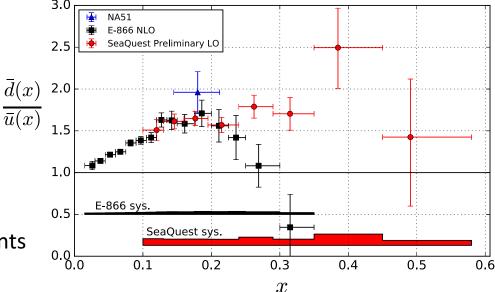
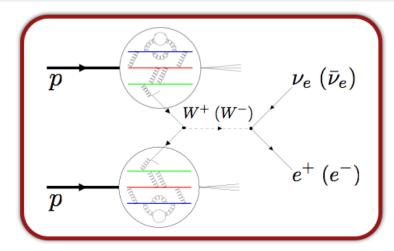
Constraining the Sea Quark Distributions Through W[±] Cross Section Ratio Measurements at STAR

Matthew Posik
Temple University
for the STAR Collaboration

DNP 2017 Meeting Pittsburg, PA October 25-28 2017



Motivation


- Unpolarized dbar/ubar distribution can be probed via Drell-Yan production.
- E-866 suggests a trend where the dbar/ubar ratio appears to be decreasing at large-x.
- The preliminary SeaQuest trend appears to level out at higher x. However preliminary data have large error bars at large-x. Still awaiting full statistical sample.
- More direct and indirect data are needed at high-x to help constrain the sea quark distributions.
- New measurements from different experiments can provide data at different Q² and from different scattering processes.
 - This will allow for different systematic effects and also serve as a cross check of our understanding of the physics.

B. Kerns et al. (SeaQuest Collaboration), APS April Meeting 2016.

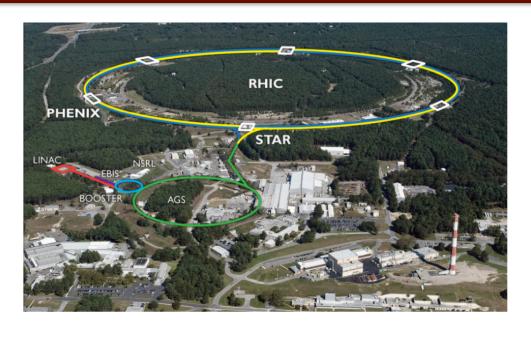
W Boson Production Through p+p Collisions

 W bosons are sensitive to quark/anti-quark distributions. They can be accessed via the W leptonic decay channels in proton + proton collisions

$$\triangleright u + \bar{d} \rightarrow W^+ \rightarrow e^+ + \nu$$

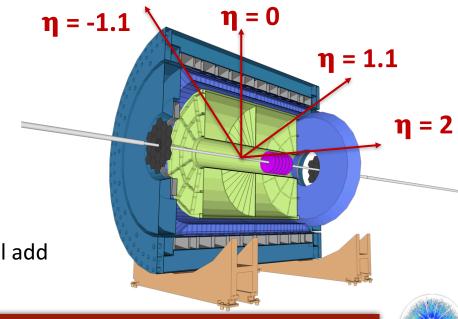
$$ightharpoonup d + \bar{u} o W^- o e^- + \bar{\nu}$$

- The charged W cross-section ratio
 - is proportional (at LO) to the dbar/ubar ratio
 - can be used to constrain the sea quark distributions


$$\frac{\sigma_{W^{+}}}{\sigma_{W^{-}}} \approx \frac{u(x_{1}) \, \bar{d}(x_{2}) + \, \bar{d}(x_{1}) u(x_{2})}{\bar{u}(x_{1}) d(x_{2}) + \, \bar{u}(x_{2}) d(x_{1})}$$

 $\frac{\sigma_{W^+}}{\sigma_{W^-}} = \left(\frac{N_O^+ - N_B^+}{N_O^- - N_B^-}\right) \left(\frac{\epsilon^-}{\epsilon^+}\right)$

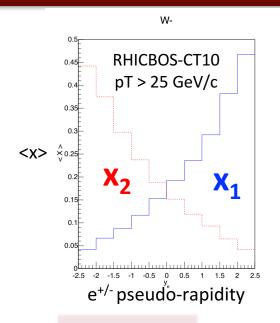
- +/- is positron/electron from W leptonic decay
- N_O is number of observed W events
- O N_B is number of background events
- ε is the measured W efficiency

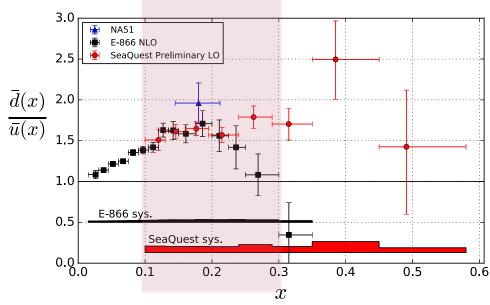

Solenoidal Tracker At RHIC

p+p production runs at $\sqrt{s} = 500/510 \text{ GeV}$

Year	~Luminosity (pb ⁻¹)
2011	25
2012	75
2013	250
2017	350
Combined	700

- \circ Calorimetry system with 2π coverage
 - Barrel electromagnetic calorimeter (BEMC), $-1 < \eta < 1$
 - Endcap electromagnetic calorimeter (EEMC), $1.1 < \eta < 2$
- Time projection chamber (**TPC**), $|\eta| < 1.3$
- The 2017 (transverse p+p \sqrt{s} = 510 GeV) run will add ~350 pb⁻¹ more data



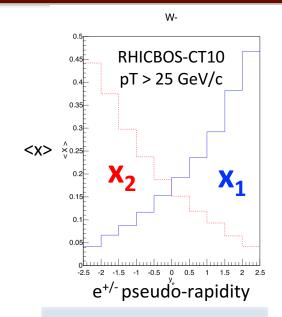

STAR Kinematics

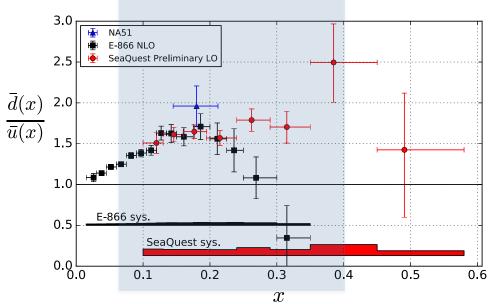
 Approximate kinematic range at STAR midrapidity (TPC + BEMC)

$$\rightarrow$$
 0.1 < x < 0.3 for -1 < η < 1

- For collision energies of $\forall s = 500 \text{ GeV}$ and $\eta = 0$, $(x_1 \approx x_2)$
 - $> x = M_W/Vs = 0.16$

STAR Kinematics

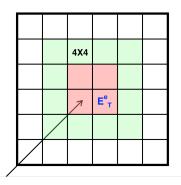

 Approximate kinematic range at STAR midrapidity (TPC + BEMC)

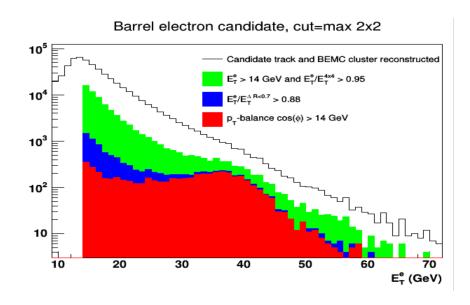

$$\triangleright$$
 0.1 < x < 0.3 for -1 < η < 1

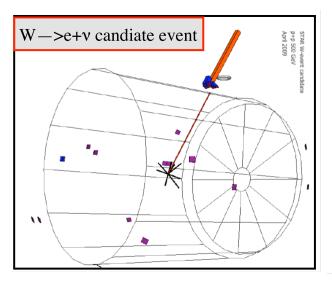
- For collision energies of $\sqrt{s} = 500$ GeV and $\eta = 0$, $(x_1 \approx x_2)$
 - $x = M_W/vs = 0.16$
- In STAR the EEMC could be used to obtain a more forward eta-bin (1.1 < η < 2) which would extend the x reach of STAR

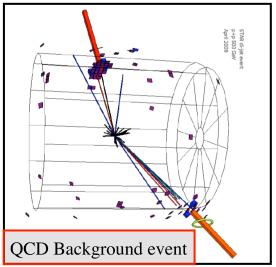
$$\triangleright$$
 0.06 < x < 0.4 for -2 < η < 2

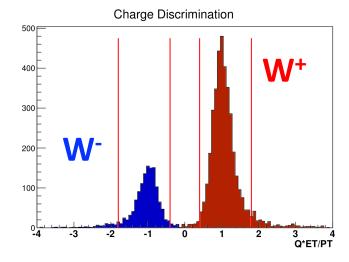
 Analysis of this forward EEMC eta-bin is currently underway



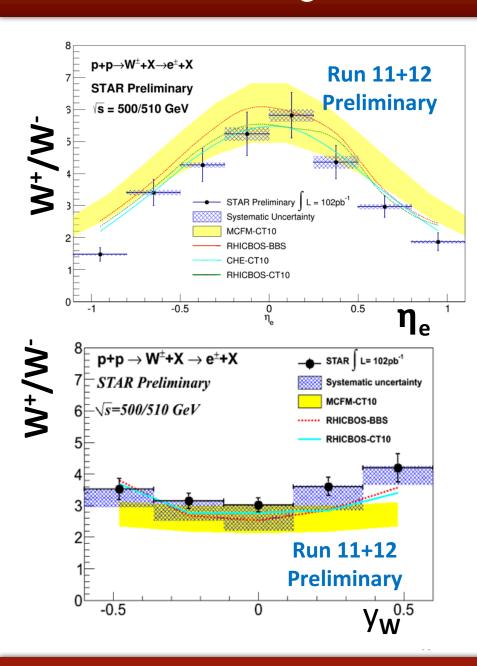



Selecting W Candidates


- Mid-rapidity STAR W selection criteria
 - ➤ Match p_T > 10 GeV/c track to BEMC cluster
 - Isolation ratio 1 /Isolation ratio 2
 - p_T-balance cut
 - Leads to good charge discrimination



TPC track extrapolated to BEMC tower grid



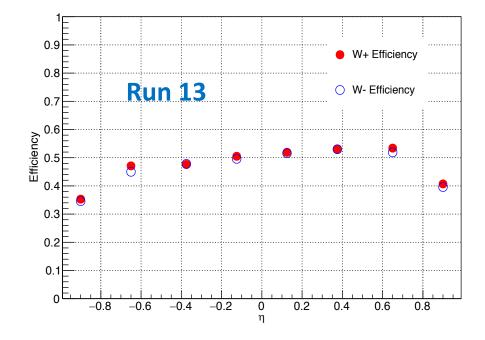
Charged W Cross Section Ratios



- Run 11 + 12 preliminary result (~100 pb⁻¹)
- Run 13 will add ~ 250 pb⁻¹
- STAR Run 17 is expected to add ~ 350 pb⁻¹
 more data
- Charge W cross-section ratio vs. lepton pseudo-rapidity precision is dominated by statistics.
- The W boson rapidity can now also be reconstructed at STAR via its recoil (used for run 11 transverse single-spin asymmetry measurement, Phys.Rev.Lett. 116 (2016)).
- Work is ongoing to improve the systematic uncertainty associated with the reconstructed W boson rapidity.

STAR W Statistical Impact

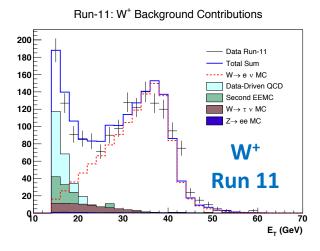
Charged W Cross Section Ratio Projected Uncertainty

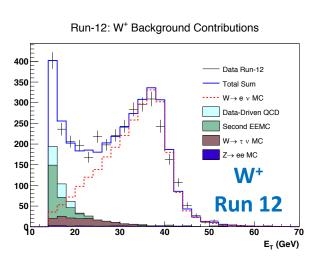


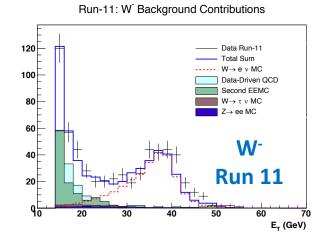
Run 13 Analysis Update

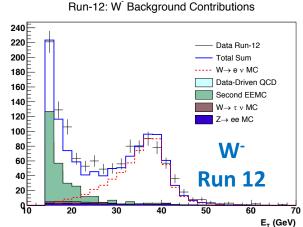
O W+/W- vs. Lepton Rapidity update:

- W selection cuts were optimized for 2013 data set to maximize W signal and W statistics.
- W statistical increase of ~ 10%.
- Background and efficiency analysis completed.
- Extending measurement to EEMC (1.1 \leq $\eta \leq$ 2.0)(ongoing)
- W+/W- vs. Boson Rapidity now underway
- Investigating 2011-2012 with 2013 optimized
 W selection cuts.
- Other related quantities of interest being computed:
- W/Z cross section ratio
- W charge asymmetry

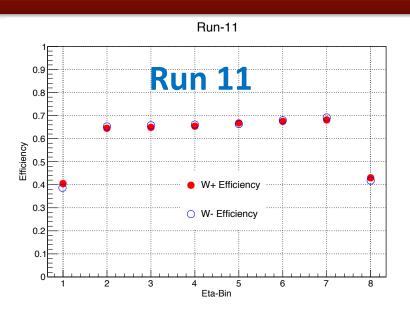

Summary

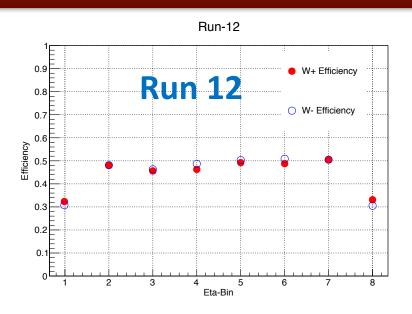

- STAR measured cross-section ratio using W production
 - > A complementary measurement to SeaQuest and E-866
 - Should help further constrain the sea quark PDFs
- Preliminary results of measured cross-section ratios using Run 11 and 12 data sets have been released as a function of lepton pseudo-rapidity and W boson rapidity
- 2013 data set (~250 pb⁻¹) to be included into the cross-section ratio measurement soon
- \circ More forward eta-bin (1.1 2.0) looking to be added to the cross section ratio via the electromagnetic endcap, along with other related quantities of interest.
- Long 510 GeV run in 2017 at transverse spin polarization of about 350 pb⁻¹ should further improve the charged W cross-section ratio precision.




Mid-Rapidity W+/- Backgrounds

- Data-driven QCD backgrounds satisfy e^{+/-} isolation cuts
- o Second EEMC backgrounds result from backward ("Jet") at non-existing calorimeter coverage for $-2 < \eta < -1.1$
- \circ Second EEMC backgrounds are estimated from EEMC located at 1.1 < η < 2
- Electro-weak background from Z decay is done with PYTHIA/MC simulations.
- Small background contribution from Z decay.





W^{+/-} Efficiencies (Runs 11 and 12)

- 2012 running had lower W^{+/-} efficiencies due to higher luminosity running.
- This lead to more pile-up in the TPC, which resulted in less efficient track reconstruction.
- Minimal charge dependence leads to small contribution to the charged W cross-section ratio

