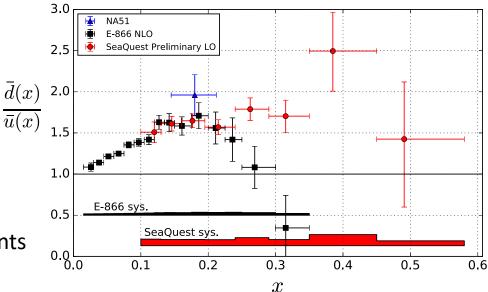
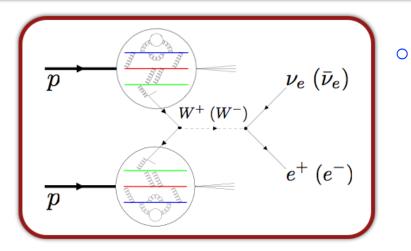
Constraining the Sea Quark Distributions Through W and Z Cross Sections and Cross-Section Ratio Measurements at STAR

> Matthew Posik Temple University for the STAR Collaboration


> > DNP 2019 Meeting Crystal City, VA October 14-17 2019

Motivation


- Unpolarized $\frac{\bar{d}}{\bar{u}}$ distribution can be probed via Drell-Yan production.
- **E-866** suggests a trend where the $\frac{\bar{a}}{\bar{u}}$ ratio appears to be decreasing at large-x.
- The preliminary SeaQuest trend appears to level out at higher x. However preliminary data have large error bars at large-x. Still awaiting full statistical sample.
- More direct and indirect data are needed at high-x to help constrain the sea quark distributions.
- New measurements from different experiments can provide data at different Q² and from different scattering processes.
 - This will allow for different systematic effects and also serve as a cross check of our understanding of the physics.

B. Kerns et al. (SeaQuest Collaboration), APS April Meeting 2016.

W Boson Production Through p+p Collisions

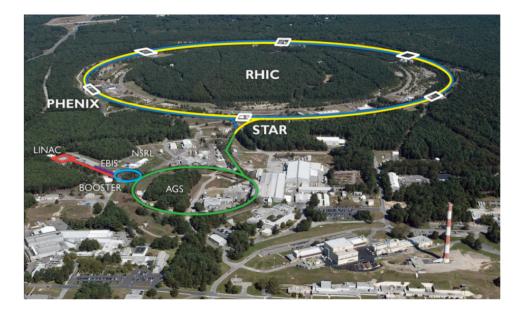
W bosons are sensitive to quark/anti-quark distributions. They can be accessed via the W leptonic decay channels in proton + proton collisions

$$\succ u + \bar{d} \to W^+ \to e^+ + \nu$$

$$\blacktriangleright d + \bar{u} \rightarrow W^- \rightarrow e^- + \bar{\nu}$$

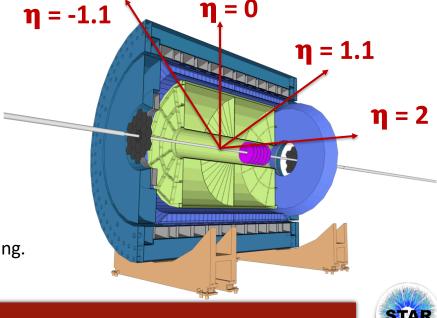
- The charged W cross section ratio
 - > is proportional (at LO) to the $\frac{\bar{d}}{\bar{u}}$ ratio
 - can be used to constrain the sea quark distributions

$$\frac{\sigma_{W^+}}{\sigma_{W^-}} \approx \frac{u(x_1)\,\bar{d}(x_2) + u(x_2)\bar{d}(x_1)}{d(x_1)\bar{u}(x_2) + d(x_2)\bar{u}(x_1)}$$


$$\frac{\sigma_{W^+}}{\sigma_{W^-}} = \left(\frac{N_O^+ - N_B^+}{N_O^- - N_B^-}\right) \left(\frac{\epsilon^-}{\epsilon^+}\right)$$

- +/- is positron/electron from W leptonic decay
- \circ N₀ is number of observed W events
- N_B is number of background events
- \circ ϵ is the W detection efficiency

DNP 2019 Meeting: October 14-17, 2019


Solenoidal Tracker At RHIC

p+p production runs at **vs = 500/510 GeV**

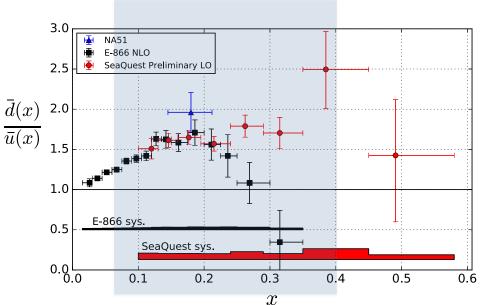
Year	Luminosity (pb ⁻¹)
2011	25
2012	75
2013	250
2017	350
Combined	700

- **Calorimetry system** with 2π coverage
 - Barrel electromagnetic calorimeter (BEMC), -1 <</p> $\eta < 1$
 - Endcap electromagnetic calorimeter (EEMC), 1.1 $< \eta < 2$
- Time projection chamber (**TPC**), $|\eta| < 1.3$
- Zero degree calorimeter, beam-beam counter and vertex position detector
 - Provide minimum bias trigger and luminosity monitoring.
- The **2017** run will add **350 pb⁻¹** more data

STAR Kinematics

Approximate kinematic range at STAR mid-rapidity (TPC + BEMC)

> 0.1 < x < 0.3 for $-1 < \eta < 1$

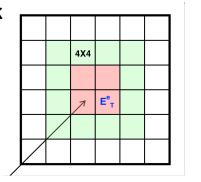

• For collision energies of $\sqrt{s} = 500$ GeV and $\eta = 0$, $(x_1 \approx x_2)$

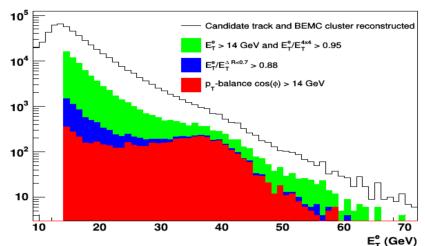
> $x = M_W/Vs = 0.16$

• Good complementarity to LHC (\sqrt{s} = 14 TeV) $\frac{1}{a}$ which probes much lower x

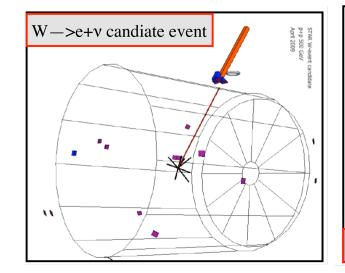
> $x = M_W/Vs = 5.7 \times 10^{-3} (x_1 \approx x_2)$

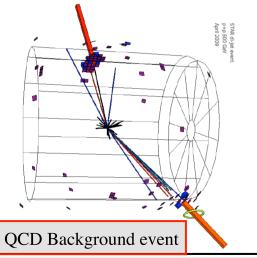
- In STAR the EEMC could be used to obtain a more forward η-bin (1.1 < η < 2) which would extend the x reach of STAR
 - > 0.06 < x < 0.4 for $-2 < \eta < 2$

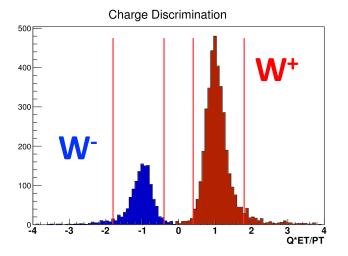



Selecting W Candidates

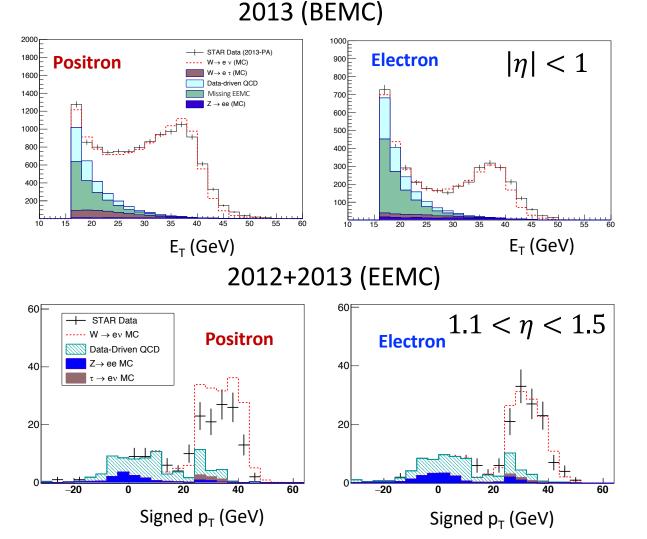
• Mid-rapidity STAR W selection criteria


- Match p_T > 10 GeV/c track to BEMC cluster
- Isolation ratio 1 / Isolation ratio 2
- \rightarrow p_T-balance cut
- Leads to good charge discrimination




TPC track extrapolated to BEMC tower grid

Barrel electron candidate, cut=max 2x2

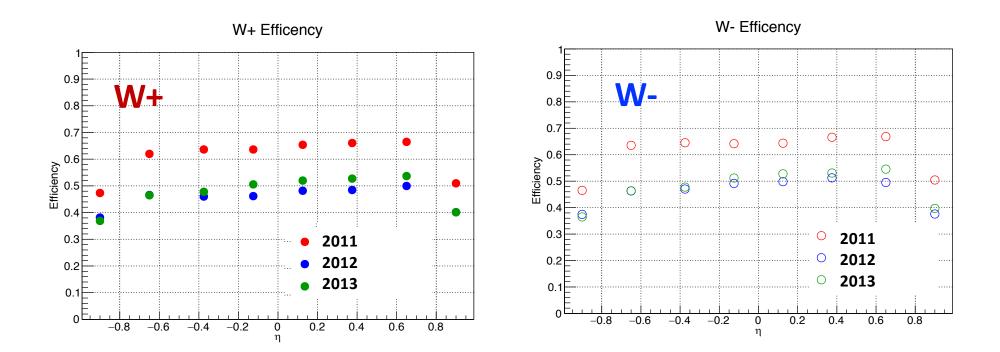


DNP 2019 Meeting: October 14-17, 2019

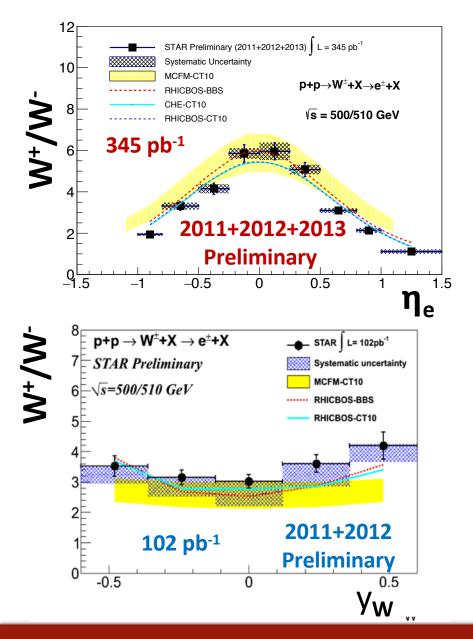
Backgrounds

□W+ /W- signal and background distributions

- Data-driven QCD background satisfies e^{+/-} isolation cuts
- Missing EEMC background results from backward "Jet" at non-existing calorimeter coverage for $-2 < \eta < -1.1$
- Missing EEMC background is estimated from EEMC located at $1.1 < \eta < 2$
- Electro-weak background from
 Z and τ decays is estimated
 from PYTHIA/MC simulations.
- Small background contribution from Z and τ decays.



W Efficiencies

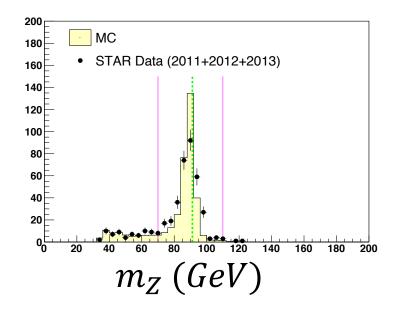

Efficiencies computed using Pythia and GEANT.

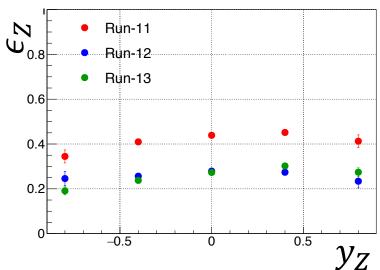
- 2012 and 2013 efficiencies decrease due to higher instantaneous luminosity, which leads to more pile-up and less efficient track reconstruction.
- **2013** efficiencies are higher than **2012** due to new tracking algorithm (STICA).

W Cross Section Ratio

- STAR 2017 W production data is expected to add 350 pb⁻¹ more data.
- Final systematic uncertainties will be reduced for W cross section ratio vs. lepton pseudorapidity compared to preliminary result.

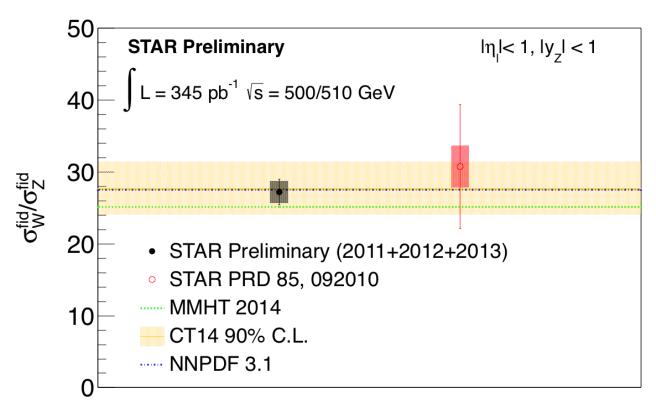
- The W boson rapidity can now also be reconstructed at STAR via its recoil (used for 2011 transverse single-spin asymmetry measurement, Phys.Rev.Lett. 116 (2016)).
- Work is ongoing to improve the systematic uncertainty associated with the reconstructed W boson rapidity.



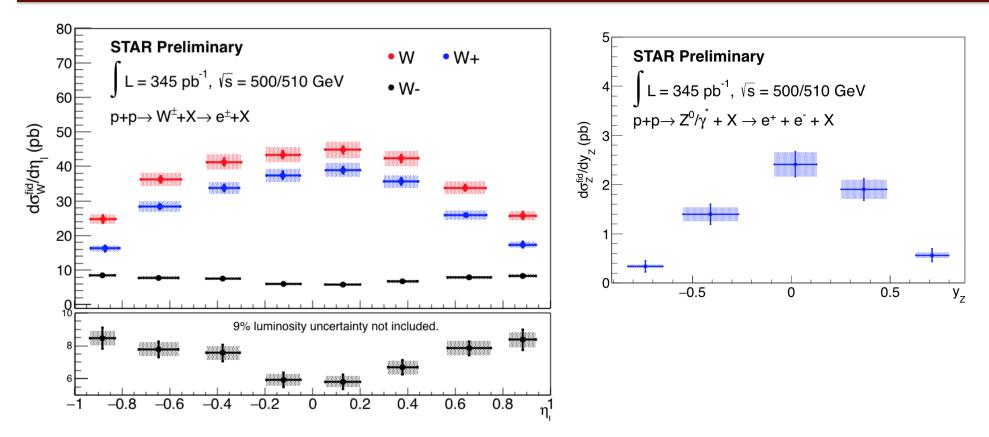

Selecting Z Candidates

 STAR is able to reconstruct Z boson candidates via their leptonic decays

$$p + p \rightarrow \frac{Z}{\gamma^*} \rightarrow e^+ + e^- + X$$


- Z candidates are selected by using isolated e^{\pm} sample and requiring a pair of isolated e^{\pm} candidates to have opposite charge.
 - The invariant mass of each e^+e^- pair can be reconstructed.
 - Final Z candidates selected using an invariant mass cut of 70 $GeV < m_Z < 110 GeV$
- Reconstruction of two charged tracks lead to cleaner identification of Z candidates.
- Efficiencies (ϵ_Z) and background are estimated using Pythia and GEANT
 - No background correction applied.

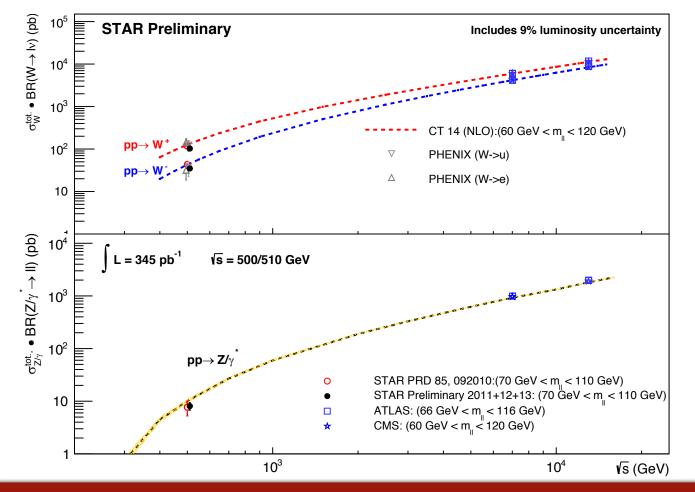
W/Z Cross Section Ratio


• W/Z cross section ratio measured as

$$\frac{\sigma_W^{fid}}{\sigma_Z^{fid}} = \frac{N_O^W - N_B^W}{N_Z^O} \cdot \frac{\epsilon_Z}{\epsilon_W}, \text{ where } W \text{ is the total } W (W^+ + W^-)$$

- W/Z cross section ratio in great agreement with various PDF sets (computed with FEWZ).
- **Consistent** with previous STAR result based on 2009 data.
- Will help provide further constraints on PDFs.

Differential Cross Sections



• Including the luminosity (*L*) information, one can also measure the differential cross sections $\frac{d\sigma^{fid}}{d\eta} = \frac{(N_O - N_B)}{L \cdot \epsilon}$

• Work is currently being done to obtain the W and Z differential cross sections as a function of the respective boson's p_T .

Total Cross Sections

- The **total cross sections** can be computed from the measured **fiducial cross sections** by correcting for STAR acceptance.
- Acceptance correction computed using FEWZ
- Preliminary results are consistent with world p + p data and theory.
- STAR data are complementary to LHC data

Summary

- STAR measured W^{+/-} cross section ratio
 - A complementary measurement to SeaQuest and E-866 and LHC
 - Will help to further constrain the sea quark PDFs
- W/Z cross section ratio
 - A complementary measurement to LHC
 - Will help to constrain PDFs
- Impact of cross section ratios on the PDF distributions currently under analysis
- Preliminary W and Z differential and total cross sections were also presented
- Ongoing analysis from STAR
 - 2017 W and Z production data will double the statistics of the STAR cross section and cross-section ratio measurements.
 - > Measuring W and Z differential cross sections vs. Boson kinematics (p_T and y)

