Medium Effects on Hadrons and Jets in $\sqrt{s_{NN}}=200$ GeV Isobar Collisions at STAR

Tristan Protzman

For The STAR Collaboration

This material is based upon work supported the NSF under Grant #1945296

Jet Modification in Heavy-Ion Collisions

- Jet formation and fragmentation in pp is well understood
 - Use as probe of Quark-Gluon Plasma
- Jet formation time is early in the collision
 - Experience full evolution of medium
- High momentum objects passing through a QGP lose energy through collisional and radiative processes
- Understanding the contribution of each process can help distinguish between models

• $E_{\rm loss} \propto L$

- Radiative Processes
 - $E_{\rm loss} \propto L^2$

High p_T Hadron Modification in Heavy-Ion Collisions

$$R_{\rm AA} = \frac{1}{N_{\rm ev}^{\rm AA}} \frac{d^2 N^{\rm AA}/d\eta dp_{\rm T}}{T_{\rm AA} d^2 \sigma^{\rm NN}/d\eta dp_{\rm T}}$$

$$T_{\rm AA} = \langle N_{\rm coll} \rangle / \sigma_{\rm inel}^{\rm NN}$$

- STAR recorded Ru+Ru and Zr+Zr collisions in 2018, a medium-sized system
 - Ru/Zr: A=96
 - Au: A=197
- Central collisions show significant hadron suppression at high momentum
- Strong centrality dependence hints at path-length dependent effects
- We can use the collision geometry to select the path length to better understand the dependence

See poster by Isaac Mooney for more details!

Constraining the Path Length

- Semi-central collisions produce an approximately elliptical QGP
- Jets which travel in-plane will experience a shorter path length through the medium than those which travel out-of-plane
- Thus, the expected in-plane yield should be greater than the out-of-plane yield
- The anisotropy is reported with the second order Fourier coefficient, v_2
 - Though the language is the same, high $p_{\rm T}$ v_2 (quenching) is driven by different effects than low $p_{\rm T}$ v_2 (flow)

The STAR Detector

- Event Plane Detector upgrade at STAR allows for determination of the event plane at large rapidity
 - Installed in 2018
 - Scintillating hit detector
 - 16 η divisions, 24 ϕ divisions
- Rapidity gap between jet finding and event plane determination avoids autocorrelation
 - Event plane measured in $2.1 < |\eta| < 5.1$
- Charged jets measured in Time Projection Chamber
 - $|\eta| < 1$, full azimuthal coverage
- Analyze electromagnetic calorimeter triggered events
 - $|\eta| < 1$, full azimuthal coverage, $E_{\mathrm{T}} > 3.4$ GeV

Event Plane Detectors

Time Projection Chamber

High $p_{ m T}$ Charged Particle v_2

- High transverse momentum charged particle v_2 is non-zero
- No strong transverse momentum dependence of v_2 at high p_{T}
- Systematic uncertainty dominated by tracking

From Hadrons to Jets

- Measuring high $p_{\rm T}$ charged hadron v_2 allows the same observable to study flow and quenching effects
- But, hard partons may fragment and emit softer radiation
- Clustering into jets reduces measurement sensitivity to fragmentation and hadronization
- Jet v_2 was measured for anti- $k_{\rm T}$ jets with resolutions (R) of 0.2, 0.4, and 0.6
- The effects of the background needs to be carefully considered
 - Combinatorial jets
 - Modulated underlying event

Combinatorial Jets

- Hotspots in the underlying event can be clustered into combinatorial jets
- This combined with an underlying flow driven v_2 can enhance the observed jet v_2 if not properly corrected
- Demonstrated with toy model with purely thermal background – no hard processes!
- Need to select jets from hard partonic scattering

Enhanced Jet v_2 in Toy Model

Thermal background only – No jet proxy!

Phys. Rev. Lett. 119, 062301 (2017) Phys. Rev. C 105, 044906 (2022)

Rejecting Combinatorial Jets

- Tracks with $p_{\rm T}>2$ GeV/c are selected and clustered with anti- $k_{\rm T}$ algorithm into hard core jets
 - Idea: Cluster only tracks from hard scattering
- Hard core jets with $p_T>10$ GeV/c are geometrically matched to jets with constituent $p_T>0.2$ GeV/c if $\sqrt{(\Delta\eta)^2+(\Delta\phi)^2}< R$
- Only jets matched with a hard core jet are analyzed
- Jet energy scale corrected by area-based subtraction
 - $p_{\rm T}(\phi) = p_{\rm T}^{\rm measured} \rho(\phi)A$
 - ρ modulated with assumed underlying event flow of 4% (varied as source of uncertainty)

Hard Core Jets

Geometrical Matching

All Jets

R: Jet resolution parameter

 ρ : Average transverse momentum density

A: Jet area

Jet v_2 in the Isobar Collisions

$$\frac{dN}{d\Delta\phi} \propto 1 + 2 v_2 \cos(2(\phi - \Psi_2))$$

- Non-zero jet v_2 is observed for R=0.2 hard core matched jets in isobar collisions
- Like inclusive charged particle v_2 , no strong p_T dependence
- No $p_{
 m T}$ correction applied

Jet v_2 in the Isobar Collisions

$$\frac{dN}{d\Delta\phi} \propto 1 + 2 v_2 \cos(2(\phi - \Psi_2))$$

- Non-zero jet v_2 is observed for R=0.2 and R=0.4 hard core matched jets in isobar collisions
- Like inclusive charged particle v_2 , no strong p_T dependence
- No $p_{
 m T}$ correction applied

Jet v_2 in the Isobar Collisions

 $\frac{dN}{d\Delta\phi} \propto 1 + 2 v_2 \cos(2(\phi - \Psi_2))$

- Non-zero jet v_2 is observed for R=0.2, R=0.4, and R=0.6 hard core matched jets in isobar collisions
- Like inclusive charged particle v_2 , no strong p_T dependence
- No $p_{
 m T}$ correction applied

No obvious R dependence!

R Dependence of Jet v_2

- Under naı̈ve expectation that larger cones capture more radiated energy, we might expect jet v_2 to decrease with increasing R
- To remove correlations in the statistical uncertainties, the dataset was divided in half such that jets of different radii were measured using statistically independent samples.
- No evidence for R dependence of jet v_2 for hard core selected jets
- Hard core selection imposes a fragmentation bias and influences where in the collisional geometry jets are found

Comparison to Larger Systems

- Jet v_2 consistent in overlapping $p_{\rm T}$ region between $\sqrt{s_{NN}}=200$ GeV Ru+Ru & Zr+Zr (A=96) and $\sqrt{s_{NN}}=2.76$ TeV Pb+Pb (A=208) collisions
- Different energy, system size, and charged particle $R_{\rm AA}$

Why might jet v_2 similar at RHIC and LHC?

- v_2 driven by relative, not absolute suppression
- Different quark/gluon ratios at RHIC/LHC
- Probing different depths into the medium?
- Are we seeing a geometry, fragmentation, or survivorship bias?
- Do the different spectral shapes come into play?

System Size Dependence

- Measuring jet v_2 at different system sizes and collision energies can disentangle competing effects
- In the limiting case of jet quenching picture, if $R_{AA} \to 1$ a path-length dependent v_2 should go to 0
- But, non-zero v_2 in pA has been observed! (not jet quenching!)

Phys.Lett. B 753 (2016) 511-525

System Size Dependence

- Measuring jet v_2 at different system sizes and collision energies can disentangle competing effects
- In the limiting case of jet quenching picture, if $R_{AA} \rightarrow 1$ a path-length dependent v_2 should go to 0
- But, non-zero v_2 in pA has been observed! (not jet quenching!)
- O+O collisions offer an opportunity to explore jet v_2 in smaller, less dense systems
 - RHIC 2021, Planned at LHC Comparison of same small system at different energies!
- Upcoming Au+Au data will offer high precision at top RHIC energy

Conclusions

- The centrality dependence of high p_{T} R_{AA} hints at path-length dependent quenching
- The path length can be controlled using event geometry information
 - Centrality class, event plane angle
- In semi-central isobar collisions, a non-zero v_2 is observed for high p_{T} objects
 - Measured for inclusive charged particles,
 R=0.2, R=0.4, and R=0.6 anti-k_T jets
- Jet v_2 exhibits no strong jet resolution parameter dependence for hard core selected jets
- Various biases, e.g. geometry, fragmentation, etc. need to be understood for proper interpretation of jet v_2
 - Need input from theory on which biases are significant! Lots of data coming soon

Backup

Combinatorial Jets

- High $p_{\rm T}$ tracks are added to the thermal background with and without a v_2 .
- Analyzing only hard core matched jets, the correct v_2 is recovered
- This methodology allows the true jet v_2 to be determined and is not affected by the modulated underlying event

Corrected Jet v_2 In Toy Model

Thermal background with high p_T tracks inserted

Comparison with Smaller Systems

- In pA systems, the measured high- $p_{\rm T}$ $R_{\rm pA}$ is consistent with unity, suggesting no nuclear suppression
- However, a non-zero jet v_2 is observed
- STAR can help fill in the gap with small system data
- Oxygen-Oxygen (A=16) collisions recorded at STAR in run 21
- Measurements of $R_{\rm AA}$ and jet v_2 and help fill gap in system size

Eur. Phys. J. C 80 (2020) 73

Further Constraining the Path Length

- Within a given centrality class, many different event shapes exist
- To better constrain the path length we want to select on the eccentricity ϵ_2
- Use q_2 as a proxy for ϵ_2 , found in the Event Plane Detector to avoid autocorrelation

Event Shape vs Centrality

- High statistics in isobar data set will allow fine selection on event shape
- Measuring jet v_2 for different q_2 classes controls the in-plane to out-of-plane path length
- Event plane detectors are located symmetrically on both sides of interaction point
 - Allows independent determination of event plane and event shape

