Measurements of Jet Anisotropy in Isobar Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Tristan Protzman (For the STAR Collaboration)

Lehigh University

Hot Quarks, Estes Park, Colorado, October 11-17 2022

Office of Science

Tristan Protzman

Jet Anisotropy

- How can we study the properties of a strongly coupled QGP?
- To study the medium, which exists in the nonperturbative, low Q² (momentum exchanged in the interaction) regime, it is helpful to have a probe with a short length scale
- As length scale is inversely proportional with exchanged momentum, such a probe can be described with perturbative QCD

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Jets in the Vacuum

- Hard partonic scatterings produce jets
- The cross section of hard scattered partons is perturbatively calculable
- The hard parton fragments in a way well described by Dokshitzer-Griboc-Lipatov-Altarelli-Parisi (DGLAP) type equations
- A jet finding algorithm clusters final state particles such that
 - The jet does not depend on the details of fragmentation or hadronization
 - We have a direct connection between jet and parton kinematics
- There is good agreement between theory and experiment for jet cross section over a wide range of kinematics in p+p collisions

Tristan Protzman

• Jets are produced early in heavy-ion collisions

- $\, \bullet \,$ Formation time $\propto 1/{\it Q}^2,$ so before QGP formation
- Jets traverse the QGP and interact with it
 - Jet quenching
 - Partons lose energy via both collisional and radiative processes
 - Collisional and radiative processes may have different path-length dependence
- We are interested in understanding the path-length dependence of jet quenching
- The path-length dependence could help to distinguish between different models of jet-medium interactions

Collisional energy loss

Radiative energy loss

Understanding the Underlying Event

- Jets are far from the only process in heavy-ion collisions
- Soft processes produce a fluctuating background
 - Estimated by calculating the average momentum per unit area, ρ
 - Two leading jets, found by the k_T algorithm, are excluded
- Background assumed to be product of ρ and the jet area A.
 - $p_T = p_T^{\text{measured}} \rho * A$
- Combinatorial jets are made of particles solely from the soft background

Charged particle momentum distribution in Ru+Ru collision

- A jet finder can not distinguish between real and combinatorial jets
- How can we identify "real" jets?

• Combinatorial jets are made of soft particles, so we attempt to select jets with hard fragments

Hard Core Matching

- Find jets with constituents $p_T > 2 \text{ GeV/c}$
 - Hard cores
- Match hard core with $p_T > 10~{\rm GeV/c}$ to highest p_T jet within the jet resolution in $\eta \phi$
- Used in other STAR analyses
 - Phys. Rev. Lett. 119, 062301 (2017)
 - Phys. Rev. C 105, 044906 (2022)

Leading Track p_T Cut

- Require jets to include a constituent with $p_T > 3 \text{ GeV/c}$
- Used in ALICE $v_2^{ch jet}$ measurement • Phys. Lett B 753 (2016) 511

- This analysis uses hard core matching
- Geometrically match hard cores to largest
 *p*_T jet within the jet resolution

$$dR = \sqrt{(\eta_{hc} - \eta_{jet})^2 + (\phi_{hc} - \phi_{jet})^2} < R_{resolution}$$

- Soft processes do not produce high p_T particles
- May bias jet selection towards surface

Dijet Imbalance

- Jet modification can be studied through dijet pairs
- 2-jet events with back-to-back jets

Au+Au, STAR Phys. Rev. Lett. 119, 062301 (2017)

$$A_j = rac{p_T^1 - p_T^2}{p_T^1 + p_T^2}$$

- A_j quantifies their difference in transverse momentum
- Difference in p+p and Au+Au shows that jets are modified in the QGP
- We see the difference in A_J between p+p and Au+Au still exists in the matched jets for R=0.2
 - The lost energy is not recovered for R=0.2 hard core matched jets

Casalderrey-Solana, Milhano, Wiedemann, Phys. G: Nucl. Part. Phys. 38 124086

Tristan Protzman

Jet Anisotropy

• Dijet imbalance is an ambiguous measurement

- Each jet loses energy to the medium
- We do not know how much of the QGP each jet interacted with
- Can we learn more by utilizing the initial collision geometry?
 - Heavy-ion collisions produce a QGP with an eccentricity related to the impact parameter
 - The minor axis of the eccentricity lies within the participant plane

- A heavy-ion collision can be characterized by its
 - Impact parameter, \vec{b}
 - Reaction plane, Ψ_{RP}
- Cannot measure these directly
 - $\vec{b} \rightarrow$ centrallity
 - $\Psi_{RP} \rightarrow \Psi_{EP}$

Path Length Dependent Energy Loss

- In semi-central events, the QGP has a significant eccentricity
- A jet interacts with less medium in-plane than out-of-plane
- Since jet production has no preferred orientation, differences in yields with respect to the event plane are expected as a result of path-length dependent energy loss
- Quantified with Fourier decomposition
 - $\frac{dN}{d\Delta\phi}\propto 1+2v_2^{jet}\cos(2(\Psi_2-\phi_{jet}))$
- High *p*_T *v*₂ is not a result of the pressure gradient like flow

LHC Results

• Jet v_2 has previously been measured at the LHC

- RHIC produces a cooler QGP than the LHC
- STAR can measure jets at lower p_T
 - ${\scriptstyle \bullet}\,$ Down to 10GeV/c
- STAR recorded $\sqrt{s_{NN}} = 200$ GeV Ru+Ru and Zr+Zr collisions
 - 4 billion good minimum bias events
 - Isobars with 96 nucleons
 - Zr: 40 protons, 56 neutrons
 - Ru: 44 protons, 52 neutrons
 - A smaller system than Au+Au (197 nucleons) or Pb+Pb (208 nucleons)

The STAR Detector

This analysis makes use of STAR's

- Time Projection Chamber
 - Reconstructs charged particle tracks
 - $0 < \phi < 2\pi$, $-1 < \eta < 1$
- Barrel Electromagnetic Calorimeter
 - 3.4 GeV E_T trigger
 - $0<\phi<2\pi$, $-1<\eta<1$
- Event Plane Detector
 - Measures charged particle multiplicity
 - Event plane reconstruction
 - $0 < \phi < 2\pi$, $2.1 < |\eta| < 5.1$

Measuring the Event Plane

- STAR was upgraded in 2018 with an Event Plane Detector
- Measures charged particle multiplicity in forward region
 - 2π in ϕ , $2.1 < |\eta| < 5.1$
- Event plane $\Psi_{n, EP}$ calculated using

$$\Psi_{n, \; EP} = rac{1}{n} an^{-1} \left(rac{\sum_i w_i \sin(n\Delta\phi)}{\sum_i w_i \cos(n\Delta\phi)}
ight)$$

- \bullet Event plane distribution is flattened to be isotroptic in ϕ
- Phi-weighting assumes same flux for each tile in a ring
- Psi-shifting determines event-by-event shift to get flat distribution

- A jet v₂ measurement was difficult at STAR before the EPD was installed
- Jets bias the determination of the event plane at mid-rapidity
 - Leads to overestimation of v_2
 - Phys.Rev.C 87 (2013) 3, 034909
- Pseudorapidity gap of 1.1 units decouples event plane finding and jet finding

- Studying anti- k_T jets with a resolution of 0.2
- Using hard core matched, charged only jets from high tower triggered data
- Requiring hard core constituents $p_T > 2 \text{ GeV/c}$
- Requiring hard core $p_{T \ iet}^{reco} > 10 \ {\rm GeV/c}$
- \bullet Modulating background ρ with charged particle \textit{v}_2

- Jet yield is measured for jets which are matched to a hard core
- Binned as a function of the angle between the jet axis and the event plane
- The yield is fit with a Fourier expansion to extract charged jet $v_2^{ch \, jet}$

$$rac{d^N}{d\Delta\phi d\eta} = A(1+2v^{ch\ jet}_{2\ obs}\cos(2\Delta\phi))$$

• The observed $v_{2 \ obs}^{ch \ jet}$ needs to be corrected for the event plane resolution, $\mathcal{R}(\Psi_{2,EP})$

$$v_2^{ch \, jet} = rac{v_2^{ch \, obs}}{\mathcal{R}(\Psi_{2, EP})}$$

Jet v_2^{ch}

- Evidence of a non-zero $v_2^{ch \, jet}$ in a medium sized system!
 - 3.5 σ from zero
- Systematic uncertainty from varying background modulation by $\pm 2\%$
- In general agreement with ALICE Pb+Pb $v_2^{ch \ jet}$
 - ALICE results unfolded

Jet v_2 in Smaller Systems

- ATLAS has measured non-zero v_2 in jet triggered p+Pb collisions
- Theory can be tweaked to match this, but then $R_{p\mathrm{Pb}} < 1$ is predicted and not observed
- So the jet-quenching model for v_2 in small systems is not complete. Studies in medium size systems will be useful

Conclusions

- Evidence for a non-zero $v_2^{ch jet}$ is observed in a medium sized system
- Finite v₂^{ch jet} and high p_T charged particle suppression are consistent with the naive expectation of path length dependent energy loss
 - Need full systematics before drawing strong conclusions
 - What (if any) role does the surface biasing from the hard core selection play?
 - What (if any) role does the fluctuating background play?
 - v_2 of high p_T particles in small systems indicates it can partially come from a different source
 - See Tong Liu's talk for high p_T charged hadron R_{AA} in isobar collisions

- Up next: exploration of hard process selection
 - Varying hard core constituent requirement change the surface bias
 - Try ALICE leading constituent high- p_T criteria
- $v_2^{ch jet}$ for larger jet resolution
 - Does capturing more of the jet's energy change the observed anisotropy?

Backup

Jet v_2^{ch}

Tristan Protzman

Hot Quarks 2022

23 / 25

Jet v_2^{ch}

24 / 25

Tristan Protzman

Jet Anisotropy

Charged Particle v_2 in Isobars

Tristan Protzman

Jet Anisotropy

25 / 25