

Centrality, mass, and transverse momentum dependence of di-electron elliptic flow in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at STAR

Xiangli Cui for the STAR collaboration

University of Science and Technology of China, Brookhaven National Laboratory

Introduction

>Low mass region($M_{II} < 1.1 \text{GeV/c}^2$): In-medium modifications of vector mesons. Chiral symmetry restoration? >Intermediate mass $region(1.1 < M_{II} < 3.0 GeV/c^2):$ •QGP thermal radiation.

Motivation

 \triangleright The mass and p_T dependences of di-leptons v₂ could give a very rich information on specific stages of the fireball expansion

 \blacktriangleright Measurements of v₂ of thermal di-leptons could distinguish partonic and hadronic radiation sources

Analysis

Large data samples Au+Au

2011.

Minimum bias--- 240M in year

2010 and 480M events in year

PID and Event plane method

 $n\sigma_{a}$

PID : Ionization energy loss (dE/dx) and time-of-flight $|1/\beta-1/\beta_{\text{expected}}| < 0.025$

e purity 97% in Au+Au@200.

Event plane method :

using TPC to reconstruct event plane:

 $v_2^S \times \frac{N_S}{N_{(S+B)}} = v_2^T - v_2^B \times (1 - \frac{NS}{N_{(S+B)}})$

$$v_2 = <\cos(2(\phi_i - \psi_2)) / r_j >$$

 v_2^T : Signal + Background v_2 v_2^B : Background v_2 v_2^{s} : Signal v_2 $N_{S}/N_{(S+B)}$: Signal/(Signal + background) r_i : Resolution of event plane in centrality j <>: average over all di-electron pairs in all events

Background subtraction: Subtract the like-sign at M_{ee}<0.7, 1.1<M_{ee}<2.9 GeV/c²; Subtract mixed-event at $0.7 < M_{ee} < 1.1 \text{ GeV/c}^2$.

Mixed-event background (normalized to like-sign background at $M_{ee}(0.7,3)$ GeV/c² and $p_T(0,4)$ GeV/c). We mix events which are in the same centrality bin (9), vertex z bin (10) and event plane angle bin (100).

Simulation

\succ Cocktail components : π^0 , η , ω , ϕ

>Input: flat rapidity (-1,1); p_T : Tsallis function; φ :1+2× v_2 ×cos(2× φ).

 \triangleright Reconstruct e⁺e⁻ pairs after they decay in the STAR simulators. Same acceptance cuts applied as in data. The total cocktail v_2 and each component contribution (weighted by the yield) are shown.

electron v₂ within uncertainties in 0-80% Au+Au collisions at 200 GeV, not only for mass dependence, but also for p_T dependence in each mass bin.

***** For $M_{ee} < 0.14 \text{ GeV/c}^2$, the simulated $e^+e^-v_2$ are consistent with the measured di-electron v₂ in different centralities from 200 GeV Au+Au collisions.

The STAR Collaboration: http://drupal.star.bnl.gov/STAR/presentations

