

Study of ΛΛ correlations and search for the H⁰-dibaryon with the **STAR detector at RHIC**

Neha Shah* for the STAR Collaboration

Department of Physics and Astronomy, UCLA

Abstract

The production of large number of multi-strange hyperons per central nucleus-nucleus collision at RHIC allows us to study hyperon-hyperon interactions through measurement of particle correlations and search for exotic particles like dihyperons. In 1977 Jaffe [1] predicted a six quark state, H⁰-dibaryon, with hypercharge (Y) = 0 and Strangeness (S) = -2 to be stable against strong decay, but not to weak decay. It has been proposed that the H⁰ would appear as a bump in the $\Lambda\Lambda$ invariant mass spectra if the H⁰ is a resonance state, or it would lead to a depletion of the $\Lambda\Lambda$ correlation near the threshold if the H⁰ is weakly bound, which can be used to probe whether there is a stable H⁰ or resonance. Considerable experimental efforts have been devoted to search for H⁰. However there is no conclusive experimental evidence for a bound H⁰. In addition to H⁰, many other dihyperon states have been predicted theoretically. However, very few measurements are available due to low multiplicity of hyperon production in early nuclear collisions. Recently STAR has collected unprecedented high statistics data for Au+Au collision at RHIC, which provides a unique opportunity to look for the exotic particles and hyperon-hyperon correlations. Here we present the measurement of $\Lambda\Lambda$ correlations for $\sqrt{s_{NN}} = 39-200$ GeV in Au+Au collisions using the STAR experiment at RHIC.

Motivation

Two particle correlation measurement with Λ , which are also sensitive to size of emitting region Advantages :

Experimental searches for stable H⁰:

- \succ Double strangeness exchange reactions (e.g. A(K⁻,K⁰)X)

Production of H⁰ dibaryon [1] (6 quark state) through coalescence or scattering through resonance

Properties of H⁰ (J^{\pi}=0⁺): Mass $- (1.9 - 2.8) \text{ GeV/c}^2$ $H^0 \rightarrow \Lambda \Lambda, \Lambda N \pi, N N \pi \pi$ Rates: 10⁻³–10⁻⁵ per central Au+Au collisions

- > no Coulomb interactions
- > sensitive to hyperon-hyperon interactions
- Depletion of phase space due to bound state formation of $H^0 \Rightarrow$ inclusive measurement, sensitive to total yield
- $\succ \Xi^{-}A$ capture on nuclear targets with $A \ge 2$
- > p-N and NN collisions

What have we learned so far?

- \succ Nagara event \Rightarrow no deeply bound H⁰
- $\succ \Lambda\Lambda$ invariant mass analysis :

scattering length (f_0) = $-0.10^{+0.45}_{-2.37} \pm 0.04$ fm [4]

1.5

STAR Preliminary

→ No/ weakly bound state [4,5]

where Q relative momentum between 2Λ , A(Q) is relative momentum from same event and B(Q) is reference distribution from mixed event

$$CF_{corrected}(Q) = \frac{CF_{measured}(Q) - 1}{PP(Q)} + 1 PP(Q) = \frac{S}{S + B}(P_{t_i}) \times \frac{S}{S + B}(P_{t_j})$$

where PP(Q) is pair purity, S is signal, B is background and P_t is transverse momentum for Λ_i and Λ_i

- > Pair purity : 90-95%
- \succ Toy model simulation for $\Sigma\Sigma$ and $\Xi\Xi$ feed-down contribution: • Generate spectra : Boltzmann fit (T=335 MeV) • Assign weight to each pair using HBT correlation: $(1-0.5*exp(-Q^2R^2))$,
- R = 3.83/√m,

Fit parameters for $\Lambda\Lambda$:

fit to CF

fit to CF_A

Input CF₌

N = 1.001±0.001

 $CF = N(1 + \lambda \exp(-Q^2 R^2))$

 $\lambda = -0.0433 \pm 0.007$

R = 2.829±0.369 fm

Fit parameters for $\Xi\Xi$:

N = 1.001±0.001

 $\lambda = -0.492 \pm 0.02$

Simulatio

Fit Function:

R = 3.064±0.092 fr

Summary

The Λ - Λ interaction is attractive

>Quark model interaction (FSS2) [6] describes the data fairly well for small ΞN coupling as well as without ΞN coupling \Rightarrow consistent with Nagara event [8].

Current fit to the data for scattering length (f_0) and effective range (d₀) gives indication towards non-existence

[7] Lednicky and Lyuboshitz, Sov. J. Nucl. Phys. 35 (1982) 770

