Third Harmonic Flow of Charged Particles in Au+Au Collisions at √s_{NN} = 200 GeV

Art Poskanzer for the STAR Collaboration

Initial State Fluctuations and Final State Correlations 2-6 Jul 2012 Trento (Italy)

Trento: 14 Years Ago Higher Harmonics

98/03/24 11.18 ^ط 0.05 4<y<6 0.045 p₊<0.6 (n=1,3,5) 0.04 $p_+ < 1.0 \quad (n=2, 4, 6)$ 0.035 0 0.03 0.025 0.02 þ 0.015 0.01 Q Pre limenary 0.005 1 2 3 4 0 5 6 7 n

NA49

Too large, especially for odd harmonics. All non-flow? Voloshin and I gave up.

> Fathers of v_3 : Alver and Roland

Harmonic number

Short-Range Correlations

Narrow and Wide Gaussians

- Two Gaussian fit vs. $\Delta \eta$ for each p_T
- Dashed lines are wide Gaussians
- Get rid of narrow Gaussians

Methods

- 2-particle correlations v₃{2}
 - Wide Gaussian
 - Small η separation cut
- 4-particle correlations v₃{4}
- TPC η sub-events v₃{TPC}
 - with additional ± 0.05 separation
 - Each particle with EP of opposite sub-event
- FTPC v₃{FTPC}
 - Each TPC particle with the EP of combined FTPCs

p_T **Dependence**

Wide Gaussian the same as TPC sub-EP. Short-range correlations in v_3 {TPC} using opposite η -sub event plane are not significant.

Pseudorapidity Dependence

FTPC and PHENIX

Centrality Dependence

Big effect of $\Delta \eta$

Centrality Dependence

Big effect of $\Delta \eta$

Four-particle Cumulant

$v_3^4{4}$ divided by $v_3^4{2}$

Pseudorapidity Gap Dependence

Pseudorapidity Gap Dependence

Pseudorapidity Gap Dependence

Model Comparisons

LHC Pb+Pb at $\sqrt{s_{NN}} = 2.76$ TeV

The v_3 {TPC} values agree with ALICE and ATLAS, as well as PHENIX, despite different $\Delta \eta$

	lηl	<Δη>
STAR	<1.0	0.63
PHENIX	<0.35	≈1.9
ALICE	<0.8	>1.0
ATLAS	<2.5	>0.8

Summary

- Short-range correlations with η-sub method not significant
- Strong decrease with increase of η gap
- Experiment and theory must use same $\Delta \eta$
- Calculations of non-flow at large Δη small
- Most likely fluctuations
- Experimentally the same at higher beam energies (LHC)
- Should be the same at lower beam energies (BES)

References

Hydro: B. Schenke, S. Jeon and C. Gale, Phys. Rev. Lett. 106, 042301 (2011) [arXiv:1009.3244 [hep-ph]].

AMPT: J. Xu and C. M. Ko, Phys. Rev. C 84, 014903 (2011) [arXiv:1103.5187 [nucl-th]].

PHENIX: A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 107, 252301 (2011) [arXiv:1105.3928 [nucl-ex]].

Non-flow: P. Bozek and W. Broniowski, arXiv:1204.3580 [nucl-th].

- Fluctuations: K. Dusling, F. Gelis, T. Lappi and R. Venugopalan, Nucl. Phys. A 836, 159 (2010) [arXiv:0911.2720 [hepph]].
- ALICE: B. Abelev et al., arXiv:1205.5761 [nucl-ex]; K. Aamodt et al., Phys. Rev. Lett. 107, 032301 (2011) [arXiv:1105.3865 [nucl-ex]].

ATLAS: G. Aad et al., arXiv:1203.3087 [hep-ex].

PHSD: V. P. Konchakovski, E. L. Bratkovskaya, W. Cassing, V. D. Toneev, S. A. Voloshin and V. Voronyuk, Phys. Rev. C85, 044922 (2012) [arXiv:1201.3320 [nucl-th]].