Fluctuations in Λ Multiplicity Distribution in Au+Au collisions at $\sqrt{s_{\it NN}}=3.0~{\rm GeV}$ at STAR

Jonathan Ball ¹ ²

¹For the STAR Collaboration

²University of Houston

APS April Meeting, 2021 Supported in part by

Motivation

- Continue with the study of energy dependence of Net-Λ fluctuations. (Phys. Rev. C 102, 024903 (2020))
- Continue with the comparison with Net-Proton fluctuations.

Figure 1: C_2/C_1 energy dependence.

Cumulants of the distribution can be related with theoretical thermodynamic susceptibilities as:

$$\frac{C_2}{C_1} = \frac{\chi^B_{2,\mu}}{\chi^B_{1,\mu}}, \qquad \frac{C_3}{C_2} = \frac{\chi^B_{3,\mu}}{\chi^B_{2,\mu}}, \qquad \frac{C_4}{C_2} = \frac{\chi^B_{4,\mu}}{\chi^B_{2,\mu}}$$

Chemical freeze-out:

- Relate fluctuations with freeze-out parameters.
- Study freeze-out parameters in the context of quark-mass dependence.

Figure 2: R. Bellwied, et. al. Phys. Rev. Lett, vol. 111, no. 20, p. 202302, 2013.

STAR

A proxy with both S and B quantum numbers, gives the opportunity to investigate not only strangeness fluctuations but also freeze-out parameters in the context of **quark-mass dependence**.

Net-A Multiplicity Distribution Fluctuations

Net-A multiplicity distribution measurements:

- Together with net-kaon provide a complete measurement for net-strangeness in the system after collisions.
- A carries both baryon and strangeness guantum numbers. ۲

From previous work on net- Λ fluctuation analysis for the BES-1¹, the cumulant ratios C_2/C_1 and C_3/C_2 were shown as a function of $\sqrt{s_{NN}}$ and Δy

0-5% Net A

30-40% Net A

(a)

(S_{MM} = 200 GeV

Au + Au collisions

¹J. Adam et al. (STAR Collaboration), Phys. Rev. C 102, 024903 (2020)

STAR FXT Setup and Analysis Information

Figure 4: The convention for the analysis is beam going direction is negative direction.

Mid-rapidity in the back-ward convention is at y = -1.045, the Au target is at z = 2.01 m.

Event Selection in Vertex Positions

Figure 5: Vx-Vy after cuts

Figure 6: V_T before and after cuts

Figure 7: Vz distribution, peaked at 200.7cm. Cut \pm 0.7cm

The beam is steered away from (0,0) cm. The cuts applied are for $V_T - \langle V_T \rangle$ (instead of just V_T) of 1.0 cm.

∧ Particle Reconstruction

A reconstruction was done using the KF particle package.

The KF-Package:

- Uses the state vector
 \$\vec{r} = (x, y, z, p_x, p_y, p_z, E, s)\$ and the covariance matrix of the particles to calculate the decay vertex, momentum and energy of the mother particle.
- Instead of using DCA and pointing angle θ, it uses the χ²-criterion, used to estimate the quality of the reconstruction.

Cuts used in KF-Package:

- DCA(PV to Λ-vertex) < 1.0 cm</p>
- DCA(p to π) < 1.0 cm</p>

Other cuts were optimized by KF-Package:

- True primary tracks are wrongly assigned as a secondary one with only 0.05% probability.
- Probability of selecting corrected fitted candidates > 99.9%
- Probability that the p and π come from the same point > 99.6%

Figure 8: A invariant mass. $0.5 < p_T < 3.0$ GeV, |y| < 0.5 minimum bias.

High purity in the signal, Purity=0.98 and S/B=49

Glauber model was used to determine the centrality definition.

Multiplicities above 195 are excluded to avoid pile up.

Figure 9: Primary charged particle multiplicity

3 GeV EXTMult Distribution

FXTMult: All TPC primary charged particle multiplicity for the fixed target experiment ($\eta = [0, -2]$).

A Particle Acceptance

Figure 10: Lambda Acceptance

Raw Multiplicity Distribution

At $\sqrt{s_{NN}} = 3$ GeV Λ particles have low multiplicity. Fig.(11) is measured for the acceptance ($0.5 < p_T < 1.5$) GeV and $-0.2 < y_{cm} < 1.2$.

Figure 11: A Multiplicity Distributions for most central (0-10%)

Figure 12: Raw Proton Multiplicity at $\sqrt{s_{NN}} = 3.0$ GeV.

C_2 and C_1 as a function of Δy (Uncorrected for efficiency)

Increasing the rapidity window every $\Delta y = 0.2$ for the most central collisions (0 - 10%).

Figure 13: C_2 as a function of Δy .

- Cumulants are not efficiency corrected yet.
- Due to low A multiplicity a centrality dependence in the cumulants cannot be studied.
- A higher order cumulants (C₃, C₄, etc), at this energy might not be reliable for comparison or discussion due to low multiplicity.
- A rapidity window dependence in the cumulants can still be studied for most central collisions.
- C₁ and C₂ increase as a function of Δy consistent with central limit theorem.
- This behaviour can be used to study cumulant ratios in the context of the Λ rapidity distribution at low energies.

Qualitative Analysis: Rapidity Coverage

- Notice the strong energy dependence of dN/dy.
- Small rapidity range at low energies.

Figure 14: AGS (Au+Au at $\sqrt{s_{NN}} = 5.0$ GeV), SPS (Pb+Pb at $\sqrt{s_{NN}} = 17.0$ GeV), RHIC (Au+Au at $\sqrt{s_{NN}} = 200$ GeV). PhysRevLett.93.102301

- For $\sqrt{s_{NN}} = 3.0 \text{ GeV}$ the rapidity range is about 2.1
- Compared with Δy_{max} = 1.2 in this analysis, Δy_{max} / Δy_{beam} ≈ 0.57

Figure 15: Λ rapidity density for FXT STAR at 4.5 GeV. Nuclear Physics A, 967(2017)808-811

Lambda rapidity range at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$ decreased, Λ cumulant ratios should show a baryon number conservation effect when analyzed as a function of rapidity window.

STAR

Qualitative Analysis: Relation with Theory

Figure 16: Normalized k_2 value as a function of accepted fraction of baryon. arXiv:1907.03032

- α is defined as the ratio between baryons inside the acceptance and baryons in full phase space α = ⟨N_B⟩ / ⟨N^A_Bπ⟩.
- Red line shows effect of global baryon number conservation.
- Focus only on the global baryon number conservation behaviour.

- A fast decrease in the A C₂ / C₁ might indicate the effect in the reduction of the **rapidity range** as a function of \sqrt{S_{NN}}.
- This behaviour shows the effect of global baryon conservation for increasing Δy.
- Comparison between C_2/C_1 for $\sqrt{s_{NN}} = 200$ GeV and $\sqrt{s_{NN}} = 3$ GeV would clarify the effect of the decrease in rapidity range and baryon number conservation.

Figure 17: Rapidity-dependence of *C*₂ with respect to the NBD expectation. (Phys. Rev. C 102, 024903 (2020))

Summary and Future Plans

- A reconstruction at $\sqrt{s_{NN}} = 3.0$ GeV provides a clear signal with high purity.
- Despite the high purity in the Λ reconstruction, the multiplicity is low compared with higher energies.
- High order cumulants as a function of centrality are difficult to obtain due to low multiplicity.
- Values of cumulants up to C_2 was measured up to $\Delta y = 1.2$.

In order to continue with a quantitative analysis of the behaviour of the cumulant ratios as a function of Δy , we plan to:

- Include efficiency corrections to the calculation of C_i.
- Using particle generator models to calculate $N_B^{4\pi}$.
- Calculate $\alpha = \langle N_{\Lambda} \rangle / \langle N_B^{4\pi} \rangle$.

In the long term, we plan to use data from $\sqrt{s_{NN}} = 3 - 27$ GeV to map out the rapidity and centrality dependence of Λ cumulant ratios in BES-II.

