

Beam Energy Dependence of Strange Hadron Production from STAR at RHIC

Xiaoping Zhang (Tsinghua University)

For the STAR Collaboration

Aug. 13-18, Washington, DC, USA

U.S. DEPARTMENT OF ENERGY

Outline

- Motivation for strangeness production measurement in STAR Beam Energy Scan (BES)
- > Strangeness (K[±], K⁰_S, ϕ , Λ, Ξ, Ω) production at mid-rapidity
 - $\checkmark p_T$ spectra
 - \checkmark Particle yields and ratios
 - ✓ Mean transverse kinetic energy: $< m_T > m_0$
 - ✓ Central-to-peripheral nuclear modification factor: R_{CP}
 - ✓ Baryon enhancement: Ω/φ
- ➤ Summary

Motivation: study **QCD** phase diagram

Beam Energy Scan at RHIC Look for onset of de-confinement, phase boundary and critical point Systematic study of Au+Au collisions at 7.7, 11.5, 19.6, 27, 39, 62.4 GeV

Key observables on de-confinement
 (1) Strangeness enhancement
 (2) Baryon/meson ratio
 Parton recombination
 (3) Nuclear modification factor
 Partonic energy loss & recombination
 STAR, arXiv:1007.2613; NA49, PRC78, 034918

Detector settings during STAR BES 2010-2011

Uncorrected N_{ch}

Collisions: Au+Au Collisions centrality from uncorrected $dN_{ch}/d\eta$ in $|\eta| < 0.5$

$\sqrt{s_{NN}}$ (GeV)	Good MB events in Million
7.7	~4 M
11.5	~12 M
19.6	~ 36 M
27	~ 70 M
39	~130 M
62.4	~ 67 M

Particle identification and reconstruction

p_T spectra (39 GeV)

Particle yields

- The NA57 and NA49 yields have been scaled by the corresponding number of wounded nucleons, **STAR results closer to NA49**
- Λ yields show dip at 39 GeV. Why? the baryon stopping at mid-rapidity may decrease with increasing energy

Excitation function of \overline{B}/B ratios

Left: Solid red: STAR BES; Solid blue: STAR published; Open blue: NA49

- STAR BES data lie in a trend with NA49 data
- $\overline{\mathbf{B}}/\mathbf{B}$ ratios increase with number of strange quarks at low energies $\overline{\Omega}^+/\Omega^- > \overline{\Xi}^+/\Xi^- > \overline{\Lambda}/\Lambda$: pair production v.s. baryon transport & associated production

Particle ratios

Particle ratios

Statistical + systematical error

New scaling on yields

Statistical error

Statistical + systematical error

 $\rightarrow \phi$ mesons follow total participant nucleons energy scaling

K yield is lower than expected from the scaling in low beam energies

- $\succ \phi(s\bar{s})$: hidden strangeness $\mathbf{K}^{-}(\bar{u}s)$: open strangeness
- > Absorption of K^- ? no significant centrality dependence
- Strangeness quark pairs (ss̄) correlation scenario, "K⁻ is suppressed compared to φ meson at small phase space", qualitatively consistent
 Redlich et al: Phys. Lett. B 603, 146 (2004)

Beam energy dependence of $\langle m_T \rangle - m_0$

 For heavy strange hadrons φ, Λ, Ξ, <m_T> - m₀ show increasing trend with energy, mass matters φ meson, statistical error
 A, Ξ: Solid red, STAR BES, 0-5% most central, statistical error only Solid blue, STAR published, most central, PRL 89, 092301; PRL92, 182301. Open, NA49, most central, from NA49, PRC78, 034918 13

Nuclear modification factors R_{CP}

- Ω and ϕ p_T distribution is sensitive to strange quark thermalization and recombination. Intermediate p_T Ω yield enhancement is explained by mainly thermal *s* quark recombination @ Au+Au 200 GeV
- Intermediate $p_T \Omega/\phi$ ratios: clear separation between ≥ 19.6 and 11.5 GeV (probability of same ratios in $p_T 0.8-3.6$ GeV/c: 11.5 & 19.6 GeV: 8.6×10^{-5} ; 19.6 & 27 GeV: 0.50; preliminary systematical error included)
- Change of Ω production mechanism? parton recombination fails at 11.5 GeV?

Summary

- > Measurements of strange hadron production in $\sqrt{s_{NN}} = 7.7 39 \text{ GeV}$
- ➢ Particle yields and ratios are consistent with the picture of a maximum net-baryon density around $\sqrt{s_{NN}} \sim 8$ GeV at freeze-out, baryon transport to mid-rapidity is important
- ► Clear K^- , ϕ , $\overline{\Lambda}$, $\overline{\Xi}^+$ yield enhancement compared to pions with increasing collision energy
- The evolution of K⁻ and φ meson yields v.s. system size and collision energies is qualitatively consistent with strange quark pair (ss) correlation scenario
- > Intermediate $p_T \Omega/\phi$ ratios and nuclear modification factors show clear separation between 200 19.6 GeV and below 11.5 GeV, phase transition?

Backup

Different strangeness production scenarios

HADES: Phys. Rev. C 80, 025209 (2009)E917: Phys. Rev. C 69, 054901 (2004)NA49: Phys. Rev. C 78, 044907 (2008)STAR 62.4, 130 & 200 GeV: Phys. Rev. C 79, 064903 (2009)Thermal model-PBM: Nucl. Phys. A 772, 167 (2006)Statistical + systematical errorRedlich model: Phys. Lett. B 603, 146 (2004)Statistical + systematical error

- Canonical statistical model: "\$\u03c6 is more suppressed than K⁻ at small phase space"
- Strangeness quark pairs (ss) correlation, radius R_C: 2.2 4.2 fm "K⁻ is more suppressed than \$\ophi\$ at small phase space"

Au+Au 19.6 GeV spectra

Au+Au 27 GeV spectra

\overline{B}/B ratios

Strange baryon/meson ratios

- Mid-p_T ratios get higher at lower energy
 More baryon stopping?
- Centrality dependence for Au+Au 39 GeV
 Breaks at lower energies?

Strange baryon/meson ratios

- Mid-p_T ratios get lower at lower energies
- Ratios still rise from low to mid-p_T at lower energies

Multi-strange hadrons?

Multi-strange hadrons

Small hadronic cross sections, freeze-out early

STAR, Nucl. Phys. A 757 (2005) 102