

Measurement of heavy-flavor electron production in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV at STAR

Veronika Prozorova (agafover@cvut.cz) for the STAR Collaboration **Czech Technical University in Prague**

Abstract

Studying heavy-flavor production in heavy-ion collisions (HIC) can improve our understanding of parton interactions with the Quark-Gluon Plasma (QGP). Due to their significant mass, heavy quarks (charm and bottom) are mainly produced in the initial phase of high-energy HIC, when hard scatterings are prevalent, and thus experience the entire evolution of the QGP. One way to study heavy quarks is to measure Heavy-Flavor Electrons (HFE) - electrons emitted from the semi-leptonic decays of heavy-flavor hadrons. In this contribution, we present the HFE measurement at low transverse momentum $(p_{\rm T})$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV using data taken in 2017 by the STAR experiment. The strong HFE suppression was already observed in the central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV [1]. The measurement of heavy-flavor electron nuclear modification factors below the RHIC top energy will provide new insights into the heavy-quark in-medium energy loss, in particular the collisional energy loss that is dominant at low $p_{\rm T}$. It will complement the existing results at $\sqrt{s_{NN}}$ = 200 GeV [1] and the recent HFE elliptic flow measurement at $\sqrt{s_{NN}}$ = 54.4 GeV [2].

Heavy-flavor electrons

- Heavy-flavor electrons are electrons from semi-leptonic decays of open heavy-flavor hadrons.
- Relative contributions of D and B hadron decays depend on electron $p_{\rm T}$.
- Semi-leptonic decays BR > hadronic decays BR → wide usage in studying heavy quark production.
- The yield of heavy-flavor electrons, $N^{\rm HFE}$, is

$$N^{\text{HFE}} = \frac{N^{\text{incl}} \cdot purity - N^{\text{PE}}/\varepsilon^{\text{PE}}}{\varepsilon^{\text{total}}} - N^{\text{HDE}}, \qquad (1)$$

where N^{incl} is the inclusive electron yield, N^{PE} is the photonic electron yield, ε^{PE} is the photonic electron identification efficiency, $\varepsilon^{\text{total}}$ is the total efficiency of electron identification and reconstruction, HDE are hadron-decayed electrons from ρ , ω , ϕ , J/ψ , Υ , Drell-Yan and K_{e3} [2]. \triangleright N^{PE} sources:

- Dalitz decays: $\eta \rightarrow \gamma e^+ e^-, \pi^0 \rightarrow \gamma e^+ e^-$
- Gamma conversion: $\gamma \to e^+e^-$, $\eta \to \gamma\gamma$, $\pi^0 \to \gamma\gamma$
- The main goal is: central-to-peripheral nuclear modification factor

$$R_{\rm CP} = \frac{\frac{1}{N_{\rm bin}^{\rm central}} \cdot \frac{d^2 N_{\rm central}^{\rm HFE}}{2\pi p_{\rm T} dp_{\rm T} dy}}{\frac{1}{N_{\rm bin}^{\rm periph}} \cdot \frac{d^2 N_{\rm periph}^{\rm HFE}}{2\pi p_{\rm T} dp_{\rm T} dy}}$$
(2)

where $N_{\rm bin}^{\rm central}$, $N_{\rm bin}^{\rm periph}$ are the average numbers of binary nucleon-nucleon collisions in central and peripheral collisions, respectively.

Done, Work in progress, To be done

STAR detector

STAR is an experiment designed primarily to study the formation and characteristics of the QGP and proton spin structure.

Figure 1: The STAR experiment.

- Time Projection Chamber (TPC):
- Particle momentum reconstruction and identification $(dE/dx, \mathbf{p}).$
- Time Of Flight (TOF):
- Particle identification $(1/\beta)$.

Barrel ElectroMagnetic Calorimeter (BEMC):

High $p_{\rm T}$ electron identification and triggering.

Photonic electrons

Photonic electrons are identified using the invariant mass method and subtracted statistically from inclusive electrons [3].

Figure 2: Invariant mass selection of photonic electrons in central (left) and peripheral (right) collisions.

The photonic electron identification efficiency, ε^{PE} , is calculated by propagating γ conversions, π^0 and η decays through the GEANT simulation of the STAR detector [2] before embedding them into real events.

Results

Raw inclusive and photonic electron yield for different centrality ranges:

Figure 3: Inclusive and photonic electron yields, N^{incl} and N^{PE} , for different centrality ranges. Starting from $p_{\rm T}$ > 1.25 GeV/c the BEMC energy over momentum ratio, along with TOF and TPC, is used for the electron identification.

Purity and $n\sigma_e$ cut efficiency calculation: The $n\sigma_e$ distributions after applying TOF and BEMC electron ID are fitted with a multi-Gaussian function (Fig. 4), to calculate purity and $n\sigma_e$ cut efficiency.

$$n\sigma_e = \frac{1}{R} \ln \frac{\langle dE/dx \rangle_{\text{measured}}}{\langle dE/dx \rangle_e},$$
 (3)

where R is the TPC $\ln(dE/dx)$ resolution.

Figure 4: An example of $n\sigma_e$ fits for 0 - 60 % centrality (left) and $n\sigma_e$ cut efficiency (right).

Efficiencies: $\varepsilon^{\text{total}}$ consists of TPC tracking, TOF and BEMC matching efficiencies, $1/\beta$, E/p and $n\sigma_e$ cut (Fig. 4 right) efficiencies. TPC tracking, BEMC matching and E/p cut efficiencies are obtained from STAR detector simulations, while other efficiencies are calculated using pure electron sample in data.

Figure 5: $1/\beta$ efficiency (left) and BEMC matching + E/p cut efficiency (right).

Conclusion

- Heavy-flavors serve as powerful tool to study QGP properties as they are produced in the initial stages of the HIC and experience entire evolution of QGP.
- Technical plots illustrating the individual steps towards the evaluation of $N^{\rm HFE}$ are presented.
- Finalize corrections for purity, TOF matching efficiency, $\varepsilon^{PE} \longrightarrow$ final evaluation of $N^{\rm HFE}$ and $R_{\rm CP}$ and physics implications for heavy parton energy loss.

References

[1] M.I. Abdulhamid et al. (STAR Collaboration), JHEP 06 (2023) 176 [3] H. Agakishiev et al. (STAR Collaboration), Phys. Rev. D 83 (2011) 052006

[2] M.I. Abdulhamid et al. (STAR Collaboration), Phys. Lett. B 844 (2023) 138071

