Direct-photon+hadron correlations to study parton energy loss with the STAR experiment

Nihar Ranjan Sahoo

(for the STAR collaboration)

Texas A&M University, USA

Motivation: *Direct photon and its advantage*

- Compton scattering (qg->q Y) dominates for the direct photon production
- It doesn't interact strongly in medium
 - Transverse energy approximates that of initial parton p_T in photon-jet events
- A good tomographic probe of the quark-gluon plasma in high-energy heavy-ion collisions

• Volume emission dominates for dir. photon trigger hadron correlation unlike di-hadron correlation

Zhang et al., PRL 103, 032302 (2009)

- Parton energy loss in medium depends on
 - Initial energy (E), Path length (L), Color factor (C_R), coupling strength (α_s), transport coefficient (q̂)etc.
 - Initial energy: γ_{dir} -h[±] correlation at different p_T^{trig}
 - Path length or Color factor : comparison between Y_{dir}-h[±] and π⁰-h[±] correlation (Away-side hadrons of Y_{dir} triggered should suppress less compared with that of π⁰)

Medium Effect: Direct photon-hadron and Di-hadron correlation

• The medium effect for Υ_{dir} -hadron and π^0 -hadron by,

Nuclear modification factor:

$$_{AA} = \frac{D(z_T)_{AA}}{D(z_T)_{pp}}$$

$8 < p_T^{trig} < 16 \text{ GeV/c}, 0.3 < z_T < 0.9$

(STAR Collab., PRC 82, 034909)

 $D(z_T)_{AA}$: per trigger away-side yield for A+A collisions $D(z_T)_{pp}$: per trigger away-side yield for p+p collisions

Key questions on

- What about lost energy ?
- redistribution in medium or recovery at low $z_{\rm T}\,$?

Beside, small z_T dominated by volume emission

Zhang et al., PRL 103, 032302 (2009)

To understand medium effect at low z_T triggered by high $p_T Y_{dir}$ and $\pi^0 :12 < p_T^{trig} < 20$ GeV/c low p_T associated hadron: $p_T^{assoc} > 1.2$ GeV/c

This presentation

STAR detector system: Advantage and data sets

- Barrel ElectroMagnetic Calorimeter
 (BEMC) to identify EM clusters
 - Time Projection Chamber (TPC) for identifying charged hadron tracks
 - STAR detector system gives unique opportunity full 2π -azimuth and wide $|\eta| < 1.0$, both for BEMC and TPC
 - Triggered on high energy tower in the BEMC
 - Au+Au 200 GeV
 - (year-11: Int. Luminosity of 2.8 nb⁻¹)
 - p+p 200 GeV
 - (year-9: Int. Luminosity of 23 pb⁻¹)

• Discrimination between $\pi^0 \rightarrow \gamma \gamma$ and γ_{dir} is key part of this analysis

- By Transverse Shower Profile (TSP) method
- Using Barrel shower Maximum detector (BSMD)

Transverse shower profile: π^0/Y_{dir} discrimination

BSMD η-trips and φ-strips along with BEMC tower give information about Transverse Shower Profile (TSP)

$$ext{TSP} = rac{ ext{E_{cluster}}}{\sum_{i} e_{i} r_{i}^{1.5}}$$

 $E_{cluster}$: Cluster energy, e_i : BSMD strip energy, r_i : distance of the strip from the center of the cluster

Wider shower represents small TSP and vise versaTSP cuts are tuned to get

- \cdot a nearly pure sample of $\pi^0 \ \ (called \ `` \pi^0_{\ rich} ``)$
- a sample with enhanced fraction of γ_{dir} (called ` γ_{rich} ')

Nihar Ranjan Sahoo, TAMU

Correlation functions

• Raw correlation functions for π^{0}_{rich} and γ_{rich} triggered associated hadrons in $|\eta| < 1.0$

- Uncorrelated background is then subtracted and $\Delta \phi$ acceptance is corrected using the mixed events (modulated with elliptic flow for Au+Au collisions)

Yields associated with π^0 - trigger

•Near-side and away-side yields are extracted within $|\Delta \phi| \le 1.4$ and $|\Delta \phi - \pi| \le 1.4$

 AuAu central (0-12%) collisions compare with pp collisions at 200 GeV colliding energy

 Away-side yields show suppression in AuAu collisions as compared with pp collisions

 Near-side shows no significant suppression

•By integrating near-side yields, we estimated 85(±3)% fraction of energy carried by π^0 over "jet energy" (π^0 + charged hadrons) in pp 200 GeV

Yields associated with γ_{dir} – *trigger:* Fragmentation function

$$Y_{\gamma_{dir}+h} = \frac{Y^a_{\gamma_{rich}+h} - RY^a_{\pi^0+h}}{1-R}$$

 $Y^{a(n)}_{\gamma_{rich+h}}$ and $Y^{a(n)}_{\pi^0+h}$: away-side (near-side) yields of associated particles per $\gamma_{\rm rich}$ and π^0 trigger, respectively.

Purity of dir. Photon over photon rich sample

$$1 - R = \frac{N_{\gamma^{dir}}}{N_{\gamma^{rich}}}$$

 $(1-\mathcal{R})$ are ~40% and ~70% for p+p and Au+Au central (0-12%) collisions, respectively

 Away-side yields show suppression in Au+Au collisions as compared with p+p

Nuclear modification factor: I_{AA} of Y_{dir} and π^0

Qin:

G.-Y Qin et al.,PRC 80, 054909 (2009) (NLO pQCD + (3+1)hydro with jet-medium and fragmentation photon)

Wang:

X. N. Wang et al., Phys. Rev. C 84, 034902 (2011) Phys. Rev. C 81, 064908 (2010) Phys. Rev. Lett. 103, 032302 (2009) (NLO pQCD + (3+1)hydro)

 Z_{T} (z_{T} bins of I_{AA}^{Ydir-h} are shifted by 0.03 unit for visibility) $I_{AA}^{\pi0-h}$ and I_{AA}^{Ydir-h} show similar and strong suppression

- At very low z_T (0.1 <z_T <0.2), both I_{AA}^{π0-h} and I_{AA}^{Ydir-h} show less suppression than at high z_T
- Models don't include absorption and redistribution of lost energy in the medium

Nuclear modification factor: Integration window dependence

• These error bars are largely correlated, but within these uncertainties no significant dependence of suppression on integration window is observed both for γ_{dir} -h[±] and π^0 -h[±] I_{AA} results at high p_T^{Trig} (12 < p_T^{Trig} < 20 GeV/c)

Nihar Ranjan Sahoo, TAMU

Nuclear modification factor: p_T^{assoc} and p_T^{Trig} dependence

- Clear away-side p_T^{assoc} dependence of suppression
- No direct photon trigger energy dependence of suppression at high-p_T
- Both the models explain the data well

Summary

- *Υ_{dir}*+hadron and π⁰+hadron correlation study help to understand the effect of medium formation in AuAu comparison with pp collisions
- Transverse shower profile technique is used to discriminate between direct photon and neutral pion sample
- Away-side hadron of triggered dir. photon and π^0 show similar suppression, whereas at very low z_T suppression is less compared to high z_T
 - No direct photon trigger energy dependence of suppression is observed at high-p_T
 - $I_{AA}^{\pi 0-h} < I_{AA}^{Ydir-h}$ isn't observed in 0.1 < $z_T < 0.9$ range, within uncertainties
 - Clear away-side p_T^{assoc} dependence of suppression is observed for I_{AA}^{Ydir-h}

Back Up

Nihar Ranjan Sahoo, TAMU

Extraction of associated Yields: Of Y_{dir} and π^{o} trigger

- Near-side and away-side yields are extracted within $|\Delta \varphi| \le 1.3$ and $|\Delta \varphi \pi| \le 1.3$
- Extracted raw yields are corrected for charge particle reconstruction efficiency
- Extraction of $\Upsilon_{\rm dir}\,$ associated yields: Assuming near side $\Upsilon_{\rm dir}\,$ associated hadron yield is zero,

$$\begin{split} Y_{\gamma_{dir}+h} &= \frac{Y^a_{\gamma_{rich}+h} - RY^a_{\pi^0+h}}{1-R} \\ R &= \frac{Y^n_{\gamma_{rich}+h}}{Y^n_{\pi^0+h}} \quad \text{and} \quad 1-R = \frac{N^{\gamma_{dir}}}{N^{\gamma_{rich}}} \end{split}$$

 $Y^{a(n)}_{\gamma_{rich+h}}$: away-side (near-side) yields of associated particles per $Y^{}_{rich}$ trigger $Y^{a(n)}_{\pi^0+h}$: away-side (near-side) yields of associated particles per π^0 trigger

•The values of (1- \mathcal{R}) are found to be ~40% and ~70% for pp and AuAu central (0-10%) collisions, respectively

Contribution of π^0 energy over total jet energy

83%-88% fraction of energy carried by π^0 over total jet energy

• [PHENIX, PRL 111, 032301 (2013)]

