Transverse single-spin asymmetries in polarized *pp* collisions at RHIC-STAR

Yixin Zhang (张宜新), for the STAR Collaboration Shandong University (山东大学) May.19 ~ 23

Supported in part by

Office of Science

Challenges in Transverse Single–Spin Asymmetry (TSSA)

> Anomalously large A_N in pp collisions observed for decades

• LO QCD predicts $A_N \sim 0$

 $x_F = \frac{2p_z}{\sqrt{z}}$

G. Kane, J. Pumplin, W. Repko, Phys. Rev. Lett 41,1689 (1978).

> Left-right asymmetries of different experiments at different beam energies

- Stable in different C.M. energies
- Interpreted by the twist–3 and transverse– momentum–dependent (TMD) formalisms

Mechanisms for Transverse Single–Spin Asymmetry

- > Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions.
 - Need two scales (Q and p_T), $Q >> p_T$
 - ✓ Sivers effect (*Sivers'90*):

Nucleon spin and parton k_{\perp} correlation in initial state (related to orbital angular momentum)

✓ Collins effect (*Collins'93*):

Quark spin and hadron k_{\perp} correlation in fragmentation process (coupled with transversity)

- Twist-3 mechanism (Efremov-Teryaev'82, Qiu-Sterman'91):
 - Collinear/twist-3 multi-parton correlation + fragmentation functions
 - Need one scale $(Q \text{ or } p_T), Q, p_T >> \Lambda_{QCD}$
 - Consistent with TMD mechanism in the overlapping kinematics region

Relativistic Heavy Ion Collider (RHIC)

The Solenoidal Tracker At RHIC (STAR)

STAF

• Subsystems used in this talk

- Time Projection Chamber (TPC)
 - $|\eta| < 1$ and $\phi \in [0, 2\pi]$
 - Main detector for tracking and PID

Time Of Flight (TOF)

- $|\eta| < 1.0$ and $\phi \in [0, 2\pi]$
- Improve PID of tracks

ElectroMagnetic Calorimeter

- BEMC: $|\eta| < 1.0$ and $\phi \in [0, 2\pi]$
- EEMC: $1.08 < \eta < 2.0$ and $\phi \in [0, 2\pi]$
- Reconstruction of photon, e, π^0 and triggering
- Forward Meson Spectrometer (FMS)
 - $2.6 < \eta < 4.2, \phi \in [0, 2\pi]$
 - Detect γ , π^0 , η

TSSA of pp Collisions

Transversely polarized proton-proton collision data in recent years at STAR

Year	2011	2012	2015	2017	2022	2024
\sqrt{s} (GeV)	500	200	200	510	508	200
$L_{int} (pb^{-1})$	25	14	52	350	400	~170
Polarization	53%	57%	57%	55%	52%	53% / 57%

- Measurements at RHIC can reach values of Q² that are more than two orders of magnitude higher than current SIDIS experiments
- Collins effect for hadron within jet
 - Separate initial and final state effects
 - Jet- p_T ~ hard scale; hadron p_T ~ soft scale
 - Validate universality with SIDIS and e^+e^- annihilation

F. Yuan, Phys. Rev. Lett.100,032003(2008)

Angle Modulations of TSSA in pp Collisions

> For π^{\pm} within jets in pp collisions, the spin dependent cross section :

• ϕ_H : azimuthal angle of pion relative to the jet scattering plane.

Particle Identification

> Particle identification with TOF unmatched (left) and matched (right)

• Determine particle rich region

> Asymmetries purification through Moore–Penrose inverse.

$$\begin{pmatrix} f_{\pi}^{\pi} \stackrel{TOF}{rich} & f_{\pi}^{K} \stackrel{TOF}{rich} & f_{\pi}^{p} \stackrel{TOF}{rich} \\ f_{\pi}^{\pi} \stackrel{TOF}{rich} & f_{K}^{K} \stackrel{TOF}{rich} & f_{K}^{p} \stackrel{TOF}{rich} \\ f_{p}^{\pi} \stackrel{TOF}{rich} & f_{p}^{K} \stackrel{TOF}{rich} & f_{p}^{p} \stackrel{TOF}{rich} \\ f_{\pi}^{\pi} \stackrel{dE/dx}{rich} & f_{\pi}^{K} \stackrel{dE/dx}{rich} & f_{\pi}^{p} \stackrel{dE/dx}{rich} \\ f_{K}^{\pi} \stackrel{dE/dx}{rich} & f_{K}^{K} \stackrel{dE/dx}{rich} & f_{p}^{p} \stackrel{dE/dx}{rich} \\ f_{p}^{\pi} \stackrel{dE/dx}{rich} & f_{K}^{K} \stackrel{dE/dx}{rich} & f_{p}^{p} \stackrel{dE/dx}{rich} \\ f_{p}^{\pi} \stackrel{dE/dx}{rich} & f_{p}^{K} \stackrel{dE/dx}{rich} & f_{p}^{p} \stackrel{dE/dx}{rich} \\ \end{pmatrix} \begin{pmatrix} A_{,\pi} pure \\ A_{K} pure \\ A_{p} pure \end{pmatrix} = \begin{pmatrix} A_{\pi}^{TOF} \\ A_{K} raw \\ A_{\mu}^{dE/dx} \\ A_{\mu}^{dE/d$$

- $f_{i\,rich}^{j}$: the fraction of particle type j in the *i*-rich sample.
- Extract the pure asymmetry for each particle rich region

٠

•

Sivers Asymmetry of Inclusive Jets at 200 GeV & 510 GeV

- Sensitive to twist-3 correlator associated with the gluon Sivers function
- High-precision measurements show that the inclusive jet asymmetry is very small.

Sivers Asymmetry of Hadron–Tagged Jet at 200 GeV & 510 GeV

- Quark jet fractions are enhanced by tagging π^{\pm}
- The experimental measurements are comparable to the theoretical predictions.

Z. B. Kang, A. Prokudin, F. Ringer and F. Yuan, Phys. Lett. B 774 (2017), 635–642

Sivers Asymmetry of weak bosons

> Preliminary results of $W/Z A_N$ from run17 data at $\sqrt{s} = 510$ GeV

• Test sign change of Sivers function from SIDIS and Drell-Yan:

 $f_{h/q^{\uparrow}}^{SIDIS}(x,k_T,Q^2) = -f_{h/q^{\uparrow}}^{p+p \to DY}(x,k_T,Q^2)$

- In general, the results and theoretical calculations are consistent
- Provide input to extraction of the Sivers function, especially for valance quarks at high $x (x \ge 0.1)$
- Run 22 data will further reduce the statistical uncertainty and push to larger rapidity $y^{W/z}$

Collins Asymmetry at 510/500 GeV

> Collins results as a function of jet p_T

- Positive for π^+ and negative for π^- , and increase with increasing jet p_T for $x_F > 0$
- The asymmetries for $x_F < 0$ are consistent with 0.

Collins Asymmetry at 510/500 GeV

> Collins results as a function of jet p_T

- Positive for π^+ and negative for π^- , and increase with increasing jet p_T for $x_F > 0$
- The asymmetries for $x_F < 0$ are consistent with 0.

 New results are consistent with previous run11 data, but with 13 times more statistics

Collins Asymmetry at 510/200 GeV: Test TMD Evolution

> Comparison of Collins asymmetry vs. jet- x_T

- The high precision Collins results of 510 GeV and 200 GeV nicely align with jet x_T scale, giving almost no energy dependence
- At the same jet x_T , 200 GeV and 500 GeV results correspond to the same x in transversity distribution

Collins Asymmetry at 510/200 GeV: Test TMD Evolution

> Comparison of Collins asymmetry vs. jet- x_T

L. Gamberg, M. Malda, J. A. Miller, D. Pitonyak, A. Prokudin, N. Sato, [JAM], Phys. Rev. D 106 (2022), 034014 M. Boglione, U. D'Alesio, C. Flore, J. O. Gonzalez–Hernandez, F. Murgia and A. Prokudin, Phys. Lett. B 854 (2024), 138712

• Model calculations without TMD evolution are generally consistent with measurements

QCD Evolution 2025

Collins Asymmetry at 510/200 GeV: Test TMD Evolution

> Comparison of Collins asymmetry vs. hadron j_T

- Similar jet x_T for 200 GeV and 510 GeV, allowing for comparisons of measurements at similar parton momentum fraction regions
- Again, Collins results of two energies align with pion j_T scale, no significant energy dependence observed

 j_T : pion's transverse momentum relative to jet axis

• The Collins asymmetries as a function of *z* also show good consistency

QCD Evolution 2025

Theoretical Calculations with/without TMD Evolution

Without TMD evolution:

With TMD evolution:

L. Gamberg, M. Malda, J. A. Miller, D. Pitonyak, A. Prokudin, N. Sato, [JAM], Phys. Rev. D 106 (2022), 034014 M. Boglione, U. D'Alesio, C. Flore, J. O. Gonzalez–Hernandez, F. Murgia and A. Prokudin, Phys. Lett. B 854 (2024), 138712 Z. B. Kang, A. Prokudin, F. Ringer and F. Yuan, Phys. Lett. B 774 (2017), 635–642 C. Zeng, H. Dong, T. Liue, P. Sun and Y. Zhao, arXiv:2412.18324

• All models are consistent with our data in general, with weak energy dependence

Collins Asymmetry of K & p

- K^+ has a contribution from favored fragmentation of u quarks, similar in magnitude to those for π^+
- K^{-} can only come from unfavored fragmentation, are consistent with zero within uncertainties
- Collins asymmetry of proton is consistent zero

> Results at 200GeV, as a function of z

> Results at 500GeV, as a function of z

- Sensitive to linearly polarized gluons inside a transversely polarized proton
- No significant asymmetry for either collision energy

π^0 Asymmetry in Forward Region

 Magnitude of inclusive EM jet asymmetry is limited

- Collins asymmetry of π⁰ inside EM jet is consistent with zero
- The A_N of the isolated π^0 was found to be significantly larger than that for non-isolated ones
- Indicating the possible contribution from the diffractive process

QCD Evolution 2025

Diffractive Electromagnetic Jets Asymmetry

- $p^{\uparrow} + p \rightarrow p + \mathsf{EM-jet} + X$
- 1 east roman pots (RP) track , no requirement on west RP
- 1 EM-jet per event is allowed
- Rapidity gap event

- $p^{\uparrow} + p \rightarrow p + p + \text{EM-jet} + X$
- No RP track requirement
- 1 EM-jet per event is allowed

- The single diffractive and rapidity gap EM-jet A_N are consistent within uncertainty
- The observed inclusive π^0 asymmetry is unlikely to originate from diffractive processes

QCD Evolution 2025

Outlook

> STAR Forward Detector Upgrade (2.5 < η < 4)

Tracking system & calorimetry system

- Successfully collected pp data at 510 and 200GeV during 2022 and 2024
- *x* extends up to ~0.5, with charged particle tracking and electromagnetic and hadronic calorimetry
- Complement the kinematic coverage of $ep\ {\rm data}\ {\rm from}\ {\rm the}\ {\rm ElC}$

Year	2022	2024
\sqrt{s} (GeV)	510	200
$L_{int} (pb^{-1})$	400	~170
Polarization	52%	53% / 57%

Summary

- The high-precision Collins asymmetries for π^+ and π^- results at 510 GeV, in good agreement with 200 GeV data, indicating a very weak energy dependence of the Collins effect
- No significant Sivers asymmetry or Collins–like asymmetry observed in *pp* collision at mid–rapidity
- W/Z boson asymmetries can provide important input to extraction of the Sivers function
- These measurements, together with pp data after STAR forward upgrade, will provide valuable insights into the three-dimensional structure of the proton

Thank you for the attention!

Back up

Jet Reconstruction

Jet reconstruction : \geq

- Anti-K_T algorithm with R = 0.5٠
- TPC tracks and EMC energy deposition as input ٠
- Off-axis cone method to estimate underlying event contribution ٠

Simulation \geq

- PYTHIA 6.4 with STAR adjustment of Perugia 2012 ٠
- Kinematic correction & Systematic uncertainty estimation ٠

Extraction of Transverse Single-Spin Asymmetries

> Cross-ratio method to extract the asymmetries of different modulations.

$$A_N sin(\phi) = \frac{1}{P} \cdot \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}$$

- Cross ratio method can cancel detector efficiencies and spin dependent luminosity.
- $N^{\uparrow}(\text{or } N^{\downarrow})$ is the yield for a given spin state.

Collins Asymmetry from STAR 2017 Data

> Collins results as a function of z in different jet p_T regions at 510 GeV:

 $z: \mbox{ the pion's longitudinal momentum fraction in the jet }$

• These results provide more detailed constraints on the Collins fragmentation function

Collins Asymmetry from STAR 2017 Data

> Collins results as a function of j_T in different jet p_T regions at 510 GeV:

 j_T : charged pion's transverse momentum relative to the jet axis

• These results provide more detailed constraints on the Collins fragmentation function

QCD Evolution 2025