QCD Chirality Workshop 2015

Search for the Chiral Magnetic Effect at STAR

Gang Wang (UCLA) for the STAR Collaboration

Outline

✤ Motivation

- STAR Experiment
- Chiral Magnetic Effect (CME)
- ✤ Summary
- Outlook

Big Bang & Micro-Bangs

What if the vacuum/domain we live in is not a true ground state?

- "false" vacua will topple into lower states
 - we may learn from the Micro-Bangs

QCD vacuum transition

D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003)

$$N_L^f - N_R^f = 2Q_W, \ Q_W \neq 0 \to \mu_A \neq 0$$

QCD vacuum transition
 ➔ nonzero topological charge
 ➔ chirality imbalance (local parity violation)

Chiral Magnetic Effect

Chiral Magnetic Effect (CME): finite chiral charge density induces an electric current along external magnetic field.

$$j_V = \frac{N_c e}{2\pi^2} \mu_A B \quad \Rightarrow \quad \text{electric charge separation along } B$$
 field

D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nuclear Physics A 803, 227 (2008)

Observable

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin\left(\phi^{\pm} - \Psi_{RP}\right)$$

charge separation effect beyond conventional physics background

S. Voloshin, PRC 70 (2004) 057901, Kharzeev, PLB633:260 (2006) Kharzeev, McLerran, Warringa, NPA803:227 (2008)

CME + Local Parity Violation

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin\left(\phi^{\pm} - \Psi_{RP}\right)$$

A direct measurement of the *P*-odd quantity "*a*" should yield *zero*.

y correlator

STAR experiment

Azimuthal anisotropy

10

γ at 200 GeV

Phys. Rev. Lett. 103 (2009) 251601; Phys. Rev. C 81 (2010) 54908 % Most central

- $\gamma_{os} > \gamma_{ss}$, consistent with CME expectation: both AuAu and CuCu
- Not explained by known event generators

1st-order EP

- Consistent between different years (2004 and 2007)
- Confirmed with 1st-order EP (from spectator neutron v₁)

HBT+Coulomb

200 GeV Au+Au: 40 - 60%

- Prominent correlations exist at small Δp_{T} and $\Delta \eta$
- Probably due to HBT+Coulomb

Modulated sign correlator (msc)

$$\mathrm{msc} \equiv \left(\frac{\pi}{4}\right)^{2} \left(\left\langle S_{\alpha} S_{\beta} \right\rangle_{\mathrm{IN}} - \left\langle S_{\alpha} S_{\beta} \right\rangle_{\mathrm{OUT}} \right)$$

• robust after removing HBT+Coulomb effects with kinematic cuts ($\Delta \eta$ and Δp_T)

• γ weights different azimuthal regions of charge separation differently

• Modify γ such that all azimuthal regions are weighted equally

• γ is reduced to modulated sign correlator (msc)

The charge separation signal is confirmed with msc
Phys. Rev. C 88 (2013) 64911 14

Charge-independent background (Amsc)

 $10^4 \times \Delta msc$

- $\mathbf{msc} = \Delta \mathbf{msc} + \Delta N \qquad \underbrace{\mathbf{x}}_{\mathbf{x}} \\ \Delta \mathbf{msc} = \frac{1}{N_{\mathrm{E}}} \sum_{\Delta Q} \langle N(\Delta Q) \rangle \left[\mathrm{msc}_{\mathrm{IN}}(\Delta Q) \mathrm{msc}_{\mathrm{OUT}}(\Delta Q) \right] \\ \Delta N = \frac{1}{N_{\mathrm{E}}} \sum_{\Delta Q} \langle \mathrm{msc}(\Delta Q) \rangle \left[N_{\mathrm{IN}}(\Delta Q) N_{\mathrm{OUT}}(\Delta Q) \right]$
 - msc was split to study background
 - $N_{IN}(\Delta Q)$ stands for the number of events with ΔQ units of in-plane charge separation, and $msc_{IN}(\Delta Q)$ stands for the <msc> in those events.
 - MEVSIM and $-v_2/N$ tell us that the CI bg is likely due to momentum conservation $+v_2$

K⁰_S-hadron correlation

• Correlations of K_{8}^{0} -h⁻ and K_{8}^{0} -h⁻ consistent with each other: no charge-dependent separation

Λ-hadron correlation

- Correlations between Λ and h^{\pm} also show no charge-dependent separation
- Separation observed for $h^{\pm}\text{-}h^{\pm}$ is sensitive to electric charge
- Strange quarks participate in the chiral dynamics in a similar way as u/d

Beam Energy Scan

ALICE, Phys. Rev. Lett. 110, 012301 (2013); STAR, Phys. Rev. Lett 113 (2014) 052302

At lower beam energies, charge separation starts to diminish.

Flow-related background

19

CME contribution

STAR, Phys. Rev. Lett 113 (2014) 052302

$$H^{\kappa} = (\kappa v_2 \delta - \gamma) / (1 + \kappa v_2)$$

A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

- $\kappa \approx 2 v_{2,F}/v_{2,\Omega}$: F and Ω denote the full phase space and the finite detector acceptance, respectively
- CME signal via *H* decreases to zero from 19.6 GeV to 7.7 GeV
- Probable domination of hadronic interactions over partonic ones
- Need better estimate of κ and better statistics

Summary

• three-point correlator γ shows charge separation w.r.t RP

- signal robust with different EPs (1st- and 2nd-order)
- robust when suppressing HBT+Coulomb
- robust with a reduced correlator, msc
- robust in Au+Au, Cu+Cu, Pb+Pb and U+U
- robust from 19.6 GeV to 2.76 TeV
- signal of charge separation seems to disappear when
 - one charged particle is replaced with a neutral strange particle
 - the collision energy is down to ~7.7 GeV
 - the magnetic field from spectators is supressed (v_2 is still sizable)

• we also learn

- CI bg mostly comes from momentum conservation+v₂
- flow-related bg could be subtracted via H correlator

Outlook: Isobars

Isobars are atoms (nuclides) of different chemical elements that have the same number of nucleons.

For example, ⁹⁶₄₄Ruthenium and ⁹⁶₄₀Zirconium:

10% difference in B field \rightarrow 20% difference in γ

	⁹⁶ 44Ru+ ⁹⁶ 44Ru	VS	⁹⁶ 40Zr+ ⁹⁶ 40Zr
Flow		=	
CMW		>	
CME		>	
CVE		=	

Outlook: Cu+Au

Suppressed γ signal of charge separation in Cu+Au collisions?

Backup slides

Particle identification

Excellent tracking

Dilution effect

In the quark-gluon medium, there could be multiple *P*-odd domains. The net effect is like a *random walk*, but one-dimensional.

What do we know about the position R_n after *n* steps? R_n follows a Gaussian distribution: mean = 0, and $rms = \sqrt{n}$

Our measurement of PV is like R_n^2 , expected to be *n*. Compared with going in one fixed direction, where $R_n^2 = n^2$, the "random-walk" measurement is diluted by a factor $\sim n \sim N_{part}$.

More on flow-related background

charge conservation/cluster + V₂ Pratt, Phys.Rev.C83:014913,2011

Possible physics background

