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Motivation

@ Continue with the study of energy dependence of Net-A
fluctuations. (Phys. Rev. C 102, 024903 (2020))

@ Continue with the comparison with Net-Proton

fluctuations.
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Figure 1: C /Cq energy dependence.

A proxy with both S and B quantum numbers, gives the opportunity to investigate not only strangeness fluctuations
but also freeze-out parameters in the context of quark-mass dependence.

Cumulants of the distribution can be related with theoretical
thermodynamic susceptibilities as:
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Chemical freeze-out:
@ Relate fluctuations with freeze-out parameters.

@ Study freeze-out parameters in the context of
quark-mass dependence.
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Figure 2: R. Bellwied, et. al. Phys. Rev. Lett, vol. 111, no. 20, p. 202302,
2013.
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Net-A Multiplicity Distribution Fluctuations

Net-A multiplicity distribution measurements:

@ Together with net-kaon provide a complete measurement for net-strangeness in the system after collisions.

@ A carries both baryon and strangeness quantum numbers.

From previous work on net-A fluctuation analysis for the BES-I ', the cumulant ratios Cy/Cy and C3 /C, were shown as a function

of \/Syy and Ay
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Figure 3: Ay dependence of cumulant ratios.
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STAR FXT Setup and Analysis Information

Fixed Target
n~2 z=201m
EPD
Yellow be - =
= Analysis Information
BBC @ Data Set: Run 18 FXT Au+Au
/SNy = 3.0 GeV
WEST @ Events: 308M minbias

ETOF readable, 270M after cuts.

BTOF

Figure 4: The convention for the analysis is beam going direction is negative direction.

Mid-rapidity in the back-ward convention is at y = —1.045, the Au targetis at z = 2.01 m.
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Event Selection in Vertex Positions

After all cuts
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The beam is steered away from (0,0) cm.
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Figure 6: V7 before and after cuts
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A Particle Reconstruction

A reconstruction was done using the KF particle package.
The KF-Package:
@ Uses the state vector
F=(x,¥,2, Px, Py, Pz, E, s) and the
covariance matrix of the particles to calculate
the decay vertex, momentum and energy of

InvMass_NumLambdas_
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StdDev 0027

#Lambdas
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the mother particle. 50000
@ Instead of using DCA and pointing angle 6, it 40000

uses the x2-criterion, used to estimate the

quality of the reconstruction. 30000

Au+Au collision
VSan =3.0 GeV.
Centrality= 0-80%

Cuts used in KF-Package:
@ DCA(PV to A-vertex) < 1.0 cm
@ DCA(pto 7)< 1.0cm

Other cuts were optimized by KF-Package: ?
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@ True primary tracks are wrongly assigned as
a secondary one with only 0.05% probability.

@ Probability of selecting corrected fitted Figure 8: A invariant mass. 0.5 < pr < 3.0 GeV, |y| < 0.5 minimum bias.

candidates > 99.9%

@ Probability that the p and  come from the ; ol i ity = -
same point > 99.6% High purity in the signal, Purity=0.98 and S/B=49
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Centrality Definition

Glauber model was used to determine the centrality definition.

3 GeV FXTMult Distribution
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Figure 9: Primary charged particle multiplicity

FXTMult: All TPC primary charged particle multiplicity for the fixed target experiment (n = [0, —2]).

7/13



A Particle Acceptance
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Figure 10: Lambda Acceptance
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Raw Multiplicity Distribution

At /syy = 3 GeV A particles have low multiplicity. Fig.(11) is measured for the
acceptance (0.5 < pr < 1.5) GeV and —0.2 < yom < 1.2.

Uncorrected Proton Multiolicitv in the TPC
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Figure 11: A Multiplicity Distributions for most central (0-10%)

Figure 12: Raw Proton Multiplicity at \/Syny = 3.0 GeV.
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C> and Cy as a function of Ay (Uncorrected for efficiency)

Increasing the rapidity window every Ay = 0.2 for the most central collisions (0 — 10%)).

Uncorrected for efficiency
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Figure 13: C» as a function of Ay.

Cumulants are not efficiency corrected yet.

Due to low A multiplicity a centrality dependence in the
cumulants cannot be studied.

A higher order cumulants (C3, Cy, etc), at this energy
might not be reliable for comparison or discussion due to
low multiplicity.

A rapidity window dependence in the cumulants can still
be studied for most central collisions.

C; and C, increase as a function of Ay consistent with
central limit theorem.

This behaviour can be used to study cumulant ratios in
the context of the A rapidity distribution at low energies.
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Qualitative Analysis: Rapidity Coverage

@ Notice the strong energy dependence of dN/dy.

@ Small rapidity range at low energies.
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Figure 14: AGS (Au+Au at \/Syy = 5.0GeV), SPS (Pb+Pb at
V/Sny = 17.0GeV), RHIC (Au+Au at \/Syy = 200 GeV).

PhysRevLett.93.102301

@ For \/Syy = 3.0 GeV the rapidity range is about 2.1

@ Compared with Aymax = 1.2in this analysis,
AYmax / DYpeam = 0.57
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Figure 15: A rapidity density for FXT STAR at 4.5 GeV.
Nuclear Physics A, 967(2017)808-811

Lambda rapidity range at \/syv = 3.0 GeV decreased, A cumulant ratios should show

a baryon number conservation effect when analyzed as a function of rapidity windc
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Qualitative Analysis: Relation with Theory
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Figure 16: Normalized ky value as a function of accepted
fraction of baryon. arXiv:1907.03032

@ o is defined as the ratio between baryons inside the
acceptance and baryons in full phase space

o = (Ng) / (NE™).
@ Red line shows effect of global baryon number
conservation.

@ Focus only on the global baryon number conservation
behaviour.

@ A fast decrease in the A C, /C; might indicate the effect

in the reduction of the rapidity range as a function of
SNN-

@ This behaviour shows the effect of global baryon
conservation for increasing Ay.

@ Comparison between C, /Cy for \/Syy = 200 GeV and
V/Snn = 3 GeV would clarify the effect of the decrease
in rapidity range and baryon number conservation.
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Figure 17: Rapidity-dependence of C, with respect to the NBD

expectation. (Phys. Rev. C 102, 024903 (2020 Y
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Summary and Future Plans

@ A reconstruction at v/syy = 3.0 GeV provides a clear signal with high purity.

@ Despite the high purity in the A reconstruction, the multiplicity is low compared
with higher energies.

@ High order cumulants as a function of centrality are difficult to obtain due to low
multiplicity.
@ Values of cumulants up to C, was measured up to Ay = 1.2.

In order to continue with a quantitative analysis of the behaviour of the cumulant ratios
as a function of Ay, we plan to:

@ Include efficiency corrections to the calculation of C;.
@ Using particle generator models to calculate N3™.
@ Calculate o = (Np) / (NE™).

In the long term, we plan to use data from /syy = 3 — 27 GeV to map out the rapidity
and centrality dependence of A cumulant ratios in BES-II.

W
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