

Measurement of *D*-meson azimuthal anisotropy in Au+Au 200GeV collisions at RHIC

Michael R. Lomnitz Kent State University Lawrence Berkeley National Laboratory

for the STAR Collaboration

Motivation

Charm quarks:

- Produced early in heavy ion collisions at RHIC, through hard scattering
- Experience the whole evolution of the system -> good probe for medium properties

Physics interest:

- High p_T: test different energy loss mechanisms: radiative vs collisional
- At low p_T: extract medium properties from motion of heavy quarks in medium (Brownian motion), e.g. diffusion coefficient

Recent developments and understanding

- RHIC and LHC: *D*-meson R_{AA} suppression at high p_T: strong charmmedium interactions
- $D^0 v_2$ LHC results are compatible with light flavor v_2 , charm thermalized?
- v_2 and R_{AA} can be used simultaneously to constrain models
- What is occurring at low p_T at RHIC?
- Low p_T v₂ is especially sensitive to the partonic medium: scattering strength, transport properties

For R_{AA} talk see G. Xie (Monday 15:10)

2015 KOBE JAPAN

2015 KOBE JAPAN

D^0 reconstruction

• Direct topological reconstruction through channel:

$$D^0(\overline{D^0}) \to K^{\mp} \pi^{\pm}$$

B.R. 3.9% $c\tau \sim 120~\mu m$

- Greatly reduced combinatorial background (4 orders of magnitude)
- Topological cuts optimized using TMVA (Toolkit for Multivariate Analysis)

D⁰ reconstruction using HFT

• Significance greatly enhanced compared to STAR previous, 2010+2011 results.

	w/o HFT	w HFT
	2010 + 2011	2014
<pre># events(MB) analyzed</pre>	1.1 B	780 M
sig per billion events	13	51

v_2 : Event plane method

- Event plane reconstructed using charged hadrons within STAR TPC acceptance ($|\eta| < 1$)
- Corrected for detector acceptance ۲
- Yields in $\phi \Psi$ bins corrected for ۲ event plane resolution

$$v_2 = v_2^{obs} \times \left\langle \frac{1}{\text{E.P. Resolution}} \right\rangle$$

 $\Delta\eta$ gap of ~0.15 used in event plane reconstruction

$$v_2^{nonFlow} = \frac{<\sum_h \cos(2(\phi_{D^0}))}{Mv_2^h}$$

Non-flow estimated from measured D-h correlations in p+p 200GeV

A.M. Poskanzer, et al. PRC 58 (1998) 1671 STAR: PRL 93 (2004) 252301

Au+Au 200GeV, 0-80% 850 $3 < p_{_{T}} < 4 \text{ GeV/c}$ 800 $- v_2^{obs} = 0.080 \pm 0.023$ **Weighted yield** 750 700 650 600 STAR Preliminary 550 02 0.8 12 04 0.6 φ-Ψ p+p Au+Au

v₂: Two particle correlation

(Exhibition space 4)

D^{+/-} reconstruction

• Direct topological reconstruction through channel:

 $D^\pm \to K^\mp 2\pi^\pm$

B.R. 9.1% $c\tau \sim 300 \ \mu m$

• Yield in plane and out of plane obtained following event plane method

D Meson v₂

- D^0 azimuthal anisotropy significantly different from zero for $p_T > 2$ GeV/c (χ^2 /n.d.f. = 17.5/4)
- B->D feed down is negligible at RHIC energies (<5% relative contribution)

D Meson v_2

• Good agreement between EP and 2 PC methods within systematics

D Meson v_2

• $D^{+/-} v_2$ compatible with D^0 albeit within large error bars

Comparison to experiment

- $D^0 v_2$ is below light hadrons for $1 < p_T < 4$ GeV/c
 - $(\chi^2/n.d.f. = 9.6/3)$

Model comparison: TAMU

- Full T-matrix treatment, nonperturbative model with internal energy potential
- Diffusion coefficient extracted from calculation 2πT x D = 2-7
- Good agreement with D⁰ meson v₂ at low p_T, data favors model including c quark diffusion in the medium

(w/ c diff. χ^2 /n.d.f. = 1.8/5) (w/o c diff. χ^2 /n.d.f. = 7.4/5) - χ^2 tests done to v_2

Theory: arXiv:1506.03981 (2015) & private comm. STAR: PRL 113 (2014) 142301

Model comparison: SUBATECH

- pQCD+HTL calculation with latest EPOS3 initial conditions
- Diffusion coefficient extracted from calculations $2\pi T \times D \sim 2-4$
- Good agreement between model and experiment for both v_2 and R_{AA} in entire p_T range $(\chi^2/n.d.f. = 2.8/5)$ $-\chi^2$ tests done to v_2

Theory: arXiv:1506.03981 (2015) & private comm. STAR: PRL 113 (2014) 142301

Model comparison: Duke

- Diffusion coefficient is a free parameter, fixed by fitting to R_{AA} at high p_{T}
- Input value for diffusion coefficient 2πT x D = 7 fixed to fit LHC results
- Model with 2πT x D = 7 doesn't describe the magnitude of v₂ in experimental data

Theory: arXiv:1505.01413 & private comm. STAR: PRL 113 (2014) 142301

Charm diffusion coefficient

- Scan different values of the diffusion coefficient to find best agreement to data
- Best agreement for diffusion coefficient $2\pi T \times D = -1 3$
- This model seems to underestimate the data for $p_T > 3$ GeV/c

Theory: arXiv:1505.01413 & private comm.

Diffusion coefficient

- Compatible with models predicting a value of diff. coefficient between 2 to ~10
- Lattice calculations, although with large uncertainties, are consistent with values inferred from data

Outlook

• Run 14:

Full statistics available soon

• Run 15:

- Full aluminum cables for inner layer of PXL
- p+p and p+A data sets with HFT

• Run 16:

- Full aluminum cables for inner layer of PXL
- Factor 2 -3 improvement for D⁰ significance @ 1 GeV -> centrality dependence for v₂

Year	System	Events(MB)
Run 14:		
	Au+Au	1.2 B
Run 15:		
	р+р	1 B
	p+Au	0.6 B
Future		
Run 16:		
	Au+Au	2 B

Summary

- $D^0 v_2$ is finite for $p_T > 2.0$ GeV/c
- $D^0 v_2$ lower than light hadrons for 1< p_T < 4.0 GeV/c
- Data favor model scenario where charm quarks flow
- $D^0 v_2$ and R_{AA} can be described simultaneously by models and are consistent with values of $2\pi TxD$ between 2 and ~10
- Looking forward to improved statistics in year 2016

Thank you!

Back ups

Diffusion Coefficient from DUKE

Comparison to ALICE

Mass Effect

