

Measurements of Λ - Λ and Ξ - Ξ Correlation in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ at RHIC-STAR

Physics Motivation

- Hyperon-Hyperon (Y-Y) interactions are important for study of exotic hadronic states such as H-dibaryon as well as to understand the Equation of State of neutron stars.
 - Possible bound state of Y-N and Y-Y (S=-2) ?
- > Various hadrons including hyperons are abundantly produced in HIC.

> In this study, Λ-Λ and Ξ-Ξ correlations are studied at Au+Au $\sqrt{s_{NN}}$ = 200 GeV.

[1]STAR PRL.114.022301

What's femtoscopy?

<u>Theory</u>

$$\mathsf{C}(Q_{inv})=\int s(r)|\psi(Q_{inv},r)|^2dr^3$$

r: relative distance (of pair)

q: relative momentum $Q_{inv} = \sqrt{q_x^2 + q_y^2 + q_z^2 - E_0^2}$ B: b

s(r) source function $\psi(q,r)$: wave function of two-particles JPS Autumn 2021 Moe Isshiki

- Technique based on Bose-Einstein/Fermi-Dirac correlation has been used in heavy-ion collisions to probe the spatial and temporal extent of particle emitting source.
- Femtoscopic correlations arise due to quantum statistical effects and final state (strong and Coulomb) interaction (if present) at low relative momentum of two particles[1].

Experiment

$$C(Q_{inv}) = \frac{A(Q_{inv})}{B(Q_{inv})}$$

A: actual pairs from same eventsB: background pairs from mixed events

[1] M. Lisa et al., Ann.Rev.Nucl.Part.Sci.55(2005)357

STAR detectors

 $|\eta| < 1.0 \ 0 < \phi < 2\pi$

2021/09/16

TOF (Time Of Flight) Time of flight measurement of charged particles, $|\eta| < 0.9$ Data Set **AH** Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ Λ-Λ and Ξ-Ξ Run year 2011, 2014, 2016 Total 2.8 billion events **VPD** (Vertex Position Detector) Measure the start time, providing the minimum-bias trigger in Au+Au **TPC (Time Projection Chamber)** collisions. Measure the dE/dx

Reconstruction of Λ and Ξ

	Decay channel	Mass (from PDG 2018)
$rac{\Lambda}{\overline{\Lambda}}$ (uds)	$\begin{array}{l} \Lambda =>\pi^{-}+p\\ \overline{\Lambda} =>\pi^{+}+\overline{p}\\ (63.9\%)\end{array}$	1.115683 (GeV/c ²)
Ξ (<i>dss</i>) Ξ	$\begin{split} \Xi & -> \Lambda + \pi^+ \\ \overline{\Xi} & -> \overline{\Lambda} + \pi^- \\ (99.87\%) \end{split}$	1.32171 (GeV/c²)

Invariant mass

KFParticle package was used. KFParticle is based on Kalman filter. [1] Kisel (CBM Collaboration), J. Phys. Conf. Ser.1070, 012015 (2018).

 \blacktriangleright Very good Purity for Λ (~88%) and Ξ (~90%).

Daughter particle selection for Λ and Ξ

Purity Correction

Correlation function is corrected for pair purity as follows,

$$C_{true}(q) = \frac{C_{measured}(q) - 1}{P(q)} + 1$$

Residual correlation from background pairs is also studied as follows,

$$C_{res.true}(q) = \frac{1}{P_{SGSG}(q)} \{ (C_{measured}(q) - 1) - 2 * (P_{SGBG}(q)) (C_{SGBG}(q) - 1) - P_{BGBG}(q) * (C_{BGBG}(q) - 1) \} + 1$$

 $C_{measured}(q)$:measured correlation functon

$$q = Q_{inv} = \sqrt{q_x^2 + q_y^2 + q_z^2 - E_0^2}$$

 $P_{SGBG}(q)$: pair fraction of signal-background pairs $P_{BGBG}(q)$: pair fraction of background-background pairs

➤ the residual correlation was almost <u>negligible</u> on C(q).

Coulomb interaction

 Ξ - Ξ and $\overline{\Xi}$ - $\overline{\Xi}$ correaltions include the Coulomb effect.

- The source is generated according to a Gaussian distribution and the Coulomb interaction is calculated based on Coulomb wave function.
- It was found that the strength of Coulomb force does not greatly depend on the source size R_{inv} .
- The test for changing particle mass is shown in Fig. 2. The Coulomb strength is stronger in higher mass.

Fig. 1

c(a)

1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3^L

0.1

Fig. 2

0.8

0.7

0.9

Qinv(GeV/c)

$\Delta \phi vs \Delta \eta$ correlation function Λ - Λ

JPS Autumn 2021 Moe Isshiki

Λ - Λ correlation function

- New result with high statistics data ~4 times larger than that in previous study.
 - Not corrected for feed-down.

> Anti-correlation of Λ - Λ is observed in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.

- New result with better precision is consistent with previous result within systematic uncertainty.

- There is a long tail of residual correlation in high Q_{inv} .

- \blacktriangleright First measurement of Ξ - Ξ correlation in Au+Au collisions.
- Lattice QCD/chiral EFT calculations indicate an attractive interaction, but not strong enough to form a bound state [1,2].
- > The result shows anti-correlation at $Q_{inv} < 0.25$ GeV/c.
 - qualitatively matched with coulomb strength accidentally.
 - to cancel quantum statistics (negative correlation), strong interaction needs to be positive correlation.
- Feed-down needs to be evaluated and Lednicky- Lyuboshitz fit will be performed for further discussion.
- More events will be taken in 2023 and 2025.

[1] J. Haidenbauer et al., Eur. Phys. J. A 51: 17 (2015)
[2] T.Doi et al., EPJ Web Conf. 175 (2018) 05009

Summary

> We presented the first measurements of Ξ - Ξ correlations in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and also revisited Λ - Λ correlations with high statistics data.

$ightarrow \Lambda$ - Λ correlation function

- New result with high statistics data is consistent with previous result.
- Anti-correlation is observed.

$ightarrow \Xi$ - Ξ correlation function

- Anti-correlation seems to be observed for the first time, which is accidentally matched with Coulomb interaction. Likely that quantum statistics and strong interaction are canceled.

<u>Outlook</u>

> Feed-down and possible residual correlation are being studied.

Extraction of the scattering parameters with Lednicky- Lyuboshitz model is ongoing (scattering length, effective range).

Back up

Analysis

- $A(\vec{q}, \vec{k})$ ------ distribution of pairs (same events)
- $B(\vec{q}, \vec{k})$ ------ distribution of Back ground pairs (mix events)
- $\vec{q} = \vec{p_1} \vec{p_2}$ -- Relative momentum of 2 particles
- $\vec{k} = \frac{(\vec{p_1} + \vec{p_2})}{2}$ The average values of 2 particles momentums

correlation function $C(\vec{q}, \vec{k}) = \frac{A(\vec{q}, k)}{B(\vec{q}, \vec{k})}$

Event mixing method

mixed the events which close to Zvertex and centrality

- Real Event includes the physics correlation between 2 particles.
- Event mixing is used to make uncorrelated pairs as background.

Event Mixing method

Pair inefficiency and daughter sharing removal

Pair inefficient region was removed considering B-field, particle charge, and p_T . 2021/09/16

JPS Autumn 2021 Moe Isshiki

particles

Particles sharing their daughters with others are removed to avoid auto-correlation.

Possible sharing pairs

By daughter	By grand daughter
particles	particles
(2,6)	(2,8) (4,8) (4,6),(3,7) (3,8),(4,7)

Fitting method: ROOT default fitting(minimization)

2021/09/16

Λ - Λ correlation function

- New result with high statistics data ~4 times larger than previous study.
 - Not corrected for feed-down.
- > Anti-correlation is observed in Λ - Λ .

- New result with better precision is consistent with previous result within systematic uncertainty.

- There seems to be residual correlation in high Q_{inv} .