QCD vacuum and matter under strong magnetic field II

Institute of High Energy Physics Chinese Academy of Sciences

Search for Chiral Effects in Highenergy Nuclear Collisions at STAR

Gang Wang (UCLA) for STAR Collaboration

Outline

- Motivation
- STAR Experiment
- Chiral Magnetic Wave (CMW)
- Chiral Magnetic Effect (CME) and Chiral Vortical Effect (CVE)
- Outlook

Motivation

- collective excitation
- signature of chiral symmetry restoration ³

Observable I

Then $\pi^- v_2$ should have a positive slope as a function of A_{ch} , and $\pi^+ v_2$ should have a negative slope with the same magnitude.

Observable II

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin\left(\phi^{\pm} - \Psi_{RP}\right)$$

charge separation effect beyond conventional physics background

S. Voloshin, PRC 70 (2004) 057901, Kharzeev, PLB633:260 (2006) Kharzeev, McLerran, Warringa, NPA803:227 (2008)

STAR experiment

Particle identification

Azimuthal anisotropy

Observed charge asymmetry

$$A_{ch} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

- N⁺ (N⁻) is the number of positive (negative) particles within $|\eta| < 1$.
- The distribution was divided into 5 bins, with roughly equal counts.
- Tracking efficiency was corrected later.

Charge asymmetry dependence

Slope vs centrality

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, arXiv:1208.2537v1 [hep-ph].

Similar trends between data and theoretical calculations with CMW. UrQMD and AMPT can not reproduce the slopes.¹²

Beam Energy Scan

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, arXiv:1208.2537v1 [hep-ph]; Wei-Tian Deng and Xu-Guang Huang, PRC 85 (2012) 044907

Similar trends are observed for different beam energies down to 19.6 GeV_{13}

U+U

Similar pattern and magnitude seen in U+U collisions.

Kaon

With the same electric quadruple of QGP upon chemical freezeout, one expects to see a weaker effect for kaons (Yannis Burnier, Dmitri E. Kharzeev, 15 Jinfeng Liao, and Ho-Ung Yee, PRL 107 052303)

Summary I

• Charge asymmetry dependece of pion v₂ has been observed.

- $v_2(A_{ch})$ showed opposite slopes for π^+ and π^-
- similarity between data and calculations with CMW
- similar centrality dependence from 200 GeV down to 19.6 GeV
- confirmed with UU
- finite slopes for kaons, with smaller magnitudes

On the other hand

- UrQMD and AMPT (w/o CMW) showed no such effects
- Δv_3 results consistent with zero

• Further systematic checks to do

- lower energies like 11.5 and 7.7 GeV
- acceptance effect

QCD vacuum transition

$$N_L^f - N_R^f = 2Q_W, \ Q_W \neq 0 \to \mu_A \neq 0$$

QCD vacuum transition

- ➔ nonzero topological charge
- → chirality imbalance (local parity violation)

Chiral Magnetic Effect

Chiral Magnetic Effect (CME): finite chiral charge density induces an electric current along external magnetic field.

$$j_V = \frac{N_c e}{2\pi^2} \mu_A B \quad \Rightarrow \quad \text{electric charge separation along } B$$
 field

D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nuclear Physics A 803, 227 (2008)

19

CME + Local Parity Violation

Reaction

plane.

 (Ψ_R)

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin\left(\phi^{\pm} - \Psi_{RP}\right)$$

A direct measurement of the *P*-odd quantity "*a*" should yield *zero*.

y correlator

γ at 200 GeV

Phys. Rev. Lett. 103 (2009) 251601; Phys. Rev. C 81 (2010) 54908 % Most central

- Different γ_{os} and $\gamma_{ss},$ consistent with the CME expectation: both AuAu and CuCu
- Not explained by known event generators

1st-order EP

- Consistent between different years
- Confirmed with 1st-order EP from spectator neutrons

23

HBT+Coulomb

200 GeV Au+Au: 40 - 60%

- Short-range correlations exist
- probably due to HBT+Coulomb

Modulated sign correlator (msc)

• robust after removing HBT+Coulomb effects

• γ weights different azimuthal regions of charge separation differently

• Modify γ such that all azimuthal regions are weighted identically

- γ is reduced to modulated sign correlator (msc)
- the charge separation signal is robust with msc

25 Phys. Rev. C 88 (2013) 64911

$$= \left\langle \cos(\Delta \varphi_{\alpha}) \cos(\Delta \varphi_{\beta}) - \sin(\Delta \varphi_{\alpha}) \sin(\Delta \varphi_{\beta}) \right\rangle$$
$$= \left\langle (M_{\alpha} M_{\beta} S_{\alpha} S_{\beta})_{\text{IN}} \right\rangle - \left\langle (M_{\alpha} M_{\beta} S_{\alpha} S_{\beta})_{\text{OUT}} \right\rangle$$
$$\left(\pi \right)^{2} \left((M_{\alpha} M_{\beta} S_{\alpha} S_{\beta})_{\text{OUT}} \right)$$

$$\mathrm{msc} \equiv \left(\frac{\pi}{4}\right)^{2} \left(\left\langle S_{\alpha} S_{\beta} \right\rangle_{\mathrm{IN}} - \left\langle S_{\alpha} S_{\beta} \right\rangle_{\mathrm{OUT}} \right)$$

Charge-independent background

 $10^4 \times \Delta msc$

- $\operatorname{msc} = \Delta \operatorname{msc} + \Delta N \stackrel{\mathsf{X}}{\underbrace{\mathsf{b}}} {}^{\mathsf{s}}$ $\Delta \operatorname{msc} = \frac{1}{N_{\mathrm{E}}} \sum_{\Delta Q} \langle N(\Delta Q) \rangle \left[\operatorname{msc}_{\mathrm{IN}}(\Delta Q) \operatorname{msc}_{\mathrm{OUT}}(\Delta Q) \right]_{\mathsf{o}}$ $\Delta N = \frac{1}{N_{\mathrm{E}}} \sum_{\Delta Q} \langle \operatorname{msc}(\Delta Q) \rangle \left[N_{\mathrm{IN}}(\Delta Q) N_{\mathrm{OUT}}(\Delta Q) \right]$
 - msc was split to study bg
 - $N_{IN}(\Delta Q)$ stands for the number of events with ΔQ units of in-plane charge separation, and $msc_{IN}(\Delta Q)$ stands for the <msc> in those events.
 - MEVSIM and $-v_2/N$ tell us that the CI bg is likely due to momentum conservation $+v_2$

Neutral-charged correlation

- correlations between neutral strange hadrons and charged hadrons show no charge separation
- separation observed for two charged hadrons is sensitive to electric charge
- strange quarks participate in the chiral dynamics in the same way as u and d 27

Beam Energy Scan

At lower beam energies, charge separation starts to diminish. 28

Flow-related background

CME contribution

STAR, Phys. Rev. Lett 113 (2014) 052302

$$H^{\kappa} = (\kappa v_2 \delta - \gamma) / (1 + \kappa v_2)$$

- κ could deviate from 1 due to a finite detector acceptance and theoretical uncertainties
- the CME signal decreases to zero in the interval between
 19.6 and 7.7 GeV
- probable domination of hadronic interactions over partonic ones
- need better theoretical estimate of κ and better statistics

Chiral Vortical Effect

Chiral Magnetic Effect vs Chiral Vortical Effect

- Magnetic Field ($\omega \mu_{e}$) -- Fluid Vorticity ($\omega \mu_{B}$) Electric Charge (j_e)
- Chirality Imbalance (μ_A) -- Chirality Imbalance (μ_A)

 - Baryon Number $(j_{\rm B})$

D. Kharzeev, D. T. Son, PRL 106 (2011) 062301

 $\langle \cos(\phi_{\mathbf{A}} + \phi_{\mathbf{p}} - 2\Psi_{RP}) \rangle$

correlate Λ -p to search for the Chiral Vortical Effect

Λ-proton correlation

- $\Lambda p \text{ and } \overline{\Lambda p}$ (same baryon number) show a similar behavior;
- * $\Lambda \overline{p}$ and $\overline{\Lambda} p$ (opposite baryon number) show a similar behavior;

✤ "same B" is systematically lower than "oppo B" in the mid-central and peripheral collisions, consistent with the CVE expectation.

Summary II

three-point correlation shows charge separation w.r.t RP

- signal robust with different (1st- and 2nd-order) EPs
- robust when suppressing HBT+Coulomb
- robust with a reduced correlator, msc
- robust in Au+Au, Pb+Pb and U+U (also in Cu+Cu, not shown)
- robust from 19.6 GeV to 2.76 TeV
- signal of charge separation seems to disappear when
 - one charged particle is replaced with a neutral strange particle
 - the collision energy is down to ~7.7 GeV
 - the magnetic field from spectators is supressed (v_2 is still sizable)

• we also learn

- CI bg comes from momentum conservation+v₂
- flow-related bg could be subtracted via H

• CVE signal has been observed for the first time

more investigations underway

Outlook: another test ground

Isobars are atoms (nuclides) of different chemical elements that have the same number of nucleons. For example, ${}^{96}_{44}$ Ruthenium and ${}^{96}_{40}$ Zirconium

	⁹⁶ 44Ru+ ⁹⁶ 44Ru	VS	⁹⁶ 40Zr+ ⁹⁶ 40Zr
Flow		=	
CMW		>	
CME		>	
CVE		=	

Chiral Electric Separation Effect

Charged event planes intersect in Cu+Au collisions? ³⁶

Backup slides

STAR: excellent PID and tracking

Results with different EPs

The correlators using TPC/ZDC event planes are consistent with each other.

Dilution effect

In the quark-gluon medium, there could be multiple *P*-odd domains. The net effect is like a *random walk*, but one-dimensional.

What do we know about the position R_n after *n* steps? R_n follows a Gaussian distribution: mean = 0, and $rms = \sqrt{n}$

Our measurement of PV is like R_n^2 , expected to be *n*. Compared with going in one fixed direction, where $R_n^2 = n^2$, the "random-walk" measurement is diluted by a factor $\sim n \sim N_{part}^{40}$

Possible physics background

