

Azimuthally-sensitive two-pion interferometry in U+U collisions at STAR

John Campbell for the STAR collaboration – The Ohio State University (campbell@physics.osu.edu)

Collisions between uranium nuclei have been produced in the Relativistic Heavy Ion Collider and measured in the STAR detector. Due to the prolate deformation of the nuclei, fully overlapping U+U collisions offer the opportunity to produce highly anisotropic participant zones similar in shape to mid-central Au+Au collisions, but with twice the size. The larger fireball should be characterized by a long time over which it collectively evolves from its non-trivial initial shape to its final one. The final-state anisotropy of zero-spectator collisions in momentum space (v_n) is under active study. We will present a preliminary analysis of the coordinate-space anisotropy, measured via azimuthally-sensitive two-pion interferometry ("HBT") of full-overlap collisions, performed differentially in the reduced flow parameter q_2 in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV.

- Femtoscopy probes the 3D shape of 'homogeneity regions', the space over which particle pairs are correlated.
- Three length scales are recovered, one for each direction in the out-sidelong system: R_{out} , R_{side} , and R_{long} .
- We can also recover correlations between directions: R_{os} , R_{ol} , and R_{sl} .

Construct experimentally measured *correlation functions* in terms of relative momentum q of *pairs of particles*

$$C(q) = \frac{N_{same}(q)}{N_{mixed}(q)}$$

where N_{same} (N_{mixed}) is the number of pairs of relative momentum q from the same (different) event(s). We can extract source sizes by fitting the correlation function with the following function:

$$C(q) = N((1 - \lambda) + \lambda K(q)e^{-(R_{out}^2 q_{out}^2 + R_{side}^2 q_{side}^2 + R_{long}^2 q_{long}^2 + 2R_{os}^2 q_{out} q_{side})})$$

where K(q) is a coulomb correction factor and there are 6 fit parameters: N is the overall normalization factor; λ accounts for contributions from long-lived decays; and the R_{out} , R_{side} , R_{long} , R_{os} terms describe the size and orientation of the emitting source.

collisions.

Can we see evidence of Tip-Tip or Body-Body enhanced collisions by performing this analysis differentially in q_2 ?

- U+U collisions at $\sqrt{s_{\rm NN}} = 193 \ GeV$
- Use 1% Zero Degree Calorimeter (ZDC) to select events that are almost fully overlapping
- ~7 Million events survive cuts
- Analysis is performed differentially in the *reduced flow parameter* q_2

Event Cuts		Track Cuts		Pair Cuts + Binning	
V _z	< 30 cm	n	< 0.5	k _T	(0.15 GeV, 0.6 GeV)
V _r	< 2 cm	p _T	(0.15 GeV, 0.8 GeV)	φ	8 bins
N _{ch,TPC}	< 1000	nơ _{pion}	< 2	ψ_{EP}	16 mixing bins
		n\sigma _{other}	> 2	Vz	12 mixing bins
		N _{hits}	> 15		
		DCA	< 3cm		

Data Set and Experimental Cuts

Shown are the 2nd-order oscillation amplitudes (Fourier moments) for the four radii studied here and the measured freeze out eccentricity, ε_f . Data are shown as a function of q_2 from lowest (0-10%) to highest (80-90%). Error bars are statistical only.

- Clear non-zero oscillation signal, especially for the 3 'transverse radii': R_{out} , R_{side} , and R_{os} .
- No obvious trend as a function of q_2 : ε_f is roughly flat, no evidence for shape selection in q_2

The 6 fit parameters, reconstructed for each of 8 azimuthal bins. Data shown here are for 80-90% q_2 bin.

- Results are presented for π^+ (π^-) shown in filled (empty) red symbols, and their average in black symbols. 2nd order harmonic fits are shown for R_{out}^2 , R_{side}^2 , and R_{os}^2
- 2^{nd} order oscillation is seen for the 3 'transverse radii': R_{out} , R_{side} , and R_{os}

Summary

- First femtoscopic analysis of U+U collisions is presented
 - Clear evidence for 2nd-order azimuthal signal
- No systematic variation of ε_f with $q_2 \rightarrow$ no evidence for shape selection in q_2