Bulk properties of the system formed in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV using the STAR detector at RHIC

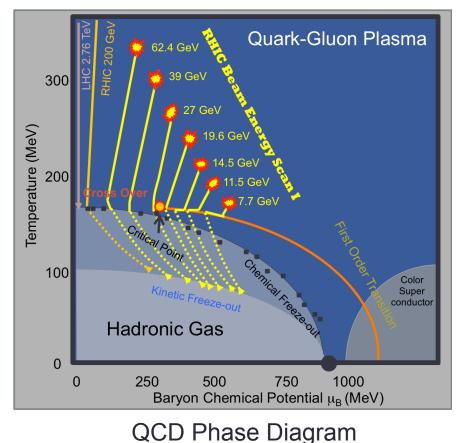
Vipul Bairathi

(for the STAR Collaboration)

National Institute of Science Education and Research, India

<u>Outline</u>

- Introduction & Motivation
- STAR Experiment at RHIC
- Results
 - Identified particle production and freeze out parameters
 - Azimuthal anisotropy of identified hadrons
- Summary



Quark Matter Kobe, Japan Sept. 27 – Oct. 3, 2015

Motivation: RHIC BES Program

•https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Goals of RHIC beam energy scan program

- ♦ Search for turn-off of QGP signatures
- ♦ Search for the first-order phase transition
- ♦ Search for critical point

Freeze out in heavy-ion collisions

Chemical freeze out (T_{ch}, μ_B)

♦ Inelastic collisions among particles cease

Kinetic freeze out (T_{kin} , < β >)

♦ Elastic collisions among particles cease

Elliptic flow (v₂) of identified hadrons

New data: Au+Au $\sqrt{s_{NN}}$ = 14.5 GeV

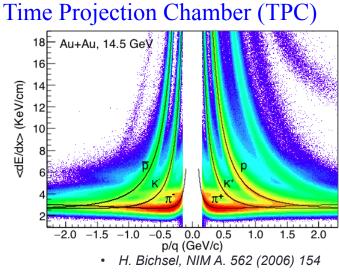
♦ Corresponding µ_B= 260 MeV fills a gap in µ_B of about 100 MeV between $\sqrt{s_{NN}}$ = 11.5 GeV (µ_B= 315 MeV) and 19.6 GeV (µ_B= 205 MeV).

STAR Experiment at RHIC

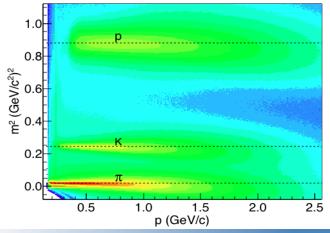
EEMC	Magnet	MTD	BEMC	TPC	TOF	BBC		BES-I Data	set
							Year	√s _{nn} (GeV)	Minimum Bias Events(10 ⁶)
	24				/		2010	62.4	67
							2010	39	130
Idk							2011	27	70
							2011	19.6	36
						E.	2014	14.5	20
							2010	11.5	12
-100		HFT			@ M	aria & Alex Schmah	2010	7.7	4

Large Coverage: $0 < \phi < 2\pi$, $|\eta| < 1.0$

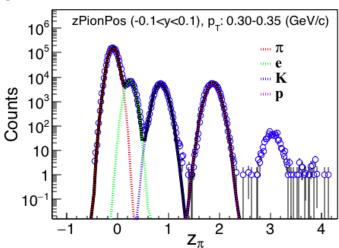
Uniform acceptance: transverse momentum (p_T) and rapidity (y)

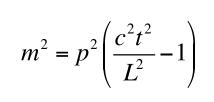

Excellent particle identification capabilities (TPC and TOF)

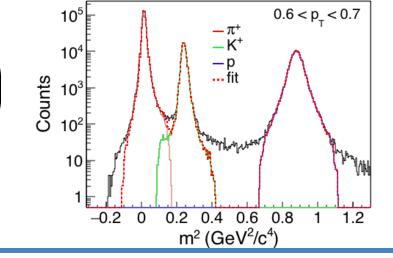
- M. Anderson et al., Nucl. Instrum. Meth. A 499 (2003) 659
- W. J. Llope., Nucl. Instrum. Meth. A 661 (2012) S110–S113



Particle Identification



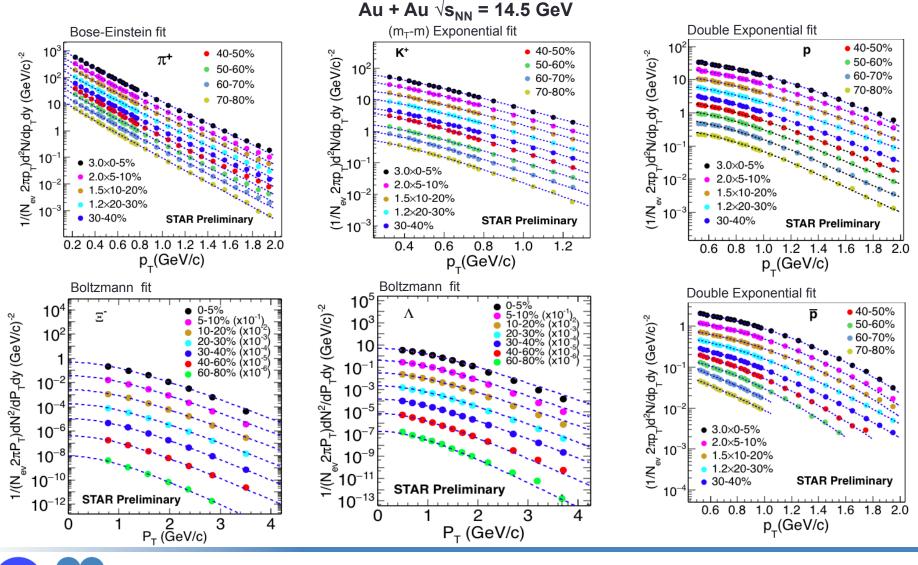

Time Of Flight (TOF)


Au + Au $\sqrt{s_{NN}}$ = 14.5 GeV

$$z = \log\left(\frac{\left(\frac{dE}{dx}\right)_{meas.}}{\left(\frac{dE}{dx}\right)_{theory}}\right)$$

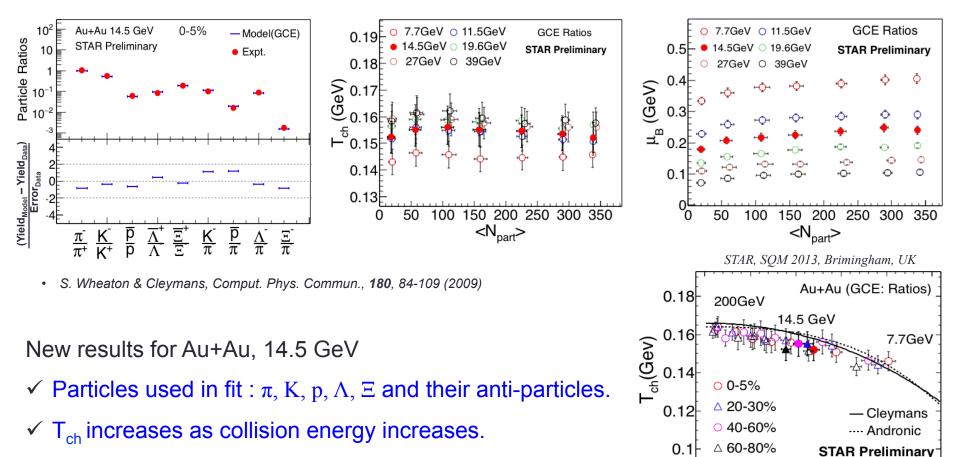
- p = momentum
- t = time of flight
- L = path length

Identified particle production and freeze out properties


See also

 Talk of James Brandenburg Heavy flavors and Strangeness Monday, 11.15-11.35

Transverse Momentum Spectra



2015 KOBE JAPAN

Vipul Bairathi

Chemical Freeze out

- $\checkmark~\mu_{B}$ decreases with increase in collision energy.
- ✓ Centrality dependence is observed for μ_B .

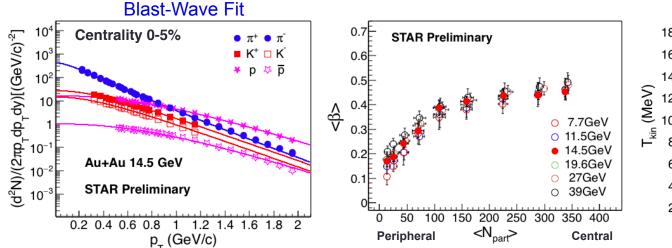
0.5

0.2

J. Cleymans et al. Phys. Rev. C 73, 034905 (2006) A. Andronic et al. Nucl. Phys. A 834, 237C (2010)

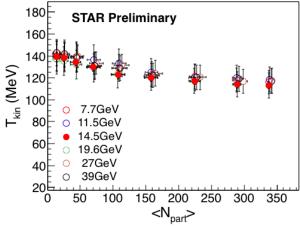
 $\mu_{_{\rm PR}}$ (GeV)

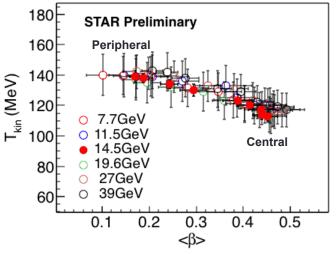
0.3


0.4

0.1

0

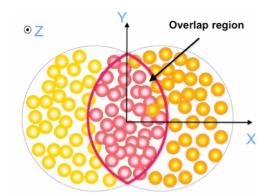


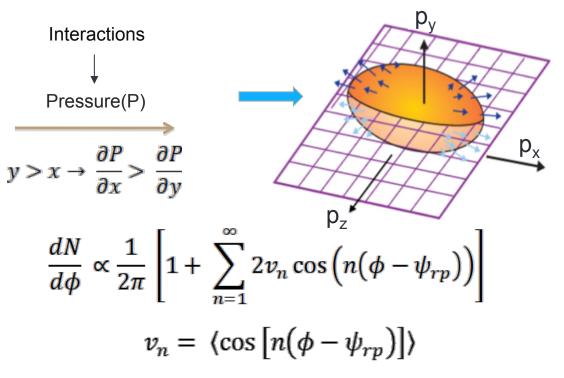


New results for Au+Au 14.5 GeV data

- \checkmark < β > decreases from central to peripheral collisions.
- \checkmark T_{kin} increases from central to peripheral collisions.
- ✓ An anti-correlation observed between T_{kin} and < β >.

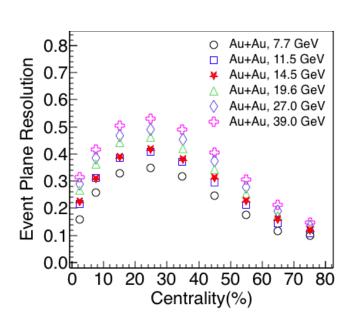
STAR, QM 2014, Darmstadt, Germany

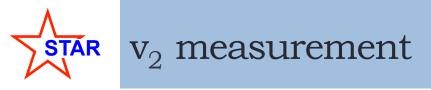

Elliptic flow (v_2) of Identified hadrons


See also

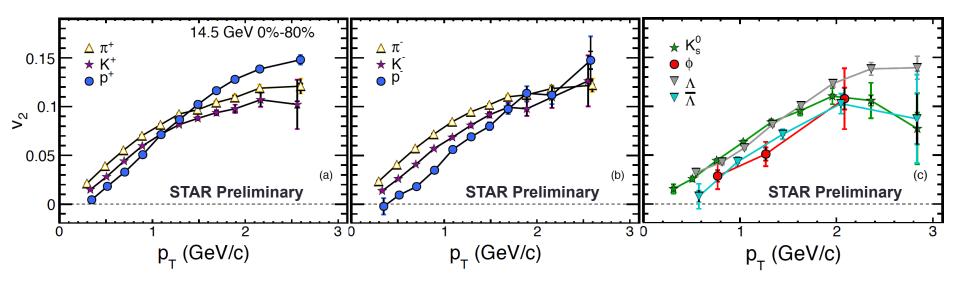
- Talk of Liao Song, Session: Correlations and fluctuations Tuesday, 14.40-15.00
- Poster by Shusu Shi, Board: 0833 / 351, Tuesday, 16.30-18.30

Elliptic Flow (v_2) STAR

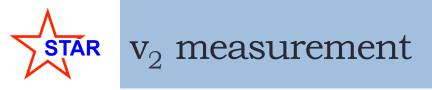


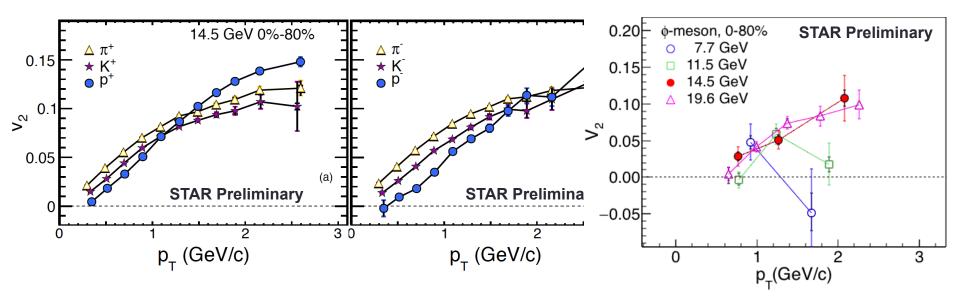

η-sub event plane method is used for calculation of v₂.
The observed v₂ is corrected for event plane resolution.

$$R = \sqrt{\cos\left(2\left(\psi_2^a - \psi_2^b\right)\right)}$$

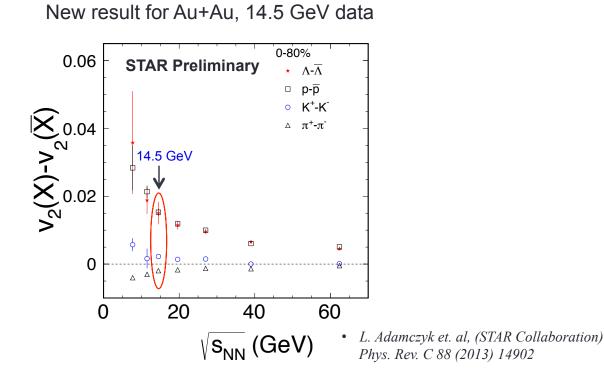

• A.M. Poskanzer & S. Voloshin, Phys. Rev. C58 (1998)

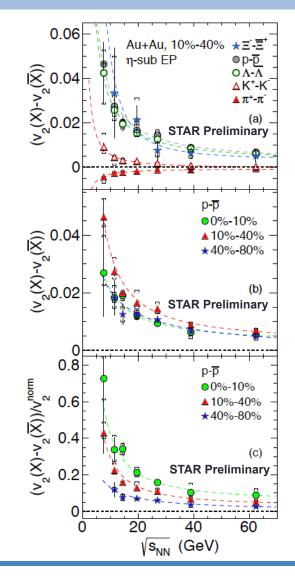
2015 KOBE JAPAN


New measurement for Au+Au, 14.5 GeV data

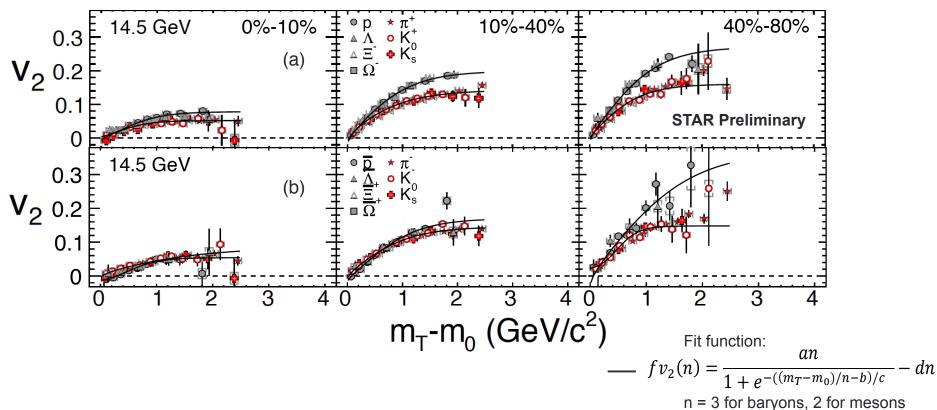

✓ Mass ordering of v_2 is observed at low p_T for π^+ , K⁺, p and their antiparticles.

- ✓ No mass ordering observed for K_s^{0} , ϕ , Λ and Λ -bar.
- ✓ Difference between v_2 of Λ and Λ -bar observed.


New measurement for Au+Au, 14.5 GeV data


- ✓ Mass ordering of v_2 is observed at low p_T for π^+ , K⁺, p and their antiparticles.
- ✓ No mass ordering observed for K_s^{0} , ϕ , Λ and Λ -bar.
- ✓ Difference between v_2 of Λ and Λ -bar observed.
- ✓ Finite ϕ -meson v₂ in Au+Au at 14.5 GeV.

v_2 of Particles and Antiparticles



✓ Δv₂ = v₂(X) - v₂(X̄) increases with decrease in energy.
✓ Δv₂ = v₂(X) - v₂(X̄) relative to proton v₂ (at p_T = 1.5 GeV/c) shows a centrality dependence.

STAR Centrality dependence

✓ Centrality dependence of v_2 is observed.

✓ Baryon-meson separation of v₂ is more prominent for particles compared to antiparticles at transverse kinetic energy (m_T − m₀) > 1 GeV/c²

- Low p_T mass ordering of v_2 for π^+ , K⁺, p and their anti-particles is observed for Au+Au at 14.5 GeV.
- Centrality dependence is observed for $v_2(p)-v_2(\overline{p})$ when normalized to proton v_2 for all BES energies.

Vipul Bairathi

Transverse momentum spectra and elliptic flow v_2 of identified hadrons in Au+Au collisions at

The results for Au+Au collisions at 14.5 GeV are consistent with the trends established by the

2015 KOBE JAPAN

• Centrality dependence is observed for T_{kin} and $<\beta>$. ★ T_{kin} and <β> are anti-correlated.

Elliptic flow v₂:

- **Kinetic Freeze-out:**
- * $\mu_{\rm B}$ decreases collision energy increases.

 \star T_{ch} increases as collision energy increases.

- Centrality dependence of $\mu_{\rm B}$ is observed.

Au+Au, 14.5 GeV 0-5% Most Central

T _{ch} (MeV)	152 ± 6			
μ _B (MeV)	240 ± 12			
T _{kin} (MeV)	113 ± 3			
<β>	0.45 ± 0.02			

14.5 GeV were presented.

(A) New Measurements:

other BES energies.

Chemical Freeze-out:

(B) Observations:

*

BackUp

Chemical freeze out:

Inelastic collisions among the particles ceases and particle yields get fixed.

THERMUS: Statistical thermal model

Grand Canonical Ensemble: Quantum numbers (B, S, Q) conserved on average

$$n_{i} = \frac{Tm_{i}^{2}g_{i}}{2\pi^{2}} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k} \left(e^{\frac{k\mu_{i}}{T}}\right) K_{2}\left(\frac{km_{i}}{T}\right)$$

• S. Wheaton & Cleymans, Comput. Phys. Commun., 180, 84-109 (2009)

Thermodynamics quantities extracted:

Chemical freeze out temperature T_{ch} Baryon chemical potential μ_B

Kinetic freeze out:

Elastic collisions among the particles stop and the momentum distribution gets fixed

Blast-Wave (BW) Model:

$$\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{kin}}\right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{kin}}\right)$$

• E. Schnedermann, J. Sollfrank, and U. W. Heinz, Phys. Rev. C 48, 2462 (1993).

 I_0 , K_1 : Modified Bessel functions $\rho(r) = tanh^{-1}b$, b: transverse radial flow velocity, r/R: relative radial position; R: radius of fireball T_{kin} : Kinetic freeze-out temperature

- Hydrodynamic based model
- Assumes local thermalization of particles at a kinetic freeze-out temperature and moving with a common radial flow velocity

STAR Comparison with BES energies

• L. Adamczyk et. al, (STAR Collaboration) Phys. Rev. C 88 (2013) 14902

Vipul Bairathi