

Measurement of heavy-flavor electron production in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV at STAR

Veronika Prozorova (veronika.prozorova@cvut.cz) for the STAR Collaboration **Czech Technical University in Prague**

Quark Matter 2025

Abstract

Studying heavy-flavor quarks helps to probe parton interactions with the Quark-Gluon Plasma (QGP). Due to their large mass, charm and bottom quarks are mainly produced in the early stages of high-energy heavy-ion collisions, where hard scatterings dominate, allowing them to experience the full QGP evolution. Heavy-flavor electrons (HFE), originating from semi-leptonic decays of heavy-flavor hadrons, offer a way to study heavy-quark transport properties. We present HFE measurements at low transverse momentum (p_{T}) in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV, using 2017 STAR data. Strong HFE suppression observed at $\sqrt{s_{NN}}$ = 200 GeV [1] motivates this study at lower energy, providing new insights into the dependence of heavy-quark transport on QGP temperature and baryon chemical potential. These results complement earlier measurements at $\sqrt{s_{NN}}$ = 200 GeV [1] and recent HFE elliptic flow results at $\sqrt{s_{NN}} = 54.4$ GeV [2].

(2)

Heavy-flavor electrons

- Heavy-flavor electrons are electrons from semi-leptonic decays of open heavy-flavor hadrons.
- Semi-leptonic decays BR > hadronic decays BR \rightarrow wide usage in studying heavy quark production.
- The yield of heavy-flavor electrons, N^{HFE}, is

STAR detector

STAR is a versatile detector designed to study the formation and properties of the QGP, as well as the spin structure of the proton.

Vertex **P**osistion **D**etector (VPD): Minimum-bias trigger.

Particle identification $(1/\beta)$.

Time Projection Chamber (TPC):

and identification $(dE/dx, \mathbf{p})$.

Particle momentum reconstruction

TOF hybrid

Time Of Flight (TOF):

 $N^{\rm HFE} = \frac{N^{\rm incl} \cdot purity - N^{\rm PE} / \varepsilon^{\rm PE}}{c^{\rm total}} - N^{\rm HDE},$

where N^{incl} is the inclusive electron candidate yield, N^{PE} is the photonic electron yield, ε^{PE} is the photonic electron tagging efficiency, $\varepsilon^{\text{total}}$ is the total efficiency of electron identification and reconstruction, N^{HDE} is the yield of hadron-decayed electrons from ρ , ω , ϕ , J/ψ , Υ , Drell-Yan and K_{e3} [2].

\blacktriangleright N^{PE} sources:

- Dalitz decays: $\pi^0 \rightarrow \gamma e^+ e^-, \eta \rightarrow \gamma e^+ e^-$
- Photon conversions in detector material: $\gamma \rightarrow e^+e^-$

The main goal is: central-to-peripheral nuclear modification factor

 $R_{\rm CP} = \frac{1}{N_{\rm bin}^{\rm central}} \cdot \frac{d^2 N_{\rm central}^{\rm IITE}}{2\pi p_{\rm T} dp_{\rm T} dy} \left(\frac{1}{N_{\rm bin}^{\rm periph}} \cdot \frac{d^2 N_{\rm periph}^{\rm IITE}}{2\pi p_{\rm T} dp_{\rm T} dy} \right)$

where $N_{\text{bin}}^{\text{central}}$ ($N_{\text{bin}}^{\text{periph}}$) and $d^2 N_{\text{central}}^{\text{HFE}}$ ($d^2 N_{\text{periph}}^{\text{HFE}}$) are the average binary nucleon-nucleon collisions and invariant HFE yields in central (peripheral) collisions, respectively.

Done, Work in progress, To be done

Inclusive electron selection

Inclusive electron candidates are identified using the TPC, TOF, and BEMC.

Figure 2: The STAR experiment.

- Barrel ElectroMagnetic Calorimeter (BEMC):
 - High $p_{\rm T}$ electron identification and triggering.

TOF hybrid

- Centrality is determined by comparing the charged-particle multiplicity in data to the Glauber model [4].
- $3 \cdot 10^8$ events in 0–80% centrality pass trigger and event selection.

Correction and raw signal

- **Efficiencies:** $\varepsilon^{\text{total}}$ combines TPC tracking, TOF matching, $1/\beta$ cut, BEMC matching, E/p, and $n\sigma_e$ cut efficiencies.
 - For $p_T < 1.5 \text{ GeV}/c$, $\varepsilon^{\text{total}}$ is calculated as: $\varepsilon^{\text{total}} = \varepsilon^{\text{TPC}} \cdot \varepsilon^{n\sigma_e} \cdot \varepsilon^{\text{TOF}} \cdot \varepsilon^{1/\beta}$
 - For $p_T \ge 1.5 \text{ GeV}/c$: $\varepsilon^{\text{total}} = \varepsilon^{\text{TPC}} \cdot \varepsilon^{n\sigma_e} \cdot \varepsilon^{\text{BEMC}+\text{E}/p} \cdot (1 \varepsilon^{\text{TOF}} + \varepsilon^{\text{TOF}} \cdot \varepsilon^{1/\beta})$
 - Figure 3 illustrates how the obtained efficiencies contribute to the total electron identification and reconstruction efficiency, $\varepsilon^{\text{total}}$.

51.4 TPC tracking

S 1.4 → TPC tracking

- **TPC:** momentum-dependent $n\sigma_e$ cut at low momentum $(2.25p 3 < n\sigma_e < 2)$ and a constant cut at high momentum $(-1.2 < n\sigma_e < 2)$.
- **TOF:** the inverse particle velocity, $1/\beta$, cut $(|1/\beta 1| < 0.25)$ in TOF hybrid mode (for $p_{\rm T} > 1.5 \ {\rm GeV}/c$).
- **BEMC:** the ratio of the energy deposited by an electron in the BEMC to its momentum, E/p, for $p_{\rm T} > 1.5 \text{ GeV}/c$ ($0.6 \leq E/p \leq 1.5$) \longrightarrow suppress hadrons at high $p_{\rm T}$.

Photonic electrons

Photonic electrons are identified using the invariant mass method and statistically subtracted from the inclusive electron sample [3].

Figure 3: Efficiencies for $\varepsilon^{\text{total}}$ calculation for central (left) and peripheral (right) collisions.

- **TPC tracking**, **BEMC matching**, and **E**/*p* **cut** efficiencies are extracted from **STAR simulations**, while the others are calculated using a pure electron sample from data.
- **Raw inclusive and photonic electron yields** across centrality ranges:

Figure 1: Invariant mass selection of photonic electrons in central (left) and peripheral (right) collisions.

The photonic electron identification efficiency, ε^{PE} , is calculated by propagating γ conversions, π^0 and η decays through the GEANT simulation of the STAR detector [2] before embedding them into real events.

Summary and Outlook

 $Au+Au \sqrt{s_{NN}} = 54.4 \text{ GeV}$ $\begin{bmatrix} Au + Au \sqrt{s_{NN}} = 54.4 \text{ GeV} \\ 10 & 1 & 2 & 3 \end{bmatrix}$ p_{_} [GeV/c]

Figure 4: Inclusive and photonic electron yields, N^{incl} and N^{PE} , for different centrality ranges.

- Drop at $p_{\rm T}$ > 1.5 GeV/*c* is due to BEMC and TOF (in hybrid mode) in addition to TPC electron identification.
- Technical plots illustrating the individual steps towards the evaluation of $N^{\rm HFE}$ are presented.
- Finalize corrections for purity, $n\sigma_e$ cut efficiency and $\varepsilon^{PE} \longrightarrow$ final evaluation of N^{HFE} and R_{CP} and physics implications for heavy-quark energy loss.

References

[1] M.I. Abdulhamid et al. (STAR Collaboration), JHEP 06 (2023) 176 [3] H. Agakishiev et al. (STAR Collaboration), Phys. Rev. D 83 (2011) 052006 [2] M.I. Abdulhamid et al. (STAR Collaboration), *Phys. Lett. B* 844 (2023) 138071 [4] M.L.Miller, *Ann. Rev. Nucl. Part. Sci.* 57 (2007) 205-243

The work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS25/159/OHK4/3T/14 and by the Ministry of Education, Youth and Sports of the Czech Republic through the project LM2023034 Brookhaven National Laboratory - the participation of the Czech Republic.

p_⊤ [GeV/c]

