot region can be easily

seen in the central region of the plots, especially in Fig. 66 (b). The ”hot” spot

region is reduced after imposing a tighter collinearity condition of χ2 ≤ 9 (see Fig.

83, as the number of events overall is reduced by ≈ 3 % for run 10183028.

For each run during Run09, we determined the x and y coordinates of the ”hot”

spot by studying at the measured x and y distributions. A fiducial cut (a square

cut for the exclusion of the ”hot” spot), was applied to the data for each run, where

the δx and δy lengths of the square-cut were determined by examining the x and y

distributions of the events in each detector and for each run. The intensity of the

hot spot is bigger for the runs when the detector were approached very close to the

beam, implying that the hot spot is caused by the beam halo particles. The position

of the hot spot changes primarily from one RP position to the other and is the same

for the group of runs in the same RP position (see Appendix D). The plots given in

Fig. 84 show the measured x and y positions in RPWVU, for run 10185023, before

(see Fig. 84(a) and Fig. 84(b)) and after applying the collinearity cut (see Fig. 84(c)

and Fig. 84(d)) and fiducial cut (see Fig. 84(e) and Fig. 84(f))
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TABLE 21: Elastic Event Selection Table after Fiducial Cuts

Total number of elastic events 22,130,570
(after χ2 ≤ 9 co-linearity cut) ∼12% less than

total # of ”matched” events

Total number of elastic events 21,803,644
(after Fiducial Cuts for hotspot exclusion) ∼1.5% less than χ2 ≤ 9 case

6.5.2 DATA SAMPLE AFTER FIDUCIAL CUTS

Table 21 summarizes the number of events after collinearity cut χ2 ≤ 9 and

fiducial cuts and is an addition to Table 20.
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FIG. 69: δθy vs δθx in EHI-WHO elastic arm for various χ2 cuts: (a) no χ2 cut; (b)
no χ2 cut and zoomed; (c) χ2 ≤ 25; (d) χ2 ≤ 18 and (e) χ2 ≤ 9, for run 10183028.
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FIG. 70: δθx and δθy in Horizontal Elastic Arms: (a) δθx in EHI-WHO; (b) δθy
in EHI-WHO; (c) δθx in EHO-WHI and (d) δθy in EHO-WHI elastic arm, for run
10183028 and χ2 ≤ 9.
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FIG. 71: δθx and δθy in Vertical Elastic Arms: (a) δθx in EVU-WVD; (b) δθy in
EVU-WVD; (c) δθx in EVD-WVU and (d) δθy in EVD-WVU elastic arm, for run
10183028 and χ2 ≤ 9.
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(a) x-position in EHI-WHO arm
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(d) y-position in EHO-WHI arm

FIG. 72: Measured x and y positions of scattered protons in Horizontal Elastic Arms:
(a) x-position in EHI-WHO; (b) y-position in EHI-WHO; (c) x-position in EHO-WHI
and (d) y-position in EHO-WHI elastic arm, for run 10183028 and χ2 ≤ 9.
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(b) y-position in EVU-WVD arm
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(d) y-position in EVD-WVU arm

FIG. 73: Measured x and y positions of scattered protons in Vertical Elastic Arms:
(a) x-position in EVU-WVD; (b) y-position in EVU-WVD; (c) x-position in EVD-
WVU and (d) y-position in EVD-WVU elastic arm, for run 10183028 and χ2 ≤ 9.
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(b) θy in EHI-WHO arm
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(c) θx in EHO-WHI arm
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FIG. 74: Measured θx and θy angles of scattered protons in Horizontal Elastic Arms:
(a) θx in EHI-WHO; (b) θy in EHI-WHO; (c) θx in EHO-WHI and (d) θy in EHO-
WHI elastic arm, for run 10183028 and χ2 ≤ 9.



192

 WVD (rad)xθ

­0.002 ­0.0015 ­0.001 ­0.0005 0 0.0005 0.001 0.0015 0.002

 E
V

U
 (

ra
d

)
x

θ

­0.002

­0.0015

­0.001

­0.0005

0

0.0005

0.001

0.0015

0.002

0

100

200

300

400

500

thX[2]:thX[6] {thX[2]!=0&&thX[6]!=0&&Chi2[2]<=9}

(a) θx in EVU-WVD arm
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(b) θy in EVU-WVD arm
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(c) θx in EVD-WVU arm
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FIG. 75: Measured θx and θy angles of scattered protons in Vertical Elastic Arms:
(a) θx in EVU-WVD; (b) θy in EVU-WVD; (c) θx in EVD-WVU and (d) θy in
EVD-WVU elastic arm, for run 10183028 and χ2 ≤ 9.
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FIG. 76: The method used for studying and determining the efficiency of the silicon
detectors.

Inefficiencies
Entries  32
Mean    11.84
RMS     7.664

 I.K.
0 5 10 15 20 25 30

 In
ef

fic
ie

nc
y

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Inefficiencies
Entries  32
Mean    11.84
RMS     7.664

Inefficiencies for all RP planes

FIG. 77: Ineffieciency distribution of all detector planes for run 10183028. Four
detector planes in each RP, order of RPs in the plot from left to right: EHI, EHO,
EVU, EVD, WHI, WHO, WVD and WVU (plot courtesy of I. Koralt).
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FIG. 78: Efficiency of all detector planes. Four detector planes in each RP, order of
RPs in the plot from left to right: EHI, EHO, EVU, EVD, WHI, WHO, WVD and
WVU (plot courtesy of T. Obrebski).
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FIG. 79: θavey vs θavex in elastic arms: (a) EHI-WHO; (b) EHO-WHI; (c) EVU-WVD;
(d) EVD-WVU and (e) all arms together, for χ2≤9 and run 10183028.
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FIG. 80: Mandelstam-tave distributions in elastic arms: (a) EHI-WHO; (b) EHO-
WHI; (c) EVU-WVD; (d) EVD-WVU, for χ2≤9 and run 10183028.
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FIG. 81: φave Distributions in elastic arms: (a) EHI-WHO; (b) EHO-WHI; (c) EVU-
WVD; (d) EVD-WVU and (e) all arms together, for χ2≤9 and run 10183028.
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FIG. 82: t vs φ in elastic arms: (a) EHI-WHO; (b) EHO-WHI; (c) EVU-WVD; (d)
EVD-WVU and (e) all arms together, for χ2≤9 and run 10183028.
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FIG. 83: Measured x and y positions of scattered protons in Vertical RPs: (a) East
Vertical RPs and (b) West Vertical RPs, for run 10183028 and χ2 ≤ 9. Compare
with Fig. 66 to see the effect of the collinearity condition on the ”hot” spot region.
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(a) Measured x-position in WVU for run
10185023 (before χ2 and fiducial cut)

(b) Measured y vs x positions in WVU for run
10185023 (before χ2 and fiducial cut)

(c) Measured x-position in WVU for run
10185023 (after χ2 ≤ 9 collinearity cut)

(d) Measured y vs x positions in WVU for run
10185023 (after χ2 ≤ 9 collinearity cut)

(e) Measured x-position in WVU for run
10185023 (after fiducial cut, here partial cut
is applied, only in the x coordinate)

(f) Measured y vs x positions in WVU for run
10185023 (after fiducial cut)

FIG. 84: Measured x and y positions in WVU before and after collinearity cut χ2

≤ 9 and fiducial cut, for run 10185003. Figures (a), (c) and (e) are one dimensional
histograms, showing only the x distribution in WVU, and (b), (d) and (f) are two
dimensional plots showing y vs x distributions of measured events in WVU. Units
are in (m). The cut applied in (e) is partial, only in x. The fiducial cut applied to
the data, is a ”square” cut in x and y, as shown in (f).
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CHAPTER 7

RESULTS ON TRANSVERSE SINGLE SPIN

ASYMMETRY AN

7.1 CALCULATION OF THE RAW ASYMMETRY

STEP 5. Calculation of the raw asymmetries (various combinations)

In this chapter we will explain how the raw asymmetries and the transverse single

spin asymmetry are calculated using the selected elastic events. For asymmetry

analysis purpose, we group the runs in 4 main groups according to the RHIC fill/store

number during Run09: 11020, 11026, 11030 and 11032 (see Table 13). Each store

need to be analyzed separately while calculating asymmetries since the polarization

values of the two beams are slightly different for different stores.

7.1.1 BUNCH POLARIZATION PATTERN

During Run09, all possible polarization patterns of the Blue and Yellow beams

were available, see Section 5.1. We can thus use the Blue and Yellow beam bunches

with polarization pattern: ↑↑, ↓↓, ↑↓ or ↓↑ for PB and PY , respectively, to build

various asymmetries. We can use the so called ”square-root formula” [78] to calculate

the raw asymmetries ε1, ε2, ε3 if we consider both beams (Blue and Yellow) to be

polarized, and εB, εY if we consider one beam polarized (Blue/Yellow) and the other

unpolarized (Yellow/Blue), as given in Eq. 179 (see Eq. 116 and Section 2.8 for

derivation).
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ε =

√
N++
L N−−R −

√
N++
R N−−L√

N++
L N−−R +

√
N++
R N−−L

(175)

ε1 =

√
N++(φ)N−−(π − φ)−

√
N++(π − φ)N−−(φ)√

N++(φ)N−−(π − φ) +
√
N++(π − φ)N−−(φ)

(176)

=
AN(Pb + Py) cosφ

1 + PbPy(ANN cos2 φ+ ASS sin2 φ)

ε2 =

√
N++(φ)N−−(π + φ)−

√
N++(π + φ)N−−(φ)√

N++(φ)N−−(π + φ) +
√
N++(π + φ)N−−(φ)

(177)

=
AN(Pb + Py) cosφ

1 + PbPy(ANN cos2 φ+ ASS sin2 φ)

ε3 =

√
N+−(φ)N−+(π − φ)−

√
N+−(π − φ)N−+(φ)√

N+−(φ)N−−(π − φ) +
√
N++(π − φ)N−−(φ)

(178)

=
AN(Pb − Py) cosφ

1− PbPy(ANN cos2 φ+ ASS sin2 φ)

where ε1, ε2 and ε3 are the ”raw asymmetries” for (↑↑, ↓↓) and (↑↓, ↓↑) spin combi-

nations, N ij are the unnormalized counts with + for ↑ and − for ↓ spin orientation

and L and R stand for left and right in azimuthal space, respectively. The transverse

single spin asymmetry AN is defined as the left - right cross section asymmetry with

respect to the transversely polarized beams, see Eq. 175. NL can be viewed as N(φ)

and NR as N(π − φ), in Eq. 176. Equations 176 and 177 represent two slightly

different formulas for calculating the raw asymmetry ε with ↑↑ and ↓↓ spin combi-

nations. The first formula, which we will call the ”π - φ” Case for convenience, will

be mainly used to measure the transverse single spin asymmetry in this experiment.

However, the later formula, Eq. 177 is more appropriate to use while calculating the

raw asymmetry if the spin of the beam particles are not exactly vertically polarized,

but there is a spin-tilt from the vertical direction. We will call this case the ”π + φ”

Case, and use it as a systematics check in this experiment.

ANN and ASS terms are the transverse double spin asymmetries and Pb and Py

are the polarizations of the Blue and Yellow beams, respectively. ANN is defined

as the cross-section asymmetry in proton-proton scattering, with spin orientations

parallel and anti-parallel with respect to the unit vector n̂, normal to the scattering
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plane. ASS is defined analogously for both fully polarized along the unit vector ŝ in

the scattering plane and normal to the beam. ANN and ASS are predicted [115] and

measured by PP2PP collaboration at
√
s = 200 GeV to be very small, [79]. This

puts a constraint to the term PbPy(ANN cos2 φ+ ASS sin2 φ) ≤ 0.028, thus it can be

safely neglected compared to 1, in the calculation of the single spin asymmetry.

The asymmetry ε1 and ε2 are proportional to the sum of the polarization values

of the two beams, (Pb +Py). Asymmetry ε3, on the other hand is proportional to the

difference of the two polarization values, (Pb−Py), and thus it is expected to be close

to 0 or small, since the polarization values of the two beams are very close to each

other. Any difference in the polarization values of the two beams, may be due to

beams being transported by two different sets of magnets, and thus the depolarizing

effects on the beams may be different.

εB =

√
N+
B (φ)N−B (π − φ)−

√
N+
B (π − φ)N−B (φ)√

N+
B (φ)N−B (π − φ) +

√
N+
B (π − φ)N−B (φ)

(179)

=
ANPb cosφ

1 + PbPy(ANN cos2 φ+ ASS sin2 φ)

εY =

√
N+
Y (φ)N−Y (π − φ)−

√
N+
Y (π − φ)N−Y (φ)√

N+
Y (φ)N−Y (π − φ) +

√
N+
Y (π − φ)N−Y (φ)

(180)

=
ANPy cosφ

1 + PbPy(ANN cos2 φ+ ASS sin2 φ)

(181)

We can also measure several other asymmetries, i.e. when we consider one beam

to be polarized and the other unpolarized, see Eq. 181. In this case, εB, Eq. 180, is

proportional to Pb only and εY , Eq. 181, is proportional to Py. If one compares ε1

with εB or εY , one would expect that:

ε1
εB
≈ ε1

εY
≈ 2 (182)

7.1.2 t AND φ BIN SIZE SELECTION

For the measurement of the transverse single spin asymmetry AN we divided the

covered t-range 0.003 GeV/c2 ≤ |t| ≤ 0.035 GeV/c2 into 5 t bins, as follows:
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1. -t < 0.005 GeV/c2

2. 0.005 GeV/c2 ≤ -t < 0.01 GeV/c2

3. 0.01 GeV/c2 ≤ -t < 0.015 GeV/c2

4. 0.015 GeV/c2 ≤ -t < 0.02 GeV/c2

5. -t ≥ 0.02 GeV/c2

Subsequently, in each t-bin we subdivide the φ distributions into 36 bins of 10◦

per bin. Now, we can proceed using the square-root formula to calculate the raw

asymmetries for each case in Eq. 179 and 181, then divide by appropriate polarization

values to obtain the various asymmetries mentioned above.

7.2 CALCULATION OF THE TRANSVERSE SINGLE SPIN

ASYMMETRY ε(φ)/(PB + PY )

STEP 6. Calculation of ε(φ)/(Pb + Py)

By using equations 179 and 181, we can calculate the various raw asymmetries ε

given in the previous section 7.1. The next analysis step is to divide the calculated raw

asymmetries with the appropriate polarization values, in order to achieve ε(φ)/(Pb +

Py) values. In the following sections we will present results on ε(φ)/(Pb + Py) and

raw asymmetries as a function of azimuthal angle φ (various asymmetries) in 5 t-bins

and also in the combined-t range, for the ”π - φ” and ”π + φ” cases. The measured

raw asymmetries ε for ↑↑ and ↓↓ spin combinations are fit with a cos-function, cos(φ)

in ”π - φ” case and cos(φ + φ0) in ”π + φ” case. The different fitting function used

in ”π + φ” case, including the additional parameter φ0 in the fit, takes into account

the possible tilt of the spin direction from the vertical direction (the ∆φ). The raw

asymmetries for ↑↓ and ↓↑ spin combinations are measured with a linear function in

φ, again allowing an additional parameter in the fit for the ”π + φ” case.

7.2.1 ”π - φ” CASE

ε(φ)/(Pb + Py) vs φ for separate t-bins, ↑↑ and ↓↓ Spin Combinations

The plots given in Fig. 85 show ε(φ)/(Pb + Py) as a function of φ, for ↑↑ and

↓↓ spin combinations and ”π - φ” case, thus calculated using Eq. 176 for 5 separate
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t-bins and combined-t range.

Raw Asymmetry vs φ for separate t-bins, ↑↓ and ↓↑ Spin Combinations

The plots given in Fig. 86 show raw asymmetry ε(φ)∼(Pb − Py) as a function of

φ, for ↑↓ and ↓↑ spin combinations and ”π - φ” case, calculated using Eq. 178 for 5

separate t-bins and combined-t range.

ε(φ)/(Pb + Py) vs φ (Assuming: Blue Beam Polarized Only) for separate

t-bins, ↑↑ and ↓↓ Spin Combinations

The plots given in Fig. 87 and Fig. 88 show ε(φ)/(Pb + Py) as a function of φ

for the One Beam Polarized Case (assuming blue and yellow beam polarized only,

respectively), for ↑↑ and ↓↓ spin combinations and ”π - φ” case, thus calculated using

Eq. 180 and Eq. 181, respectively, for 5 separate t-bins and combined-t range.

ε(φ)/(Pb + Py) vs φ (Assuming: Yellow Beam Polarized Only) for separate

t-bins, ↑↑ and ↓↓ Spin Combinations

7.2.2 ”π + φ” CASE

ε(φ)/(Pb + Py) vs φ for separate t-bins, ↑↑ and ↓↓ Spin Combinations

The plots given in Fig. 89 show ε(φ)/(Pb + Py) as a function of φ, for ↑↑ and ↓↓
spin combinations and ”π + φ” case, thus calculated using Eq. 177 for 5 separate

t-bins and combined-t range.

Raw Asymmetry vs φ for separate t-bins, ↑↓ and ↓↑ Spin Combinations

The plots given in Fig. 90 show raw asymmetry ε(φ)∼(Pb − Py) as a function of

φ, for ↑↓ and ↓↑ spin combinations and ”π + φ” case.

ε(φ)/(Pb + Py) vs φ (Assuming: Blue Beam Polarized Only) for separate

t-bins, ↑↑ and ↓↓ Spin Combinations

The plots given in Fig. 91 and Fig. 92 show ε(φ)/(Pb + Py) as a function of φ

for the One Beam Polarized Case (assuming blue and yellow beam polarized only,
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respectively), for ↑↑ and ↓↓ spin combinations and ”π + φ” case, thus calculated

using Eq. 180 and Eq. 181, respectively, for 5 separate t-bins and combined-t range.

ε(φ)/Py vs φ (Assuming: Yellow Beam Polarized Only) for separate t-bins,

↑↑ and ↓↓ Spin Combinations

There is a general trend shown in the asymmetry plots given in following figures

(Fig. 85, 87, 88, 89, 91 and 92), the maximum asymmetry is observed in the hori-

zontal plane (at azimuthal angle φ ≤ 0 according to our chosen coordinate system).

The asymmetry drops to 0 in the vertical plane (Vertical RPs, φ = π/2 and −π/2).

The measured asymmetry for ↑↓ and ↓↑ spin combinations (False Asymmetry) is

very small or 0 as expected, since this asymmetry is proportional to the difference of

the polarization values of the two beams (Pb − Py), (see Fig. 86, 90).

To check for the relation given in Eq. 184, so the difference in the measured

asymmetry between the ”One Beam Polarized” and ”Both Beam Polarized” cases, we

can look at the asymmetry plots given in Fig. 93(a) and Fig. 93(b), and compare

to Fig 93(c), for π - φ Case. Look at Fig. 94(a) and Fig. 94(b) and compare to Fig

93(c), for π + φ Case.

After inspecting the plots, we can calculate the following ratios of asymmetries

for the cases given above:

π - φ Case
ε1
εB

=
0.02743

0.01351
≈ 2.03

ε1

εY
=

0.02743

0.01412
≈ 1.94 (183)

π + φ Case
ε1
εB

=
0.02776

0.01373
≈ 2.02

ε1

εY
=

0.02743

0.01425
≈ 1.92 (184)

7.2.3 ε(φ)/(PB + PY ) DEPENDENCE ON t

Table 22 summarizes the AN results for 5 −t bins, for ”π - φ” case, given in Fig.

85 and for ”π + φ” case given in Fig. 89. The −t range, number of events in each
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range and the mean −t value for each bin is shown. Statistical errors for t and AN

are also given. Statistical errors for t are negligible.

−t range (GeV/c)2 < 0.005 0.005 - 0.01 0.01 - 0.015 0.015 - 0.02 > 0.02
No. of Events 494710 2175468 2848620 2872958 2566903
〈−t〉 (GeV/c)2 0.0039 0.0077 0.0125 0.0175 0.0233
δt (GeV/c)2 (stat.) 9.8E-07 6.6E-07 7.3E-07 8.6E-07 1.0E-07
(π - φ) Case
AN 0.0402 0.0300 0.0226 0.0197 0.0170
δAN(stat.) 0.0019 0.0009 0.0008 0.0008 0.0008
(π + φ) Case
AN 0.0411 0.0303 0.0230 0.0198 0.0172
δAN(stat.) 0.0021 0.0009 0.0008 0.0008 0.0008
δφ -6.908 -6.374 -9.173 -6.478 -8.053
stat. error on δφ 5.813 2.043 2.154 2.473 3.440

TABLE 22: AN values in 5 −t-ranges and corresponding statistical uncertainties,
for both (π - φ) and (π + φ) cases and ”both beams polarized with ↑↑ and ↓↓ spin
combinations of bunches per beam”.

The uncertainty in the t-scale is mostly due to the beam angular divergence. To

calculate how the uncertainty in the t-scale from the angular beam divergence we

can start from using the expression for the momentum transfer squared t, given in

Eq. 167:

−t = p2θ2 (185)

Taking the first derivative with respect to θ, the uncertainty on t due to beam

angular divergence is then:

δ(−t) = 2p×
√
t× δ(θ) (186)

where the beam momentum p = 100.2 GeV/c and δ(θ) = 54 µrad based on the study

of the elastic event distributions δ(θ), calculated as a weighed average (all runs) of

the σ of the δ(θ) distribution of each elastic arm, see Fig. 95. This gives a value for

δ(t) due to the beam angular divergence:

δ(t) ≈ 0.011×
√
t (187)

The uncertainty in t for the data sample (number of events = N) that was used

in the calculation of the single spin asymmetry (thus events coming from collision of
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bunches with ↑↑ and ↓↓ spin combinations), was calculated using δ(−t) ≈ 0.011×
√
t√

N

(GeV/c)2, for each t-bin. These results are given in the 4th row of Table 22.

Table 23 summarizes the results of the AN values and the corresponding statistical

uncertainties per each t-bin, for cases when polarization of both is considered and

the case when one beam (blue/yellow) is considered polarized and the other one

”unpolarized” and for (π - φ) case. The number of events in each t-bin for the ”one

beam polarized” case is twice as large as the number of events for the ”both beams

polarized” case, thus the statistical error associated with the AN values in each t-bin

is smaller in the former case compared to the later. The AN values in both cases is

about the same, as expected.

−t range (GeV/c)2 < 0.005 0.005 - 0.01 0.01 - 0.015 0.015 - 0.02 > 0.02

No. of Events 494710 2175468 2848620 2872958 2566903
Both Beams Pol.
AN 0.0402 0.0300 0.0226 0.0197 0.0170
δAN(stat.) 0.0019 0.0009 0.0008 0.0008 0.0008

No. of Events 984073 4322717 5654199 5704735 5094463
Blue Beam Pol.
AN 0.0423 0.0294 0.0228 0.0204 0.0165
δAN(stat.) 0.0014 0.0007 0.0006 0.0006 0.0006

No. of Events 983076 4319604 5650932 5701495 5092295
Yellow Beam Pol.
AN 0.0388 0.0312 0.0228 0.0193 0.0177
δAN(stat.) 0.0014 0.0007 0.0006 0.0006 0.0006

TABLE 23: AN values in 5 −t-ranges and corresponding statistical uncertainties, for
(π - φ), ”both beams polarized” and ”one beam polarized” cases.

7.2.4 COMPARISON WITH THE THEORETICAL MODEL

The plots given in Fig. 96 present AN dependence on four-momentum transfer

squared t, for (π - φ) and (π + φ) cases. There are five data points (red in Fig. 96(a)

and green in Fig. 96(b)), representing the AN for 5 −t-bins for each case. The solid

curve (blue in Fig. 96(a) and green in Fig. 96(b)) is the best fit to the data. The

dotted curve is the theoretical calculation in the absence of the hadronic spin-flip

amplitude.

It has been shown in Eq. 176 that the single spin asymmetry AN depends also

on the double spin asymmetries ANN and ASS. However, it has be theoretically
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shown [115] and experimentally determined by the PP2PP collaboration at RHIC

[96], that the contribution of the two double spin-flip hadronic amplitudes φhad2 and

φhad4 to the single spin asymmetry AN is small. The main contribution to AN is

given in terms of the helicity amplitudes φ and mainly the interference between the

electromagnetic spin-flip amplitude (φem∗5 ) and hadronic non-flip amplitude (φhad+ ), as

shown in Eq. 188. The second term is the interference between the electromagnetic

non-flip amplitude (φem5 ) and a possible hadronic spin-flip amplitude (φhad∗+ ), if the

later exists in the Pomeron exchange mechanism. The hadronic spin-flip amplitude

(φhad5 ) is usually expressed in terms of (φhad+ ) as: φhad5 (s, t) = (
√
−t/m) · r5(s) ·

Imφhad+ (s, t), where m is the proton mass. A contribution from the hadronic spin-flip

amplitude to elastic scattering is parametrized by the relative amplitude r5, see Eq.

189.

AN
dσ

dt
= −8π

s2
Im(φem∗5 φhad+ + φhad∗5 φem+ ) (188)

where φ+ = (φ1 + φ3)/2 and φ1, φ3 are the spin non-flip helicity amplitudes.

r5 =
mpφ

had∗
5√

−tImφhad+

(189)

The data presented in Fig. 96 is fitted using the formula given in Eq. 190, where

the r5 value (Im(r5) and Re(r5) parameters) are left as free parameters in the fitting

function, in order to extract their values from the best fit to the data.

AN =

√
−t
m

[κ(1− ρ δ) + 2(δ Re r5 − Im r5)] tc
t
− 2(Re r5 − ρ Im r5)

( tc
t
)2 − 2(ρ+ δ) tc

t
+ (1 + ρ2)

(190)

In this formula tc = −8πα/σtot, κ is the anomalous magnetic moment of the proton,

ρ = Reφ+/Imφ+ is the ratio of the real to imaginary parts of non-flip elastic ampli-

tude, and δ is the relative phase between the Coulomb and hadronic amplitudes [63]:

δ = α ln
2

|t|(b+ 8/Λ2)
− α γ, (191)

where b is the slope of the forward peak in elastic scattering, α is the fine structure

constant, Euler’s constant γ = 0.5772 and Λ2 = 0.71 GeV/c2.

Table 24 summarizes the false asymmetry or the asymmetry calculated using ↑↓
& ↓↑ spin combinations. The false asymmetry is proportional to Pb − Py, and thus

it is expected to be small.
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−t range (GeV/c)2 < 0.005 0.005 - 0.01 0.01 - 0.015 0.015 - 0.02 > 0.02

Both Beams Pol.
(↑↓ & ↓↑)

π − φ
εN ∼ Pb − Py 0.0022 -0.0010 -0.0004 0.0005 -0.0009
δεN(stat.) 0.0016 0.0007 0.0006 0.0006 0.0006
π + φ
εN ∼ Pb − Py -0.0004 -0.0021 -0.0015 -0.0003 0.0004
δεN(stat.) 0.0003 0.0018 0.0007 0.0006 0.0006
δφ 0.0001 -2.6E-05 1.3E-05 1.3E-05 6.1E-07
stat. error on δφ 6.0E-05 1.5E-05 1.2E-05 1.2E-05 1.6E-05

TABLE 24: False asymmetry results or εN ∼ Pb − Py for π − φ and π − φ cases.

Finally, the real and imaginary parts of the r5 parameter extracted from AN

dependence on t plots for various asymmetry cases, are presented in Table 25.

Pb + Py Pb + Py Pb Py
π - φ π + φ π - φ π - φ

Re[r5] 0.0016 6.6E-05 0.0009 0.0003
δRe[r5] (stat.) 0.0021 0.0021 0.0015 0.0015
Im[r5] 0.0065 -0.0085 -0.0110 0.0051
δIm[r5] (stat.) 0.0350 0.0359 0.0248 0.0247

TABLE 25: r5 Values extracted from the fit of the AN dependence on t plots for
various asymmetry cases.



211

 (degree)φ
­80 ­60 ­40 ­20 0 20 40 60 80

)
y

+
P

b
)/

(P
φ(

∈

­0.02

0

0.02

0.04

0.06

0.08

0.1

 / ndf 2χ  14.95 / 16

p0        0.001948± 0.04021 

 / ndf 2χ  14.95 / 16

p0        0.001948± 0.04021 

) for (­t < 0.005)y+P
b

)/(Pφ(∈

(a) ε(φ)/(Pb + Py) for -t < 0.005 GeV/c2
 (degree)φ

­80 ­60 ­40 ­20 0 20 40 60 80

)
y

+
P

b
)/

(P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  27.43 / 17

p0        0.0009399± 0.02996 

 / ndf 2χ  27.43 / 17

p0        0.0009399± 0.02996 

 ­t < 0.01)≤) for (0.005 y+P
b

)/(Pφ(∈

(b) ε(φ)/(Pb+Py) for 0.005 ≤ -t < 0.01 GeV/c2

 (degree)φ
­80 ­60 ­40 ­20 0 20 40 60 80

)
y

+
P

b
)/

(P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  18.35 / 17

p0        0.0008245± 0.02262 

 / ndf 2χ  18.35 / 17

p0        0.0008245± 0.02262 

 ­t < 0.015)≤) for (0.01 y+P
b

)/(Pφ(∈

(c) ε(φ)/(Pb+Py) for 0.01 ≤ -t < 0.015 GeV/c2
 (degree)φ

­80 ­60 ­40 ­20 0 20 40 60 80

)
y

+
P

b
)/

(P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  15.59 / 17

p0        0.0008191± 0.01967 

 / ndf 2χ  15.59 / 17

p0        0.0008191± 0.01967 

 ­t < 0.02)≤) for (0.015 y+P
b

)/(Pφ(∈

(d) ε(φ)/(Pb+Py) for 0.015 ≤ -t < 0.02 GeV/c2

 (degree)φ
­80 ­60 ­40 ­20 0 20 40 60 80

)
y

+
P

b
)/

(P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  13.03 / 17

p0        0.0007892± 0.01697 

 / ndf 2χ  13.03 / 17

p0        0.0007892± 0.01697 

 0.02)≥) for (­t y+P
b

)/(Pφ(∈

(e) ε(φ)/(Pb + Py) for -t ≥ 0.02 GeV/c2
 (degree)φ

­80 ­60 ­40 ­20 0 20 40 60 80

)
y

+
P

b
)/

(P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  39.97 / 17

p0        0.0004057± 0.02263 

 / ndf 2χ  39.97 / 17

p0        0.0004057± 0.02263 

) for (combined­t)y+P
b

)/(Pφ(∈

(f) ε(φ)/(Pb + Py) for combined-t range

FIG. 85: Asymmetry ε(φ)/(Pb+Py) as a function of φ, for ↑↑ and ↓↓ spin combinations
and ”π - φ” case, for 5 t-bins (a - e) and combined-t range (f).
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FIG. 86: Asymmetry ε(φ)∼(Pb−Py) as a function of φ, for ↑↓ and ↓↑ spin combina-
tions and ”π - φ” case, for 5 t-bins (a - e) and combined-t range (f).



213

 (degree)φ
­80 ­60 ­40 ­20 0 20 40 60 80

b
)/

P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  60.42 / 16

p0        0.001383± 0.04231 

 / ndf 2χ  60.42 / 16

p0        0.001383± 0.04231 

 for (­t < 0.005)
b

)/Pφ(∈

(a) ε(φ)/Pb for -t < 0.005 GeV/c2
 (degree)φ

­80 ­60 ­40 ­20 0 20 40 60 80

b
)/

P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  93.12 / 17

p0        0.0006671± 0.02942 

 / ndf 2χ  93.12 / 17

p0        0.0006671± 0.02942 

 for (0.005 <= ­t < 0.01)
b

)/Pφ(∈

(b) ε(φ)/Pb for 0.005 ≤ -t < 0.01 GeV/c2

 (degree)φ
­80 ­60 ­40 ­20 0 20 40 60 80

b
)/

P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  61.35 / 17

p0        0.000585± 0.02275 

 / ndf 2χ  61.35 / 17

p0        0.000585± 0.02275 

 for (0.01 <= ­t < 0.015)
b

)/Pφ(∈

(c) ε(φ)/Pb for 0.01 ≤ -t < 0.015 GeV/c2
 (degree)φ

­80 ­60 ­40 ­20 0 20 40 60 80

b
)/

P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  81.66 / 17

p0        0.0005809± 0.02039 

 / ndf 2χ  81.66 / 17

p0        0.0005809± 0.02039 

 for (0.015 <= ­t < 0.02)
b

)/Pφ(∈

(d) ε(φ)/Pb for 0.015 ≤ -t < 0.02 GeV/c2

 (degree)φ
­80 ­60 ­40 ­20 0 20 40 60 80

b
)/

P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  38.73 / 17

p0        0.0005597± 0.01645 

 / ndf 2χ  38.73 / 17

p0        0.0005597± 0.01645 

 0.02)≥ for (­t 
b

)/Pφ(∈

(e) ε(φ)/Pb for -t ≥ 0.02 GeV/c2
 (degree)φ

­80 ­60 ­40 ­20 0 20 40 60 80

b
)/

P
φ(

∈

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 / ndf 2χ  146.2 / 17

p0        0.0002878± 0.0227 

 / ndf 2χ  146.2 / 17

p0        0.0002878± 0.0227 

 for (combined­t)
b

)/Pφ(∈

(f) ε(φ)/Pb for combined-t range

FIG. 87: Asymmetry ε(φ)/Pb as a function of φ (”Blue Beam Polarized Only” Case),
for ↑↑ and ↓↓ spin combinations and ”π - φ” case, for 5 t-bins (a - e) and combined-t
range (f).
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FIG. 88: Asymmetry ε(φ)/Py as a function of φ (”Yellow Beam Polarized Only”
Case), for ↑↑ and ↓↓ spin combinations and ”π - φ” case, for 5 t-bins (a - e) and
combined-t range (f).
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FIG. 89: Asymmetry ε(φ)/(Pb+Py) as a function of φ, for ↑↑ and ↓↓ spin combinations
and ”π + φ” case, for 5 t-bins (a - e) and combined-t range (f).
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FIG. 90: Asymmetry ε(φ)∼(Pb−Py) as a function of φ, for ↑↓ and ↓↑ spin combina-
tions and ”π + φ” case, for 5 t-bins (a - e) and combined-t range (f).
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FIG. 91: Asymmetry ε(φ)/Pb (”Blue Beam Polarized Only” Case), for ↑↑ and ↓↓ spin
combinations and ”π + φ” case, for 5 t-bins (a - e) and combined-t range (f).
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FIG. 92: Asymmetry ε(φ)/Py (”Yellow Beam Polarized Only” Case), for ↑↑ and ↓↓
spin combinations and ”π + φ” case, for 5 t-bins (a - e) and combined-t range (f).
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FIG. 93: Asymmetry ε(φ)∼Pb (”Blue Beam Polarized Only” Case), ε(φ)∼Py (”Yellow
Beam Polarized Only” Case) and ε(φ)∼Pb + Py (”Both Beam Polarized” Case), for
combined-t range and ”π - φ” case.
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(b) ε(φ)∼Py, combined-t range for π + φ Case
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FIG. 94: Asymmetry ε(φ)∼Pb (”Blue Beam Polarized Only” Case), ε(φ)∼Py (”Yellow
Beam Polarized Only” Case) and ε(φ)∼Pb + Py (”Both Beam Polarized” Case), for
combined-t range and ”π + φ” case.
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FIG. 95: δθ in Horizontal Elastic Arms: (a) δθ in EHI-WHO; (b) δθ in EHO-WHI,
and Vertical Elastic Arms: (c) δθ in EVU-WVD; (d) δθ in EVD-WVU, for all runs
and χ2 ≤ 9.
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FIG. 96: AN dependence on −t and r5 plot for two cases: (π - φ) and (π + φ).
Dotted curve in (a) and (b) is the theoretical calculation assuming no hadronic spin-
flip amplitude (r5 = 0), solid curve (blue in (a) and green in (b)) is the best fit to
the data. In (c), the r5 (Im(r5) vs Re(r5))value extracted from the fit is presented
for each case, also including the statistical errors of the measurement (the vertical
and horizontal bars).
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FIG. 97: AN dependence on −t for one beam polarized case: (a) blue beam polarized
only (blue data points and blue curve is the best fit to the data), (b) yellow beam
polarized only (yellow data points and yellow curve is the best fit to the data) and
(c) one beam (blue and yellow data points) vs both beams polarized (red data points
and red curve is the best fit to the data) for (π - φ) case.
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CHAPTER 8

SYSTEMATIC UNCERTAINTIES

8.1 SYSTEMATIC UNCERTAINTIES

The various contributions to the systematic uncertainties in this experiment can

be listed in three groups:

• Uncertainties affecting the determination of kinematic variables: mo-

mentum transfer squared t and azimuthal angle φ

- Transport matrix related uncertainties: the uncertainty in the

transport matrix element Leff

- Beam and RP alignment/geometry related uncertainties:

- Uncertainty in the beam transverse position at IP, (x0,y0)

- Beam angular divergence + unknown beam crossing angle

- Beam position shift from the center at the RP location

- Offset effect due to kicker magnets located before the RP location

- RP survey errors

• Uncertainties affecting the asymmetry value and AN

- Backgrounds

- Uncertainties in beam polarization measurement

- Geometrical acceptance and tracking efficiencies

• Uncertainties affecting the measurement of the r5 parameter

All of the above uncertainties + uncertainties in the fitting parameters:

the total cross section σtot, the ratio of the real to the imaginary parts of the

scattering amplitude (the ρ parameter) and the slope parameter B .

8.1.1 UNCERTAINTIES AFFECTING THE DETERMINATION OF T

AND φ
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Uncertainties in the transport matrix element Leff

The transport matrix element Leff (the effective length) given in Eq. 169, is

the magnification of the scattering angle θ and the major term in the transport

matrix. The uncertainty in the determination of the value of Leff is due to the

uncertainty in the magnetic field strength of the Q1-Q3 focusing magnets. The later,

uncertainty in the magnetic field strength, is a result of the calibration of the magnet

current measurements. A correction to the magnet field strength was determined

by analyzing the position and angle of the elastic events falling in the overlapping

acceptance region of the horizontal and vertical RPs. An overall correction of 0.5 %

was applied to the magnetic field strength of the focusing quadrupoles. This results

to an uncertainty in the value of Leff of 1 %. The next step is to determine how the

uncertainty in Leff propagates to the uncertainty in t.

Starting with simplified transport matrix equations that relate the x,y positions

of particles at the detection point with the scattering angles θx, θy:

x ≈ Lxeff · θx → θx ≈ x/Lxeff

y ≈ Lyeff · θy → θy ≈ y/Lyeff (192)

This simplification of the transport matrix equations can be safely done for this

exercise since the other matrix elements are small.

First, we assume that the uncertainty in Leff is σLeff . The polar angle is:

θ ≈
√
θ2
x + θ2

y ≈
√
x2 + y2

Leff
(193)

given Lxeff and Lyeff are approximately the same.

Errors in (x,y) positions and Leff : σx, σy and σLeff , propagate to the error in

scattering angle θ as follows:

σ2
θ = σ2

θx,y + σ2
θL

σ2
θx,y =

(
δθ

δx
· σx
)2

+

(
δθ

δy
· σy
)2

σθL =

(
δθ

δLeff
· σLeff

)2

(194)

From Eq. 193 we get:
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δθ

δx
=

x

Leff
√
x2 + y2

δθ

δx
=

x

Leff
√
x2 + y2

δθ

δLeff
=
−
√
x2 + y2

L2
eff

(195)

Substituting Eq. 195 in Eq. 194 and after some derivation, we obtain:

σ2
θx,y =

σ2

L2
eff

(196)

σ2
θLeff

=
(θ · σLeff )2

L2
eff

(197)

Equation 197 is the propagated uncertainty in the scattering angle θ due to the

uncertainty in the transverse positions x,y or the spatial uncertainty, and equation

197 is the uncertainty in θ due to the uncertainty in Leff . To obtain the uncertainty

in momentum transfer squared t due to the spatial uncertainty and Leff , we now need

to relate the expression given in Eq. 197 and Eq. 197 to t. Starting from −t = p2θ2

and taking the first derivative with respect to θ we obtain: ∆(−t) = 2p2θ · ∆θ.
To obtain the momentum t for an elastic event in our analysis, we use the average

value of the measured scattering angle in the East and West of the IP such as:

θave = 1/2(θEast + θWest). The error on the average scattering angle θave is:

∆θ =
σθ√

2
(198)

assuming that the error on θEast and θWest are uncorrelated.

The error in t due to the uncertainty in Leff can be calculated as follows:

∆(−t)
−t

=
2p2θ ·∆θ
p2θ2

=
2∆θ

θ
(199)

From Eq. 197 we get:
σθLeff
θ

=
σLeff
Leff

(200)

Using Eq. 200 we obtain for ∆θ/θ =
σθLeff√

2θ
=

σLeff√
2Leff

. Since the uncertainty in

Leff is 1 %, σLeff/Leff = 0.01, therefore ∆(−t)/(−t) =
√

2 × 0.01 = 0.0141 or 1.4

%, (uncertainty in t due to the uncertainty in the value of Leff ).
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Beam and RP geometry/alignment related uncertainties

The error in t due to the spatial uncertainty can be calculated as follows:

∆(−t)
−t

=
2p2θ∆θ

p2θ2
=

2p∆θ

pθ

∆(−t)
−t

=
2p∆θ√
−t

=
2pσθ√
2
√
−t

∆(−t)
−t

=

√
2pσθ√
−t

(201)

where we used the expression for the error in average scattering angle given in Eq.

198. The expression given in Eq. 201 is the error in t due to the spatial uncertainty σx

and σy. In other words this error represents the error in t-scale due to the uncertainty

in geometry or alignment of the detectors used in this experiment. The spatial

uncertainty given in Eq. 197 gives σθ = σ/Leff . σ represents the uncertainty in

the geometry/alignment. The alignment of the detectors was established firstly by

using the survey information as explained in Section 5.5. Survey alignment gives

the positions of the first silicon strip in each detector plane with respect to the

center of the beam-pipe of the accelerator. Corrections to the survey alignment were

introduced using a study of elastic events which fall in the overlapping acceptance

region of horizontal and vertical RPs. The study of elastic events in the overlapping

region provides a relative alignment of the detectors, taking one RP as a reference

point on each side of the IP. However, we need to know the position of the detectors

with respect to the beam center to a reasonable precision. The reason for this is

that the reference point for the scattering angle is the beam center. The beam

itself may not be centered with respect to the beam-pipe center, and thus there

might be a shift in the beam center from the accelerator center at the detector

(RP) position along z. The beam might also be shifted from the center because

of the kicker magnets located in front of the Roman Pots in the RHIC accelerator,

which were left ”On” during the 2009 RHIC run. In addition to these uncertainties,

other properties/parameters of the beam are not well understood. For example,

the beam transverse position at the IP (x0,y0) is unknown; also it is not easy to

separate the beam angular divergence from the beam crossing angle. Therefore, a

final correction to the survey alignment was applied to take into account all the

above-mentioned geometrical unknowns and uncertainties, including also the survey

errors. The correction was determined by simulating the transport of elastically
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scattered protons through the RHIC magnets. The effect of the magnet apertures on

the trajectories of the elastically scattered protons was studied and compared to the

data. The (x,y) distributions of the scattered protons and the acceptance boundaries

of the distributions, between the simulation and the data were compared. This study

led to a correction only on the East side of the IP, of (∆x, ∆y) = (2.5, 1.5) mm. The

uncertainty of the correction is ≈ 400 µm. Using σθ = σ/Leff in Eq. 201, we obtain
∆(−t)
−t =

√
2pσ/Leff√
−t =

√
2×100.2×0.4×10−3

25
√
−t → ∆(−t)

−t = 0.002/
√
−t, (uncertainty in t due to

the spatial/alignment uncertainty).

8.1.2 UNCERTAINTIES AFFECTING THE ASYMMETRY VALUE

AND AN

Backgrounds

The backgrounds in this experiment may be due beam-gas interactions, parti-

cles from inelastic collisions and beam halo since the detectors approach the beam

very closely. The background events may dilute/affect the asymmetry value. The

collinearity condition used in data analysis (χ2) removes a large part of the non-elastic

background the the elastic event distribution (number of events after the co-linearity

condition is 12 % less than the number of ”matched” events, see Table 21 in Section

6.5. The fiducial cuts which were applied to the data after the co-linearity condition

reject events with hits in Silicon strips closest to the beam. These events are most

probably due to the beam halo. The number of events after the fiducial cuts is ≈
1.5 % in all t-bins, with a bigger loss the two lowest t-bins (−t < 0.005 GeV/c2 and

0.005 ≤ −t ≤ 0.01 GeV/c2). If the background is beam polarization independent the

value of AN will be changed by 1 %, thus the uncertainty in AN due to background

events is δAN / AN = 0.01. This is a negligible error when compared to the total

error on AN determination (stat. + syst.), which will be shown later. Uncertainties

that may arise from any geometrical acceptance and tracking efficiencies cancel out

when using the square-root formula in the calculation of the asymmetries.

Uncertainties in the beam polarization measurement

Beam polarization values for each of the four RHIC stores during the 2009 RHIC

run and the luminosity weighed average and the corresponding uncertainties are given

in Section 5.1. The total uncertainty (stat. + syst.) in Pb + Py, including also the



229

overall uncertainty for normalization in polarization measurement, is 5.4 %, making

this the major contribution to the uncertainty in AN .

We can use the expression derived for the uncertainty in t due to the uncertainty

in Leff : ∆(−t) = 0.0141 × (−t), to calculate the uncertainty in t for each t-bins,

where (−t) in the expression is the mean value in t in each t bin. We can follow

the same procedure to calculate the uncertainty in t due to the spatial uncertainty

or the uncertainty in alignment, using the expression previously derived ∆(−t)
−t =

0.002/
√
−t. Table 26 presents the systematic errors in t due to the uncertainty in

Leff (6th row) and alignment (7th row). The total systematic error calculated by

adding in quadrature the two systematic errors in t and the total error after adding

the statistical error in the same way, are also presented.

−t range (GeV/c)2 < 0.005 0.005 - 0.01 0.01 - 0.015 0.015 - 0.02 > 0.02
No. of Events 494710 2175468 2848620 2872958 2566903
〈−t〉 (GeV/c)2 0.0039 0.0077 0.0125 0.0175 0.0233
δt (GeV/c)2 (stat.) 9.8E-07 6.6E-07 7.3E-07 8.6E-07 1.0E-07
δt (syst.)
δt (δLeff ) 5.5E-05 1.1E-04 1.8E-04 2.5E-04 3.3E-04
δt (δAlign.) 1.4E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04
Total δt (syst.) 1.5E-04 2.3E-04 3.1E-04 3.9E-04 4.8E-04
Total δt (stat.+syst.) 0.00015 0.00023 0.00031 0.00039 0.00048

(π - φ) Case
AN 0.0402 0.0300 0.0226 0.0197 0.0170
δAN (stat.) 0.0019 0.0009 0.0008 0.0008 0.0008
Syst. Error δAN
δAN(P + δP ) -0.0021 -0.0015 -0.0012 -0.0010 -0.0009
δAN(P - δP ) 0.0023 0.0017 0.0013 0.0011 0.0010
δAN(due to δP ) 0.0022 0.0016 0.0012 0.0011 0.0009

TABLE 26: AN values in 5 −t-ranges and corresponding statistical uncertainties and
systematic uncertainties in (t) due to the uncertainty in transport matrix element
(Leff ) and the uncertainty in Alignment; systematic uncertainty in (AN) due to the
uncertainty in polarization measurement (δP ), for (π - φ) and ”both beams polarized
with ↑↑ and ↓↓ spin combinations of bunches per beam”.

AN dependence on t was studied after including due to the uncertainty in align-

ment, see Fig. 98 and due to the uncertainty in Leff , see Fig. 99. δt was changed in

each case, ± δt and the data was fit with the function given in Section 7.2. In each

case, the Re[r5] and Im[r5] parameters were extracted from the fit. The results on

the r5 parameter are shown in Table 27.
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FIG. 98: AN dependence on −t for both beam polarized case, after including δt due
to δ(Align).
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FIG. 99: AN dependence on −t for both beam polarized case, after including δt due
to δ(Leff ).
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r5 Parameter Re[r5] Im[r5]
0.0016 0.0065

δRe[r5] (stat.) δIm[r5] (stat.)
0.0021 0.0350

δRe[r5] (syst.) δIm[r5] (syst.)
+δLeff -0.0007 -0.0050
-δLeff 0.0007 0.0048
due to δLeff 0.0007 0.0049
+δAlign. -0.0013 -0.0131
-δAlign. 0.0012 0.0128
due to δAlign. 0.0128 0.0130
+δP 0.0057 0.0457
-δP -0.0065 -0.0507
due to δP 0.0061 0.0482
+δσtot -0.0003 -0.0019
-δσtot 0.0003 0.0019
due to δσtot 0.0003 0.0019
+δρ 2.2E-05 0.0004
-δρ -2.2E-05 -0.0004
due to δρ 2.2E-05 0.0004
+δB -1.1E-05 -0.0002
-δB 1.1E-05 0.0002
due to δB 1.1E-05 0.0002

Total Syst. 0.0063 0.0502
Total Stat.+Syst. 0.0066 0.0506

TABLE 27: Statistical and systematic errors in Re[r5] and Im[r5] due to systematic
uncertainties in (Leff ), Alignment, polarization measurement (δP ) and uncertainties
in the fitting parameters σtot, ρ and slope parameter B . Total systematic error in
the r5 parameter is calculated by adding in quadrature the listed systematic errors
due to various factors. Total systematic and statistical error in the measurement of
the Re[r5] and Im[r5] is also shown.
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FIG. 100: AN dependence on −t for both beam polarized case, after including δAN
due to δP .

The uncertainty in polarization measurement affects the AN values in each t-bin.

If Pb +Py = Psum, δPsum = 0.054 × Psum. AN decreases by 1/1.054 if Psum increases

by 0.054 (AN(+δPsum) = 1/1.054 × AN), and increases by 1.057 if Psum decreases

by 0.054 (AN(−δPsum) = 1.057 × AN). Table 26 presents the AN values for each

t-bin, for Psum + δPsum and Psum − δPsum.

Figure 100 shows AN dependence on t for Psum + δPsum and Psum − δPsum cases,

compared also to the original case without δPsum. r5 parameter is extracted from

the best fit in each case and presented in Table 27.

All the above studied uncertainties till here affect the r5 value. In addition to

these uncertainties, we also studied the uncertainties due to the fitting parameters

σtot, ρ and B parameter: δσtot = ± 0.12, δρ = ± 0.0015 and δB = ± 1.8 The r5

parameter attained in each case after changing the fitting parameters are also given

in Table 27. Total systematic and total (syst. + stat.) errors are calculated after

adding in quadrature the systematic errors in the r5 parameter due to various factors.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

9.1 SUMMARY AND CONCLUSIONS

In this thesis, we presented a high precision measurement of the transverse single

spin-asymmetry AN in polarized proton-proton elastic scattering at
√
s = 200 GeV,

by the STAR collaboration at RHIC. The measured values of AN and its t-dependence

are consistent with the absence of a hadronic spin-flip amplitude at
√
s = 200 GeV.

The results has been recently published by the STAR collaboration in [81]. This

result is in agreement with the measurements of AN by the E704 experiment at

19.2 GeV and by RHIC polarimeters at 13.7 and 21.7 GeV. The contribution of the

hadronic spin-flip is parametrized in terms of the ratio of hadronic single spin-flip

amplitude to the hadronic non-flip amplitudes, the parameter r5 = Re[r5] + iIm[r5].

Our result for the r5-parameter (including only statistical and systematic errors is):

Re[r5] = 0.0016 ± 0.0021 (stat.) ± 0.0063 (syst.) and Im[r5] = 0.0350 (stat.) ±
0.0502 (syst.).

Various asymmetries (taking into account the various spin combinations of the

two beams) were measured in 5-regions of the kinematic t-range of our experiment:

0.003 ≤ |t| ≤ 0.035 (GeV/c)2 and for two cases ”π - φ” and ”π + φ”. The two

cases differ in the way the scattered proton counts (N) are measured in the left (L)

and right (R) regions of the detectors in the azimuthal plane, namely for the first

case: if NL = N(φ) then NR = N(π) - N(φ); whereas for the second case: if NL

= N(φ) then NR = N(π) + N(φ). The second case is more appropriate to use if

there is a tilt in proton polarization direction from the vertical direction. For the first

case, we apply a simple cos(φ) fit function to the measured raw asymmetry, whereas

for the second case an extra parameter is allowed in the cos(φ + φ0) fit-function,

where φ0 indicates the tilt from the vertical direction. Various asymmetries with all

available spin combinations of the two beams (relative same orientation and opposite

orientation), are calculated. Asymmetries were calculated also for the case when

only one beam is polarized and for the ”π - φ” case. We then divide the measured
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asymmetry with the appropriate polarization value (sum or difference of Pb and Py),

in order to extract the single spin asymmetry AN .

Results of measured asymmetries calculated in different ways are shown and com-

pared. AN values for 5 t-bins, differ by ∼ 1.5 % between ”π - φ” and ”π + φ” cases,

with the biggest difference in the lowest t-bin, see Table 22. The φ0 value measured

in the ”π + φ” case is about ∼ -7.397 ± 3.184 (stat.) degrees. The raw asymmetries

measured for one beam polarized case (i.e. εB), versus the raw asymmetries for both

beams polarized case (i.e. ε1), both calculated for ”π - φ” case, show that εB/ε1 ≈
1/2, as expected, see Table 23. Finally, the raw asymmetries measured with relative

opposite orientation of the polarization of the two beams, so the false asymmetry is

very small and consistent with zero, as expected (see Table. 24), since this asym-

metry is proportional to the difference of the Pb and Py, which is about 0.016 ±
0.038.

The measured AN values are fit to extract Re[r5] and Im[r5] parameters. Two

fits, one with the CNI curve (prediction without hadronic spin-flip amplitude) and

the best fit to the data (using the same function, but including Re[r5] and Im[r5] as

free parameters), are applied to the measured AN values. The r5 result for ”π - φ”

case is given in the first paragraph. For comparison purposes, the r5 result for ”π +

φ” case is: Re[r5] = 6.6*10−5 ± 0.0021 (stat.) and Im[r5] = -0.0085 ± 0.0359 (stat.),

see Table 25.

Systematic uncertainties related to the determination of t and AN were studied.

Various factors contributing to the uncertainties in the horizontal-t scales are: un-

certainty in the largest transport matrix element Leff , alignment uncertainties and

uncertainty due to beam angular divergence. Results are shown in Table 26 for 5

t-bins. Factors affecting the determination of AN are: backgrounds (negligible effect)

and uncertainty in the beam polarization measurement (major contribution to the

systematic error in AN), see Table 26. The contributions of the above mentioned

uncertainties to the systematic errors in Re[r5] and Im[r5] parameters are shown in

Table 27.

The presented high-accuracy measurement of the single spin asymmetry AN and

the measured the r5 parameter measured in pp elastic scattering at
√
s = 200 GeV,

provides a strong constraint on the magnitude of the hadronic spin-flip amplitude

at this energy, suggesting that the spin-dependent Pomeron amplitudes for elastic

scattering are consistent with zero. This result may help to better understand the
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TABLE 28: Predicted Im[r5] values from various models and measured by various
experiments.

Models
√
s Im[r5] δIm[r5]

Anomalous Moment 0.13
Quark-Diquark -0.10 ± 0.05
Pion-Exchange 0.06
Impact Picture 200 GeV -0.06

Experiments
√
s Im[r5] δIm[r5]

FNAL E704 19.2 GeV 0.145 ± 0.311
PP2PP 200 -0.43 ± 0.56
H-jet 13.7 GeV -0.015 ± 0.029
H-jet 6.8 GeV -0.108 ± 0.038
H-jet 7.7 GeV -0.016
H-jet 21.7 GeV -0.005
STAR 200 GeV 0.0065 ± 0.0506

nature and in particular the spin-dependence of the exchange mechanisms dominating

at high energies.

It has been theoretically [30,115] shown that the double spin-flip amplitudes are

small. This was also measured by the PP2PP experiment [79]. Preliminary results

on the double spin asymmetries ANN and ASS from this experiment are shown in

Fig. 23 [80]. Small values of double spin amplitudes indicate that at very low

|t| ≈ 0.002 (GeV/c)2, AN can be evaluated as κ - 2Im[r5] [178], emphasizing the

values of Im[r5]. Akchurin, Buttimore and Penzo compared values of Im[r5] from

various experiments [178]. Table 28, summaries results on Im[r5] values from different

experiments, including our experiment, compared also with calculations from the

models which describe hadronic spin-flip. The theoretical models for the first three

models are energy-independent. The errors associated with values of Im[r5] measured

in experiments are both statistical and systematic errors, combined.

The ”Physics with Tagged Forward Protons at STAR” will continue its physics

program in the upcoming RHIC physics runs, aiming to perform precise measure-

ments on the spin-dependent observables, including longitudinal spin asymmetries,

at
√
s = 500 GeV, and precise measurement of spin-averaged observables (i.e. total
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and elastic cross sections), 200 and 500 GeV cms energies, in polarized pp elastic

scattering.
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APPENDIX A

OPTICAL THEOREM AND SOME USEFUL

PARAMETERS

The optical theorem introduces the relationship between the behavior of the imag-

inary part of the forward scattering amplitude or the scattering amplitude at t = 0,

the scattering angle and the total cross section.

Imfel(t = 0) =
p

4π
σtot (202)

where fel is the scattering amplitude of elastic scattering, p is the magnitude of the

center of mass three-momentum of the incident particle, and σtot is the total cross

section.

The optical theorem states that the imaginary part of the forward amplitude,

which is proportional to the total cross section, grows with energy, while no such

constraint exists over the real part [11].
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APPENDIX B

OVERVIEW OF PP AND PP̄ WORLD EXPERIMENTS
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TABLE 29: Overview of pp and pp̄ elastic scattering experiments in the world

Collider Type cms |t|
Accelerator of Energy Range

Facility Experiment
√
s (GeV) (GeV2) Year Ref.

RHIC pp 200 0.010 - 0.019 2003 [138]

FNAL pp̄ 3.1 - 3.8 0.001 - 0.02 1996 [47]

CERN SPS pp̄ 541 0.0075 - 0.12 1993 [48]

FNAL pp̄ 1800 0.034 - 0.65 1990 [49]

CERN SPS pp̄ 546 0.00225 - 0.03475 1987 [50]

CERN ISR pp and pp̄ 53 0.5 - 4.0 1985 [51]

CERN SPS pp̄ 546 0.45 - 1.55 1985 [52]

CERN ISR pp̄ 30.6, 52.8, 62.3 0.00037 - 0.055 1985 [53]

pp 23.5 [53]

FNAL pp̄ 546 and 1800 0.025 - 0.29 1984 [54]

CERN ISR pp and pp̄ 540 0.04 - 0.45 1983 [55]

CERN SPS pp̄ 540 0.21 - 0.5 1983 [56]

CERN ISR pp and pp̄ 30.7 0.0007 - 0.02 1983 [57]

62.5 0.008 - 0.06 1983 [57]

FNAL pp and pp̄ 100 0.5 - 2.5 1982 [58]

200 0.9 - 4.0 [58]

CERN ISR pp and pp̄ 52.8 0.01 - 1.0 1982 [59]

CERN SPS pp̄ 540 0.05 - 0.19 1982 [60]

CERN ISR pp 23 - 63 0.8 - 10 1979 [61]

CERN ISR pp σtot 23 - 63 1978 [62]
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APPENDIX C

DERIVATION OF VARIABLES IN POLARIZED PP

ELASTIC SCATTERING

Note on Spin Formalism for PP2PP

(by I.G. Alekseev, V.P. Kanavets, L.I. Koroleva, B.V. Morozov, D.N. Svirida)

Below we will give several relations suitable for the determination of spin param-

eters in the PP2PP experiment.

C.1 GENERAL FORMULAE

The spin-dependent differential cross-section for two vertically polarized beams is

given by:

σ = σ0[1 + AN( ~Pb + ~Py) · ~n+ ANN · ( ~Pb · ~n)( ~Py · ~n)] (203)

where ~n = (~kb × ~ks)/|~kb × ~ks| is the normal to scattering plane, ~kb and ~ks are the

momenta of the beam and the scattering proton, ~Pb and ~Py are polarization vectors

of blue and yellow beams.

The counting rate for ↑↑ spin combination is given by:

N++ = N0[1 + AN( ~Pb
(+)

+ ~Py
(+)

) · ~n+ ANN · ( ~Pb
(+)
· ~n)( ~Py

(+)
· ~n)] (204)

and the counting rates formulae for the other spin combinations are equivalent. If

| ~Pb
(+)
| = | ~Pb

(−)
| = ~Pb and | ~Py

(+)
| = | ~Py

(−)
| = ~Py, the counting rates can be written:

N++ = N0[1 + AN( ~Pb + ~Py) · cosφ+ ANN · ~Pb ~Py · cos2 φ)],

N−− = N0[1− AN( ~Pb + ~Py) · cosφ+ ANN · ~Pb ~Py · cos2 φ],

N+− = N0[1 + AN( ~Pb − ~Py) · cosφ− ANN · ~Pb ~Py · cos2 φ],

N−+ = N0[1− AN( ~Pb − ~Py) · cosφ− ANN · ~Pb ~Py · cos2 φ] (205)

φ-angle is the angle between the normal to the scattering plane and the vertical

direction (up).
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Spin parameters can be expressed from Eq. 205:

AN ~Pb · cosφ = (N++ −N−− +N+− −N−+)/N, (206)

AN ~Py · cosφ = (N++ −N−− −N+− +N−+)/N, (207)

ANN ~Pb ~Py · cos2 φ = (N++ +N−− −N+− −N−+)/N (208)

where N = N++ +N−− +N+− +N−+. Nij are the normalized counting rates. They

take into account the luminosity for each spin combination.

It is easy to obtain from Eq. 205 the formulae containing only N++, N−−, N+− and

N−+ combinations.

AN( ~Pb + ~Py) · cosφ

1 + ANN ~Pb ~Py · cos2 φ
= (N++ −N−−)/(N++ +N−−), (209)

AN( ~Pb − ~Py) · cosφ

1− ANN ~Pb ~Py · cos2 φ
= (N+− −N−+)/(N+− +N−+) (210)

In our conditions the value of Ann ~Pb ~Py cosφ is much less than 1. It means that

we are able to get AN only from experimental data on N++ and N−− with relative

systematic error of ±0.6%, if we neglect this factor.

Usually one refers to the right hand part of Eq. 209 and 210 as the ”raw asym-

metry”. It is clear from this formulae that the relative error of AN is equal to the

relative error of ”raw asymmetry”. In our case the statistics for determination of the

”raw asymmetry” in Eq. 209 and 210 is approximately the same, but the value of the

”raw asymmetry” in Eq. 210 is ( ~Pb− ~Py)/( ~Pb+ ~Py) times less than the one in Eq. 209.

So we can obtain AN from Eq. 210 with the error ( ~Pb + ~Py)/( ~Pb − ~Py) times larger

than from Eq. 209. In other words, in case of nearly equal blue and yel-

low beams polarization practically only N++ and N−− combinations carry

information on AN parameter. The counting rates N+− and N−+ carry in-

formation about the difference of polarizations of blue and yellow beams.

They may be used as indications of systematic errors of the result only

if we are sure that the polarization of the two beams are equal to each

other with good precision.

It is interesting to compare the precision of AN in the case of one beam polarized

and the other unpolarized, in the very small beam polarization limit (i.e. yellow



252

beam) and in the case of our spin pattern variant at equal statistics. In our case

we only use half of the total statistics, but the ”raw asymmetry” is two times larger.

Thus we have a gain of
√

2 times in statistical precision of AN measurement. Of

course if the spin pattern consisted of only ↑↑ and ↓↓ combinations, it would be

possible to get even better precision in AN with an additional gain of
√

2.

C.2 SQUARE ROOT FORMULA

The main advantage of using Eq. 209 and 210 is the possibility to use the so

called ”square root” formulae [78] to extract the physical asymmetry for unnormal-

ized counting rates. This formula is based on theoretical knowledge of the counting

rates azimuthal angle dependence. We can write the numbers of eight measured

combinations in the form:

L++ = ηLI++[1 + AN( ~Pb + ~Py) · cosφ+ ANN ~Pb ~Py · cos2 φ], (211)

L−− = ηLI−−[1− AN( ~Pb + ~Py) · cosφ+ ANN ~Pb ~Py · cos2 φ], (212)

L+− = ηLI+−[1 + AN( ~Pb − ~Py) · cosφ− ANN ~Pb ~Py · cos2 φ], (213)

L−+ = ηLI−+[1− AN( ~Pb − ~Py) · cosφ− ANN ~Pb ~Py · cos2 φ], (214)

R++ = ηRI++[1− AN( ~Pb + ~Py) · cosφ+ ANN ~Pb ~Py · cos2 φ], (215)

R−− = ηRI−−[1 + AN( ~Pb + ~Py) · cosφ+ ANN ~Pb ~Py · cos2 φ], (216)

R+− = ηRI+−[1− AN( ~Pb − ~Py) · cosφ− ANN ~Pb ~Py · cos2 φ], (217)

R−+ = ηRI−+[1 + AN( ~Pb − ~Py) · cosφ− ANN ~Pb ~Py · cos2 φ] (218)

where L → R corresponds to cosφ → − cosφ, ηL and ηR represent the efficiency

(and/or acceptance) of the left and right detectors, Iij-luminosities of the corre-

sponding spin combination.

It follows from Eq. (211, 212, 215, 216):

√
L++R−− =

√
ηLηRI++I−−[1 + ANN ~Pb ~Py cos2 φ+ AN( ~Pb + ~Py) cosφ],√

L−−R++ =
√
ηLηRI++I−−[1 + ANN ~Pb ~Py cos2 φ− AN( ~Pb + ~Py) cosφ],

√
L++R−− −

√
L−−R++√

L++R−− +
√
L−−R++

=
AN( ~Pb + ~Py) · cosφ

1 + ANN ~Pb ~Py · cos2 φ
= ε1 (219)

From other products of Lij and Rij we get the following formulae:
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ηL/ηR =

√
L++L−−√
R++R−−

, (220)

I++/I−− =

√
L++R++√
L−−R−−

(221)

Comparison of the Eqs. 219 and 209 shows that ε1 is a raw asymmetry in the case

of using N++ and N−− counting rates for AN determination.

Using Eq. 213, 214, 217, 218 we get analogous formulae:

√
L+−R−+ −

√
L−+R+−√

L+−R−+ +
√
L−+R+−

=
AN( ~Pb − ~Py) · cosφ

1− ANN ~Pb ~Py · cos2 φ
= ε2, (222)

ηL/ηR =

√
L+−L−+√
R+−R−+

, (223)

I+−/I−+ =

√
L+−R+−√
L−+R−+

(224)

ε2 is a raw asymmetry in the case of using N+− and N−+ counting rates for AN

determination.
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APPENDIX D

SETUP INFRASTRUCTURE AND RUNNING

CONDITIONS DURING RUN09
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FIG. 101: Setup and infrastructure for the RPs and detector packages in the East of
STAR.
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FIG. 102: Setup and infrastructure for the low/high voltage supplies in the East.
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FIG. 103: Top figure shows the RP setup for Run09 (both East and West). Bottom
figure shows the setup and infrastructure of the low voltage patch panels and sequence
of the detector packages connected to low voltage supplies.
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Run # Date Start Stop Dura # Events # ElasticElas Frac  Comment Store Pos

10181085 30-Jun 22:53 23:21 0:28 999833 548950 0.55 1 1
10181086 30-Jun 23:23 0:16 0:53 1999935 972055 0.49 1 1
10182001 1-Jul 0:17 0:32 0:15 559257 270138 0.48 1 1
10182002 1-Jul 0:34 1:29 0:55 1999945 970560 0.49 1 1
10182003 1-Jul 1:31 1:33 0:02 10001 0.00 pedestal 1 1
10182004 1-Jul 1:34 2:32 0:58 1999950 964171 0.48 1 1
10182005 1-Jul 2:33 3:32 0:59 1999839 962600 0.48 1 1
10182006 1-Jul 3:34 4:36 1:02 1999942 950144 0.48 1 1
10182011 1-Jul 5:58 6:00 0:02 10001 0.00 pedestal 1 1
10182015 1-Jul 7:13 8:15 1:02 1999916 1016735 0.51 1 2
10182016 1-Jul 8:20 9:31 1:11 1999957 980482 0.49 1 2
10182021 1-Jul 10:12 10:36 0:24 675560 333461 0.49 1 2
10182025 1-Jul 10:57 12:02 1:05 1593827 741882 0.47 1 2
10183005 2-Jul 0:16 0:17 0:01 10001 0.00 pedestal 2 3
10183013 2-Jul 1:44 2:03 0:19 778275 312823 0.40 no STAR 2 3
10183014 2-Jul 2:04 2:17 0:13 484155 204489 0.42 no STAR 2 3
10183015 2-Jul 2:20 3:12 0:52 1999933 799304 0.40 2 3
10183016 2-Jul 3:13 4:08 0:55 1999935 795409 0.40 2 3
10183017 2-Jul 4:10 5:09 0:59 1999969 793377 0.40 2 3
10183018 2-Jul 5:23 6:19 0:56 1999933 842789 0.42 2 4
10183019 2-Jul 6:22 6:24 0:02 10001 0.00 pedestal 2 4
10183020 2-Jul 6:27 7:27 1:00 1999960 838079 0.42 2 4
10183021 2-Jul 7:29 8:32 1:03 1999942 833429 0.42 2 4
10183025 2-Jul 8:50 8:51 0:01 10001 0.00 pedestal 2 5
10183027 2-Jul 9:10 9:46 0:36 1394100 638263 0.46 2 5
10183028 2-Jul 9:53 11:24 1:31 3428889 1578849 0.46 2 5
10183034 2-Jul 12:59 13:33 0:34 998537 448586 0.45 2 6
10183035 2-Jul 13:36 14:16 0:40 1096472 479953 0.44 2 7
10183036 2-Jul 14:17 14:18 0:01 267 0.00 CP trig test 2 7
10183037 2-Jul 14:20 15:34 1:14 1999962 879881 0.44 2 7
10183038 2-Jul 15:35 15:42 0:07 160125 70097 0.44 beam abort 2 7
10183061 2-Jul 21:05 21:07 0:02 10001 0.00 X-shift 15 3 8
10183062 2-Jul 21:07 21:07 0:00 154 0.00 X-shift 17 3 8
10183065 2-Jul 21:16 21:17 0:01 10001 0.00 X-shift 11 3 8
10183066 2-Jul 21:18 21:20 0:02 10001 0.00 X-shift 13 3 8
10184002 3-Jul 1:08 1:10 0:02 10001 0.00 pedestal 4 9
10184016 3-Jul 4:09 4:52 0:43 1855459 805218 0.43 4 10
10184017 3-Jul 4:53 5:43 0:50 1999853 866765 0.43 4 10
10184018 3-Jul 5:45 6:36 0:51 1999925 804721 0.40 4 11
10184019 3-Jul 6:37 7:28 0:51 1999957 798679 0.40 4 11
10184020 3-Jul 7:30 8:24 0:54 1999951 796463 0.40 4 11
10184021 3-Jul 8:25 8:30 0:05 181881 72200 0.40 4 11
10184030 3-Jul 10:55 11:54 0:59 1999956 883236 0.44 4 12
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Run # Date Start StopDuration # Events # ElasticElas Frac  Comment Store Pos

10184031 3-Jul 11:54 12:53 0:59 1999935 885745 0.44 4 12
10184032 3-Jul 12:54 13:53 0:59 1999939 887591 0.44 4 12
10184033 3-Jul 13:54 14:53 0:59 1999969 899709 0.45 4 12
10184034 3-Jul 14:53 14:55 0:02 288 1 0.00 beam abort 4 12
10184038 3-Jul 15:25 15:27 0:02 10001 0.00 pedestal 5 13
10184044 3-Jul 18:35 18:37 0:02 10001 0.00 pedestal 5 13
10185001 4-Jul 0:29 0:30 0:01 27297 10982 0.40 TPC limit 6 14
10185002 4-Jul 0:32 0:32 0:00 8866 3991 0.45 rate limit 6 14
10185003 4-Jul 0:34 0:40 0:06 253838 116882 0.46 TPC limit 6 14
10185004 4-Jul 0:42 1:28 0:46 1999884 978901 0.49 6 14
10185005 4-Jul 1:29 2:16 0:47 1999912 971976 0.49 6 14
10185006 4-Jul 2:17 3:10 0:53 1999923 958470 0.48 6 14
10185007 4-Jul 3:16 3:46 0:30 1125 0.00 Vernier scan 6 15
10185008 4-Jul 3:47 3:52 0:05 320 0.00 VPD min bias 6 15
10185013 4-Jul 4:32 4:35 0:03 10001 0.00 pedestal 6 15
10185015 4-Jul 5:00 5:02 0:02 10001 0.00 pedestal 6 16
10185016 4-Jul 5:17 5:25 0:08 59102 31092 0.53 no-0 supp 6 16
10185018 4-Jul 5:28 6:14 0:46 1999921 1068287 0.53 6 16
10185019 4-Jul 6:19 7:04 0:45 1999908 1064505 0.53 6 17
10185020 4-Jul 7:04 7:48 0:44 1999758 1086820 0.54 6 17
10185023 4-Jul 7:58 8:32 0:34 1469066 799732 0.54 beam abort 6 17

FIG. 104: Running conditions during Run09, I. Run information: run number; start-
ing and stopping date and time for each run; run duration; number of events taken
in each run; number and fraction of elastic events for each run; run type/comment;
store number and RP positions for each run.
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Run # Date Start Pos B Left B Right B Top B Bot Y Left Y Right Y Top Y Bot

10181085 30-Jun 22:53 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10181086 30-Jun 23:23 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10182001 1-Jul 0:17 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10182002 1-Jul 0:34 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10182003 1-Jul 1:31 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10182004 1-Jul 1:34 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10182005 1-Jul 2:33 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10182006 1-Jul 3:34 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10182011 1-Jul 5:58 1 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5
10182015 1-Jul 7:13 2 8.9 10.3 10.2 10.2 10.2 10.3 5.0 10.3
10182016 1-Jul 8:20 2 8.9 10.3 10.2 10.2 10.2 10.3 5.0 10.3
10182021 1-Jul 10:12 2 8.9 10.3 10.2 10.2 10.2 10.3 5.0 10.3
10182025 1-Jul 10:57 2 8.9 10.3 10.2 10.2 10.2 10.3 5.0 10.3
10183005 2-Jul 0:16 3 10.2 10.3 10.2 10.2 16.9 17.2 15.9 16.6
10183013 2-Jul 1:44 3 10.2 10.3 10.2 10.2 16.9 17.2 15.9 16.6
10183014 2-Jul 2:04 3 10.2 10.3 10.2 10.2 16.9 17.2 15.9 16.6
10183015 2-Jul 2:20 3 10.2 10.3 10.2 10.2 16.9 17.2 15.9 16.6
10183016 2-Jul 3:13 3 10.2 10.3 10.2 10.2 16.9 17.2 15.9 16.6
10183017 2-Jul 4:10 3 10.2 10.3 10.2 10.2 16.9 17.2 15.9 16.6
10183018 2-Jul 5:23 4 10.2 10.3 10.2 10.2 14.5 14.7 10.9 12.8
10183019 2-Jul 6:22 4 10.2 10.3 10.2 10.2 14.5 14.7 10.9 12.8
10183020 2-Jul 6:27 4 10.2 10.3 10.2 10.2 14.5 14.7 10.9 12.8
10183021 2-Jul 7:29 4 10.2 10.3 10.2 10.2 14.5 14.7 10.9 12.8
10183025 2-Jul 8:50 5 6.4 9.0 8.9 8.9 7.6 12.8 7.8 9.6
10183027 2-Jul 9:10 5 6.4 9.0 8.9 8.9 7.6 12.8 7.8 9.6
10183028 2-Jul 9:53 5 6.4 9.0 8.9 8.9 7.6 12.8 7.8 9.6
10183034 2-Jul 12:59 6 8.9 8.4 10.2 10.2 7.0 7.8 7.1 7.1
10183035 2-Jul 13:36 7 8.9 8.4 10.2 10.2 8.0 8.8 8.1 8.1
10183036 2-Jul 14:17 7 8.9 8.4 10.2 10.2 8.0 8.8 8.1 8.1
10183037 2-Jul 14:20 7 8.9 8.4 10.2 10.2 8.0 8.8 8.1 8.1
10183038 2-Jul 15:35 7 8.9 8.4 10.2 10.2 8.0 8.8 8.1 8.1
10183061 2-Jul 21:05 8 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
10183062 2-Jul 21:07 8 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
10183065 2-Jul 21:16 8 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
10183066 2-Jul 21:18 8 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
10184002 3-Jul 1:08 9 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
10184016 3-Jul 4:09 10 10.3 10.3 14.1 11.4 19.5 16.0 16.5 19.1
10184017 3-Jul 4:53 10 10.3 10.3 14.1 11.4 19.5 16.0 16.5 19.1
10184018 3-Jul 5:45 11 10.3 10.3 15.3 12.6 19.5 16.0 16.5 19.1
10184019 3-Jul 6:37 11 10.3 10.3 15.3 12.6 19.5 16.0 16.5 19.1
10184020 3-Jul 7:30 11 10.3 10.3 15.3 12.6 19.5 16.0 16.5 19.1
10184021 3-Jul 8:25 11 10.3 10.3 15.3 12.6 19.5 16.0 16.5 19.1
10184030 3-Jul 10:55 12 9.1 9.1 9.6 8.9 8.3 8.3 8.4 8.4
10184031 3-Jul 11:54 12 9.1 9.1 9.6 8.9 8.3 8.3 8.4 8.4
10184032 3-Jul 12:54 12 9.1 9.1 9.6 8.9 8.3 8.3 8.4 8.4
10184033 3-Jul 13:54 12 9.1 9.1 9.6 8.9 8.3 8.3 8.4 8.4
10184034 3-Jul 14:53 12 9.1 9.1 9.6 8.9 8.3 8.3 8.4 8.4
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Run # Date Start Pos B Left B Right B Top B Bot Y Left Y Right Y Top Y Bot

10184038 3-Jul 15:25 13 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
10184044 3-Jul 18:35 13 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
10185001 4-Jul 0:29 14 9.0 9.8 19.3 16.6 20.1 17.9 17.3 19.1
10185002 4-Jul 0:32 14 9.0 9.8 19.3 16.6 20.1 17.9 17.3 19.1
10185003 4-Jul 0:34 14 9.0 9.8 19.3 16.6 20.1 17.9 17.3 19.1
10185004 4-Jul 0:42 14 9.0 9.8 19.3 16.6 20.1 17.9 17.3 19.1
10185005 4-Jul 1:29 14 9.0 9.8 19.3 16.6 20.1 17.9 17.3 19.1
10185006 4-Jul 2:17 14 9.0 9.8 19.3 16.6 20.1 17.9 17.3 19.1
10185007 4-Jul 3:16 15 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0
10185008 4-Jul 3:47 15 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0
10185013 4-Jul 4:32 15 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0
10185015 4-Jul 5:00 16 6.5 8.4 10.2 7.0 13.2 10.9 10.3 12.8
10185016 4-Jul 5:17 16 6.5 8.4 10.2 7.0 13.2 10.9 10.3 12.8
10185018 4-Jul 5:28 16 6.5 8.4 10.2 7.0 13.2 10.9 10.3 12.8
10185019 4-Jul 6:19 17 7.1 8.4 10.8 7.6 13.2 10.9 10.3 12.8
10185020 4-Jul 7:04 17 7.1 8.4 10.8 7.6 13.2 10.9 10.3 12.8
10185023 4-Jul 7:58 17 7.1 8.4 10.8 7.6 13.2 10.9 10.3 12.8

FIG. 105: Running conditions during Run09, II. RP positions for each run and other
run information: run number; starting and stopping date and time for each run;
RP position; distance of approach of each RP to the center of the RHIC accelerator
beam-line in (mm). RP notation is as follows: B Left (RPWHO); B Right (RPWHI);
B Top (RPWVU); B Bot (RPWVD); Y Left (RPEHI); Y Right (RPEHO); Y Top
(RPEVU); Y Bot (RPEVD).
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APPENDIX E

FIRST SI STRIP POSITIONS FOR ALL RP POSITIONS

(PHYSICS RUNS) DURING RUN09
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TABLE 30: Calculated 1st silicon strip/channel positions x0 (y0) for RPEHI

RPEHI
RP Plane A Plane B Plane C Plane D

Position (mm) (mm) (mm) (mm)

1 -12.171 -39.287 -12.190 -39.323

2 -11.921 -39.287 -11.940 -39.323

3 -18.879 -39.287 -18.898 -39.323

4 -16.342 -39.287 -16.361 -39.323

5 -14.455 -39.287 -14.474 -39.323

6 -9.389 -39.287 -9.408 -39.323

7 -10.390 -39.287 -10.409 -39.323

10 -17.619 -39.287 -17.638 -39.323

11 -17.619 -39.287 -17.638 -39.323

12 -10.049 -39.287 -10.068 -39.323

14 -19.533 -39.287 -19.552 -39.323

16 -12.561 -39.287 -12.580 -39.323

17 -12.561 -39.287 -12.580 -39.323
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TABLE 31: Calculated 1st silicon strip/channel positions x0 (y0) for RPEHO

RPEHO
RP Plane A Plane B Plane C Plane D

Position (mm) (mm) (mm) (mm)

1 13.650 39.635 13.650 39.635

2 13.381 39.635 13.381 39.635

3 20.339 39.635 20.339 39.635

4 17.801 39.635 17.801 39.635

5 10.824 39.635 10.824 39.635

6 10.178 39.635 10.178 39.635

7 11.184 39.635 11.184 39.635

10 22.883 39.635 22.883 39.635

11 22.883 39.635 22.883 39.635

12 11.496 39.635 11.496 39.635

14 23.536 39.635 23.536 39.635

16 16.474 39.635 16.474 39.635

17 16.474 39.635 16.474 39.635
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TABLE 32: Calculated 1st silicon strip/channel positions x0 (y0) for RPEVU

RPEVU
RP Plane A Plane B Plane C Plane D

Position (mm) (mm) (mm) (mm)

1 13.045 -39.017 13.070 -38.989

2 7.719 -39.017 7.744 -38.989

3 18.737 -39.017 18.762 -38.989

4 13.684 -39.017 13.709 -38.989

5 10.503 -39.017 10.528 -38.989

6 9.820 -39.017 9.845 -38.989

7 10.837 -39.017 10.862 -38.989

10 19.331 -39.017 19.356 -38.989

11 19.331 -39.017 19.356 -38.989

12 11.139 -39.017 11.164 -38.989

14 20.146 -39.017 20.171 -38.989

16 13.057 -39.017 13.082 -38.989

17 13.057 -39.017 13.082 -38.989
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TABLE 33: Calculated 1st silicon strip/channel positions x0 (y0) for RPEVD

RPEVD
RP Plane A Plane B Plane C Plane D

Position (mm) (mm) (mm) (mm)

1 -12.601 40.745 -12.605 40.742

2 -12.334 40.745 -12.338 40.742

3 -18.676 40.745 -18.680 40.742

4 -14.874 40.745 -14.878 40.742

5 -11.717 40.745 -11.721 40.742

6 -9.149 40.745 -9.153 40.742

7 -10.157 40.745 -10.161 40.742

10 -21.177 40.745 -21.181 40.742

11 -21.177 40.745 -21.181 40.742

12 -10.461 40.745 -10.465 40.742

14 -21.221 40.745 -21.225 40.742

16 -14.868 40.745 -14.872 40.742

17 -14.868 40.745 -14.872 40.742
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TABLE 34: Calculated 1st silicon strip/channel positions x0 (y0) for RPWHI

RPWHI
RP Plane A Plane B Plane C Plane D

Position (mm) (mm) (mm) (mm)

1 -12.106 39.188 -12.108 39.250

2 -12.070 39.188 -12.072 39.250

3 -12.103 39.188 -12.105 39.250

4 -12.103 39.188 -12.105 39.250

5 -10.833 39.188 -10.835 39.250

6 -10.196 39.188 -10.198 39.250

7 -10.196 39.188 -10.198 39.250

10 -12.120 39.188 -12.122 39.250

11 -12.120 39.188 -12.122 39.250

12 -10.856 39.188 -10.858 39.250

14 -11.619 39.188 -11.621 39.250

16 -10.172 39.188 -10.174 39.250

17 -10.172 39.188 -10.174 39.250
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TABLE 35: Calculated 1st silicon strip/channel positions x0 (y0) for RPWHO

RPWHO
RP Plane A Plane B Plane C Plane D

Position (mm) (mm) (mm) (mm)

1 13.249 -38.621 13.232 -38.651

2 11.856 -38.621 11.839 -38.651

3 13.194 -38.621 13.177 -38.651

4 13.194 -38.621 13.177 -38.651

5 9.351 -38.621 9.334 -38.651

6 11.857 -38.621 11.840 -38.651

7 11.857 -38.621 11.840 -38.651

10 13.259 -38.621 13.242 -38.651

11 13.259 -38.621 13.242 -38.651

12 12.018 -38.621 12.001 -38.651

14 12.013 -38.621 11.996 -38.651

16 9.474 -38.621 9.457 -38.651

17 10.103 -38.621 10.086 -38.651
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TABLE 36: Calculated 1st silicon strip/channel positions x0 (y0) for RPWVD

RPWVD
RP Plane A Plane B Plane C Plane D

Position (mm) (mm) (mm) (mm)

1 -17.470 -40.530 -17.489 -40.470

2 -12.396 -40.530 -12.415 -40.470

3 -12.403 -40.530 -12.422 -40.470

4 -12.403 -40.530 -12.422 -40.470

5 -11.138 -40.530 -11.157 -40.470

6 -12.396 -40.530 -12.415 -40.470

7 -12.396 -40.530 -12.415 -40.470

10 -13.623 -40.530 -13.642 -40.470

11 -14.889 -40.530 -14.908 -40.470

12 -11.135 -40.530 -11.154 -40.470

14 -18.849 -40.530 -18.868 -40.470

16 -9.233 -40.530 -9.252 -40.470

17 -9.828 -40.530 -9.847 -40.470
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TABLE 37: Calculated 1st silicon strip/channel positions x0 (y0) for RPWVU

RPWVU
RP Plane A Plane B Plane C Plane D

Position (mm) (mm) (mm) (mm)

1 18.947 40.064 18.949 40.030

2 13.818 40.064 13.820 40.030

3 13.815 40.064 13.817 40.030

4 13.815 40.064 13.817 40.030

5 12.553 40.064 12.555 40.030

6 13.779 40.064 13.801 40.030

7 13.779 40.064 13.801 40.030

10 17.629 40.064 17.631 40.030

11 18.904 40.064 18.906 40.030

12 13.201 40.064 13.203 40.030

14 22.745 40.064 22.747 40.030

16 13.804 40.064 13.806 40.030

17 14.435 40.064 14.437 40.030
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APPENDIX A

CALCULATION OF ENERGY LOSS OF A PROTON IN A

SI DETECTOR PLANE

When a proton with momentum 100 GeV/c hits the silicon detector it deposits

when passing through the material with a thickness of 400 µm for each silicon detector

plane. The detectors measure the dE/dx of the proton going through the silicon

plane. The dE/dx of the proton hit can be calculated by the so called Bethe−Bloch
formula, basic expression used for energy loss calculations of charged particles passing

through matter [173].

dE

dx
= 2πNar

2
emec

2ρ
Z

A

z2

β2

[
ln

(
2meγ

2v2Wmax

I2

)
− 2β2 − δ − 2

C

Z

]
(225)

where 2πNar
2
emec

2 = 0.1535 MeVcm2/g and the following constants are used.

dE

dx
=

(
0.1535

MeV cm2

g

)
ρ
Z

A

1

β2

[
ln

(
2meγ

2v2Wmax

I2

)
− 2β2 − δ − 2

C

Z

]
(226)

Considering also the conditions of our experiment and the parameters of our

detector, we have the following:

• re: classical electron radius = 2.817 × 10−13 cm

• me: electron mass = 0.511 MeV/c2

• Na: Avogadro’s number = 6.022 × 1023 mol−1

• I: mean excitation potential

I = 173 eV for Si [173]

• Z: atomic number of absorbing material

Z = 14 for Si

• A: atomic weight of absorbing material

A = 28.0855 amu for Si
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• ρ: density of absorbing material

ρ = 2.33 g/cm3

• z: charge of the incident particle in the units of e

z = +1e

• β = v/c of the incident particle

β = 1

• γ = 1/
√

1− β2

βγ = 106.8 for 100 GeV/c protons

• δ: density correction, δ = 4.6052·X + C + a(X1 −X)m [173]

δ = 4.9871 where X = log10(βγ) = 2.028571; X1 = 2.87, m = 3.25, a = 0.1492

for Si

• C: shell correction

C = -4.44 for Si

• Wmax: maximum energy transfer in a single collision, Wmax = 2mec
2(βγ)2

where βγ = 106.8

Wmax = 11.657177 GeV

• 2C
Z

= -0.6342857

Replacing the above in Eq. 226, we get:

−dE
dx

= 5.295 MeV/cm

Energy loss of a 100 GeV/c proton passing through 400 µm Si is ∆E = 0.212 MeV.
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