

Beam Energy Scan Directed Flow and Study of Possible EOS Softening

Prashanth Shanmuganathan

(for the STAR Collaboration) Kent State University, USA

2002

2005

2007

2004

2014

Phase Diagram of Quarks and Gluons

- Early universe smooth crossover between QGP⇔HG
- Lattice QCD predicts crossover ceases and becomes discontinuous
 - > Where is critical end point?
 - What is the nature of the phase transition?
 - Map turn-off of QGP signatures

Anisotropic Flow

3

• Anisotropy of the azimuthal distribution of particles with respect to reaction plane (Ψ_{RP})

$$\frac{dN}{d\phi} \propto \left(1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi - \Psi_{RP})\right) \quad \phi = \tan^{-1}\left(\frac{p_y}{p_x}\right)$$

• v₁-Directed flow, v₂-Eliptic flow, v₃-Triangular flow

Directed Flow (*v*₁**)**

$$v_1 = \left\langle \cos \left(\phi - \Psi_{RP} \right) \right\rangle$$

- Directed flow describes the sideward motion of the particles within the reaction plane
- Generated during the nuclear passage time (2R/ $\gamma \approx 0.1$ fm/c)
- Therefore probes the very earliest stage of the collision dynamics

v₁ and search for 1st order phase transition

- Minimum in slope of directed flow

 (dv₁/dy) as a function of beam
 energy for baryons and double
 sign-change for net baryons
 suggest softening of EOS
- Softening of EOS suggests 1st order phase transition
- Proton v₁ probes interplay of baryon transport and hydro behavior
- New Λ data offer more insight into transport of baryons

- Dashed line: EOS with the assumption of 1st order phase transition
- Red line: EOS without a phase transition

STAR & Particle Identification

 PID using energy loss in TPC dE/dx

• PID using time of flight and momentum from TPC

Long lived: *p*, *K*, π

- Requires TPC & TOF hits
- dE/dx cut of $|n\sigma| \le 2$
- $p: 0.4 < p_T < 2.0 \text{ GeV/c}$
- $K^{\pm} \& \pi^{\pm}$: $p_{T} > 0.2 \text{ GeV/c}$
- *p* < 1.6 GeV/c

Short lived : $\Lambda \& K^0_s$

- Invariant mass technique
- Mixed-event background
- V0 topological cuts
- TPC and/or ToF hits for daughters
- 0.2 < $p_{\rm T}$ < 5.0 GeV/c

Data Set

- RHIC-BES data
- Collected in 2010, 2011, 2014
- Gold + Gold collisions

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

√s _{NN} (GeV)	Baryon Chemical potential (μ _B)	Temperature (MeV)	Events (10 ⁶) Minimum-bias
7.7	422	139.6	4
11.5	316	151.6	12
14.5	262	156.2	20
19.6	206	160	36
27	156	162.6	70
39	112	164.2	130

Beam energies where CP/ 1st order PT is predicted

Event Plane (Ψ) Estimation

- 1st-order reaction plane estimated using East & West BBC detectors
 - -Coverage: $3.3 < |\eta| < 5.0$
- Geometry of the detector limits the accepted particle multiplicity in an event
 - Any measurement relative to Ψ must be corrected for Ψ resolution
- BBC Ψ₁ resolution improves at lower energies due to strong v₁ signal near beam rapidities aligning with BBC acceptance

(Voloshin, Poskanzer, Snellings, arXiv:0809.2949)

Selected Literature - Experiment

- Proton slope show a minimum between 11.5 to 19.6 GeV
- Extrapolations show good agreement with previous measurements
- Charged pions show negative slope in all energies

STAR collaboration, PRL 112, 162301 (2014)

Models With Relevance to Directed Flow

<u>UltraRelativistic Quantum Molecular</u> <u>Dynamics (UrQMD)</u>

- Hadronic Boltzmann transport
- No phase transition or QGP
- Very widely used and tested; code is available to everyone

Frankfurt Hybrid Model

- Early and late stages similar to UrQMD (Boltzmann transport)
- Hydro used for intermediate stage of high energy density
- Hydro has QGP phase, with crossover & 1st-order phase transition

Parton-Hadron String Dynamics (PHSD)

- Partonic and hadronic degrees of freedom
- QGP phase is assumed
- Crossover phase transition between QGP and hadron gas

Jet AA Microscopic (JAM) Model

- Hadronic degrees of freedom
- No QGP
- 1st-order phase transition is mimicked by attractive scattering, generating a 'softening' near phase boundary

Three Fluid hydro model (3FD)

- Partonic and hadronic degrees of freedom
- Crossover & 1st-order phase transition

Selected Literature - Theory

Nara, Ohnishi & Stoecker, (2016) arXiv:1601.07692

V. P. Konchakovski et al. PRC 90, 014903 (2014)

 Hadronic transport, Hydrodynamic, Hybrid, microscopic off-shell transport approach, 3FD – all show poor agreement with key feature of data.

 JAM model with attractive potential shows reasonable qualitative agreement above 10 GeV; authors argue it favors 1st-order PT

Raw Measurements

PRL 112, 162301 (2014) Prashanth S – QM15

Raw Measurements

PRL 112, 162301 (2014) Prashanth S – QM15

Raw Measurements

PRL 112, 162301 (2014) Prashanth S – QM15

*dv*₁/*dy* vs. Beam Energy for 10-40% centrality

*dv*₁/*dy* vs. Beam Energy for 10-40% centrality

*dv*₁/*dy* vs. Beam Energy for 10-40% centrality

- dv_1/dy for K^+ , K^- , and K^0_s are negative and similar to π^{\pm}
- dv₁/dy for K⁰_s lies mid-way between K⁺ and K⁻ within errors

Net-particles dv_1/dy vs. Beam Energy for 10-40% centrality

- Since π⁺ & π⁻, K⁺ & K⁻ have similar v₁, it is proposed that v₁ for anti-p can be proxy for v₁ of produced p. If this idea is valid, we can thus subtract produced baryons and isolate transported initial-state baryons.
- Net-particles = particles minus antiparticles, with appropriate weighting. Net baryons are a measure of initial-state baryons transported to midrapidity by the stopping process of the collision.

dv_1/dy vs. centrality for π^{\pm} , p, Λ

• dv_1/dy for p, Λ strongly depends on centrality

Summary

- Models suggest, with increasing μ_B , a minimum in dv_1/dy for baryons could be signature of 1st-order phase transition
- Earlier STAR measurements for protons show a minimum in dv_1/dy at BES energies
- Recent JAM model calculations imply softening and 1st-order phase transition is favored by STAR measurements

Summary

- Models suggest, with increasing μ_B , a minimum in dv_1/dy for baryons could be signature of 1st-order phase transition
- Earlier STAR measurements for protons show a minimum in dv_1/dy at BES energies
- Recent JAM model calculations imply softening and 1st-order phase transition is favored by STAR measurements
- New proton measurement at 14.5 GeV is in good agreement with previous results, and strengthens the significance of dv_1/dy minimum for baryons
- New Λ measurements show similar results to protons; thus favor the softening interpretation where transported initial-state quarks cause the minimum
- *dv*₁/*dy* measurement for new particle types and centrality study together will strongly constrain models in the next round of comparisons

Backup

Net-particles dv_1/dy vs. Beam Energy for 10-40% centrality

Assume final-state particles have two quark components, one from produced q-qbar pairs, another from stopped baryons

We try to disentangle the two contributions to the slope of directed flow, *F*, via net-*p* and net-*K*:

 $F_{p} = r_{1} F_{\text{anti-}p} + (1 - r_{1}) F_{\text{net-}p}$ $F_{K+} = r_{2} F_{K-} + (1 - r_{2}) F_{\text{net-}K}$ where $r_{1}(y)$ =observed anti-p over pand $r_{2}(y)$ =observed K^{-} over K^{+}

- dv₁/dy|_{y=0} for net-p and net-K are consistent with each other down to ~14.5 GeV, and deviate at lower energies
- Cause of split of net- $K dv_1/dy$ at low Vs_{NN} is unclear