\blacksquare Measurement of D 0 Meson Tagged Jets in Au+Au Collisions $\frac{1}{2}$ at $\sqrt{s_{NN}}$ = 200 GeV

³ *Ondřej* Lomický¹ for the STAR Collaboration

¹ Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic

¹⁵ **1 Introduction**

¹⁶ The Quark-Gluon Plasma (QGP) produced in heavy-ion collisions can be studied using hard 17 probes, such as c- and b-quarks created at the initial collision stage before the QGP is formed. ¹⁸ The heavy quarks lose energy via the radiation of gluons and scattering with other partons ¹⁹ present in the QGP. The radiation creates a cone-shaped spray of particles generally called a ²⁰ jet. The presence of the medium broadens the parton shower compared to $p+p$ collisions or ²¹ peripheral heavy-ion collisions where the creation of the QGP is not expected.

²² The interaction of quarks with the medium is mass-dependent. This is due to a phe-²³ nomenon known as the dead-cone effect, predicted by the theory of quantum chromodynam-²⁴ ics (QCD) and later observed by ALICE collaboration [\[1\]](#page-3-0). The dead-cone effect suppresses ²⁵ the emission of gluons within a cone of angular size m_q/E_q where m_q and E_q are mass and
²⁶ energy of a given quark, respectively. energy of a given quark, respectively.

27 The broadening of the jets in the medium in Pb+Pb collision to $p+p$ collisions was ob-²⁸ served at the LHC. The centrality-dependent modification of the jet shape nuclear modifi-²⁹ cation factor as a function of radial distance from the jet axis reveals the different shower ³⁰ evolution in the presence of the QGP [\[2\]](#page-3-1). The other observable characterizing the jet substructure are the so-called generalized jet angularities $\lambda_{\alpha}^{\kappa}$ where the different choices of κ and α parameters tupe the sensitivity of the observable to various jet aspects. These modifications 31 α as a parameters tune the sensitivity of the observable to various jet aspects. These modifications of the iet shape contain information on the mechanism of the energy loss in the medium. ³³ of the jet shape contain information on the mechanism of the energy loss in the medium.

³⁴ The study of D^0 and \overline{D}^0 meson tagged jets, consisting of the related c- and u-quarks in ³⁵ heavy-ion collisions opens a pathway to investigate the aforementioned modifications for the ³⁶ charm quark in the presence of a hot and dense medium.

³⁷ **2 Analysis details**

38 The D⁰ and \overline{D}^0 meson candidates were reconstructed from Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV in central (0-10%), midcentral (10-40%), and peripheral (40-80%) colli-⁴⁰ sions, collected by the STAR experiment at Relativistic Heavy Ion Collider (RHIC) in 2014. ⁴¹ The D⁰ meson candidates with transverse momentum $1 < p_T < 10$ GeV/c are reconstructed
⁴¹ via decay channel D⁰ $\rightarrow K^- + \pi^+$ with branching ratio (3.947 + 0.030) % [3]. The daughter ⁴² via decay channel D⁰ → K⁻ + π⁺ with branching ratio (3.947 ± 0.030) % [\[3\]](#page-3-2). The daughter
tracked and identified using Time Projection Chamber (TPC). Heavy-Flavor ⁴³ particles were tracked and identified using Time Projection Chamber (TPC), Heavy-Flavor ⁴⁴ Tracker (HFT), and Time-of-Flight (TOF) detectors. The combinatorial D^0 background con-⁴⁵ tribution is subtracted using a technique called *^s*P*lot* [\[4\]](#page-3-3), which is part of the native class in 46 RooStats. The inclusive D^0 meson tagged jets are reconstructed with C++ software pack-47 age FastJet [\[5\]](#page-3-4) employing anti- k_T algorithm with radius $R = 0.4$ within pseudorapidity range
48 lnl < 1 – R. The neutral particle contribution was measured by the Barrel Electro-Magnetic ⁴⁸ |η| < 1 − *R*. The neutral particle contribution was measured by the Barrel Electro-Magnetic
Calorimeter (BEMC). The relatively soft background contribution and detector resolution ⁴⁹ Calorimeter (BEMC). The relatively soft background contribution and detector resolution ₅₀ effects are treated using the event-by-event background subtraction and Bayesian unfolding.

⁵¹ **3 Nuclear modification factor**

The nuclear modification factor for central (C) and peripheral (P) collisions as a function of jet transverse momentum $p_{\text{T},\text{Jet}}$ is expressed as

$$
R_{\rm CP}(p_{\rm T,Jet}) = \frac{\langle N_{\rm coll}\rangle_{\rm P}}{\langle N_{\rm coll}\rangle_{\rm C}} \frac{N_{\rm P}^{\rm events}}{N_{\rm C}^{\rm events}} \frac{\mathrm{d}^2 N_{\rm C}/(\mathrm{d}p_{\rm T,Jet}\mathrm{d}y)}{\mathrm{d}^2 N_{\rm P}/(\mathrm{d}p_{\rm T,Jet}\mathrm{d}y)},\tag{1}
$$

 μ_{sol} where $\langle N_{\text{coll}} \rangle$ and N^{events} are the corresponding number of nucleon-nucleon binary collisions and number of events, respectively.

The *z*_{Jet} observable is related to the fragmentation function in the DGLAP equation [\[6\]](#page-3-5) and is defined as

$$
z_{\text{Jet}} = \frac{\vec{p}_{\text{T, Jet}} \cdot \vec{p}_{\text{T, D}^0}}{|\vec{p}_{\text{T, Jet}}|^2},\tag{2}
$$

⁵⁴ where $p_{T, jet}$ and p_{T, D^0} are transverse momenta of the jet and D^0 meson, respectively. The 55 nuclear modification factors R_{CP} as a function of $p_{T,\text{let}}$ and z_{jet} for central and midcentral ⁵⁶ collision to the peripheral collision are presented in Fig. [1.](#page-2-0) The results of $R_{\text{CP}}(p_{\text{T,jet}})$ show a 57 hint of suppression of D⁰-jets transverse momenta in central events. For midcentral collisions, ⁵⁸ the ratio is consistent with unity, which represents no significant impact of the QGP relatively 59 to peripheral collisions. The second nuclear modification factor $R_{\text{CP}}(z_{\text{Jet}})$ shows a hint of D^0 -⁶⁰ jet suppression in central collisions, primarily from hard fragmented jets (high *z*Jet). The ratios ⁶¹ for the soft fragmented jets show no significant modification across both centrality ranges.

The charm quark diffusion can be studied by the radial distribution measurement of the $D⁰$ meson inside the jet defined as

$$
\Delta r = \sqrt{(\eta_{\text{Jet}} - \eta_{\text{D}^0})^2 + (\phi_{\text{Jet}} - \phi_{\text{D}^0})^2},\tag{3}
$$

 62 where *η* and *φ* are the pseudorapidity and azimuthal angle, respectively. The measured ratios of $Δr$ of different centralities are shown in Fig. 2 left. The measured ratios do not reveal any ⁶³ of ∆*r* of different centralities are shown in Fig. [2](#page-3-6) left. The measured ratios do not reveal any 64 significant modification of them at the top RHIC energy of 200 GeV.

⁶⁵ The model predictions in Fig. [1](#page-2-0) and [2](#page-3-6) left represented by magenta areas are provided by the LIDO model which is a hybrid transport model for the evolution of heavy quarks in a QGP medium [\[7\]](#page-3-7). The model slightly underpredicts the yield in central collisions but it is consistent with the yield in peripheral events. This results in the underprediction of R_{CP} as a function of *p*T,Jet and *z*Jet ⁶⁹ . Regarding the ∆*r* ratios, LIDO qualitatively well explains the radial profile trends in both central and peripheral collisions.

Figure 1. The nuclear modification factor R_{CP} for central (0-10 %) and midcentral (10-40%) collisions relative to peripheral (40-80%) collisions as a function of jet transverse momentum $p_{T,\text{Jet}}$ (left) and fragmentation function z_{Jet} (right) for D⁰ meson tagged jets in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 200 GeV. The magenta areas represent the LIDO model prediction [\[7\]](#page-3-7).

⁷¹ **4 Generalized angularities**

One of the jet substructure observables that can discriminate between quark- and gluoninitiated jets or mass of the initiated parton are generalized angularities that depend on an angular exponent α and an energy weighting factor κ , defined as

$$
\lambda_{\alpha}^{\kappa} = \sum_{i \in \text{Jet}} \left(\frac{p_{\text{T},i}}{p_{\text{T},\text{jet}}} \right)^{\kappa} \left(\frac{\Delta R_i}{R_{\text{Jet}}} \right)^{\alpha},\tag{4}
$$

 γ ² where $p_{\text{T, Jet}}$ and R_{Jet} are transverse momentum and jet radius, and $p_{\text{T},i}$ and ΔR_i are transverse ⁷³ momentum and radial distance from the jet axis of the *i*-th track-based jet constituent (charged τ ⁴ particles + D^0 meson), respectively. These observables are infrared and collinear safe only ⁷⁵ for sets where $κ = 1$ and $α > 0$ [\[8\]](#page-3-8). In such cases, their distributions for $p + p$ collisions can be calculated using perturbative OCD. For $κ = 1$ lower values of $α$ parameter $(0 < α < 1)$ ⁷⁶ be calculated using perturbative QCD. For $\kappa = 1$, lower values of α parameter $(0 < \alpha < 1)$
⁷⁷ increase sensitivity to mass effects by emphasizing the influence of the dead-cone effect i.e. increase sensitivity to mass effects by emphasizing the influence of the dead-cone effect, i.e. ⁷⁸ contribution of jet constituent particles close to the jet axis. Conversely, higher values of α
⁷⁹ ($\alpha > 1$) suppresses the mass effects and increases the sensitivity to Casimir color effects. α (α > 1) suppresses the mass effects and increases the sensitivity to Casimir color effects.
In general, several generalized angularities have specific names due to their significa

⁸⁰ In general, several generalized angularities have specific names due to their significance, ⁸¹ such as $\lambda_{0.5}^1$ (Les Houches Angularity), which is sensitive to flavor discrimination, λ_1^1 (girth α or width), which describes jet constituent broadening, and λ_1^1 (mass or thrust), which relates α or width), which describes in guidarity), which is sensitive to have discrimination, α_1 (given
or width), which describes jet constituent broadening, and λ_2^1 (mass or thrust), which relates
to the mass-squa 83 to the mass-squared at fixed jet energy [\[8\]](#page-3-8). The raw data results after background subtraction for the λ_1^1 and λ_3^1 in central collisions are shown in Fig. [2](#page-3-6) right. The unphysical results, i.e.,
 $\lambda_{\alpha\geq 1}^1 \notin \langle 0;1\rangle$, are caused by the jet background fluctuations and detector resolution. To obtain

th $\frac{1}{2}$ to $\frac{1}{2}$ (e, e, e, e, and contact e e) and get catalogic and account the anti-dimensional unfolding is required, and work on this is ⁸⁷ currently ongoing.

Figure 2. The ratios of the radial profiles of *D* ⁰ mesons ∆*r* for central (0-10%) and midcentral (10-40%) collisions relative to peripheral (40-80%) collisions (left), and the raw distributions of the generalized angularities λ_1^1 and λ_3^1 for central collisions (right) for D⁰ meson tagged jets in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The magenta area represents the LIDO model prediction [\[7\]](#page-3-7).

⁸⁸ **5 Summary**

⁸⁹ We presented results of nuclear modification factors $R_{\text{CP}}(p_{\text{T,Jet}})$ and $R_{\text{CP}}(z_{\text{Jet}})$ of D^0 meson tagged jets in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. We observe suppression of D⁰-jet ⁹¹ transverse momenta in central collisions and hard fragmented jets in central and midcentral ⁹² collisions. Next, we showed the ratios of the radial profiles of D^0 mesons, which, within where the results were vertext, we showed the ratios of the radial profiles of D mesons, which, whill uncertainties, are consistent with unity at $\sqrt{s_{NN}}$ = 200 GeV. All three results were compared ⁹⁴ with the LIDO model. Overall, this model accurately predicts the trends of p_T , *z*_{Jet}, and ∆*r* 95 distributions, although it underpredicts the yield in the central collisions.

 \mathbb{R}^6 The future work will focus on calculation of D^0 -jet angularity modification in central heavy-ion collisions in the form of $R_{CP}(\lambda_{\alpha}^{k})$, to reveal the jet substructure modification in the presence of the OGP medium. In order to draw physical conclusions, unfolding D^{0} meson 98 presence of the QGP medium. In order to draw physical conclusions, unfolding, D^0 meson ⁹⁹ reconstruction efficiency, and other factors need to be included. This measurement may help ¹⁰⁰ to constrain several model predictions focused on the energy loss of partons in the QGP. 101

¹⁰² Acknowledgement: This work was supported by a grant from The Czech Science ¹⁰³ Foundation, grant number: 23-07499S.

¹⁰⁴ **References**

- ¹⁰⁵ [1] ALICE Collaboration, Nature 605, 440–446 (2022).
- ¹⁰⁶ [2] CMS Collaboration, Phys. Lett. B 730, 243-263, (2014).
- ¹⁰⁷ [3] R. L. Workman et al. (PDG), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
- ¹⁰⁸ [4] M. Pivk, F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res. A 555, 356-369 (2005).
- ¹⁰⁹ [5] M. Cacciari, G. P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012).
- ¹¹⁰ [6] G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298–318 (1977).
- ¹¹¹ [7] W. Ke, Y. Xu, S. A. Bass, Phys. Rev. C 98, 064901 (2018).
- ¹¹² [8] A. J. Larkoski, J. Thaler, W. J. Waalewijn, High Energ. Phys. 2014, 129 (2014).