

Measurement of Energy Dependence of K/π fluctuation in STAR Experiment at RHIC

Zubayer Ahammed, for the STAR Collaboration

VECC, Kolkata, INDIA.

Abstract:

Event-by-event fluctuation in strangeness may reveal the nature of Quark-Gluon Plasma (QGP) to hadron gas phase transition and can be used as a probe for QCD critical point. Dynamical fluctuations in K/ π at lower beam energies were reported to increase with decreasing $\sqrt{s_{NN}}$ while they remained constant at higher $\sqrt{s_{NN}}$. STAR results for the study of K/ π fluctuations have been reported earlier for Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 39, 62.4, 130 and 200 GeV. The results have been found to be independent of beam energy. In this poster, we report new results on event-by-event fluctuation in K/ π at midrapidity from 19.6 and 27 GeV Au+Au collisions. The use of Time Projection Chamber (TPC) and Time of-Flight (ToF) detectors allow particle identification up to $p_T = 1.4$ GeV/c. The advantage of this large particle identification reach in momentum and using a collider facility for K/ π fluctuation studies will be discussed. The results will be compared with the prediction of a transport model (UrQMD) and statistical hadronization model.

in a phase transition near QCD critical point.

measurements.

that event. <...> indicates the average over event ensemble.

Both the measures are related by following equations:

$\sigma_{dvn} \approx \sqrt{v_{dvn}}$

 v_{dyn} is considered to be a robust observable

TOF PID : $\pi : 0.6 < p_T < 1.4$ (GeV/c) K: $0.6 < p_T < 1.4$ (GeV/c) π : 0.001 < m² < 0.07 (GeV/c²)² K: $0.21 < m^2 < 0.29 (GeV/c^2)^2$

Summary:

- New results in K/ π ratio fluctuation at 19.6 and 27 GeV Au+Au collision are presented in comparison with earlier results.
- No energy dependence is observed.
- The fluctuation strength of same sign charged particles is almost similar

