

Characterizing the away-side jet, devoid of flow background, via two- and three-particle correlations in Au+Au collisions at 200 GeV in STAR

Kun Jiang, for the STAR Collaboration

University of Science and Technology of China & Purdue University

Abstract

Jets are modified in relativistic heavy-ion collisions due to jet-medium interactions. Measurements of jet medium modifications have so far been obscure because of the large underlying anisotropic flow background. In this analysis we devise a novel method to subtract the flow background using data themselves. The away-side jet correlation width is studied as a function of centrality and associated particle p_T. The width is found to increase with centrality at modest to high associated particle p_T. The increase can arise from jet-medium modifications, event averaging of away-side jets deflected by medium flow, and/or simply nuclear k_T broadening. To further discriminate various physics mechanisms, a three-particle correlation analysis is conducted with robust flow background subtraction also using data themselves. Based on this analysis we discuss possible physics mechanisms of away-side broadening of jet-like correlations.

1. Experiment Setup

The Solenoidal Tracker at RHIC (STAR) covers 2π in azimuth and two units of pseudorapidity $|\eta| < 1$

Time Projection Chamber (TPC) – tracking

Event selection

FIG. 1. Picture of the STAR detector

Two-particle correlations

0.00622 ± 0.00020

Fig. 5: (left) Di-hadron $\Delta \phi$ correlations in close-region and far-region in min-

bias Au+Au collisions at $\sqrt{s_{NN}} = 200$

 $|V_{z}|$ <30cm: RHIC run 2010 (MB 240M, central trigger 150M)

 $|V_{7}|$ < 30 cm: RHIC run 2011 (MB 320M) $|V_{7}| < 6$ cm: RHIC run 2014 (MB 520M) $|V_{7}-vpdV_{7}|$ < 3cm (VPD: vertex position detectors) |V_r|<2cm

Track selection

Pseudo-rapidity $|\eta| < 1$

Number of TPC hits>20

distance of closest approach<2 cm

Ratio of fit points to maximum fit points>0.52

<u>2. Methodology (Robust, automatic flow subtraction)</u>

Two-particle azimuthal correlations

Three-particle correlations

Different physics mechanisms for away-side broadening give distinctive 3-particle correlation structures

GeV. (right) The difference between close- and far-regions $\Delta \phi$ correlations.

> **Fig. 6:** 60-80% Au+Au. (a) Same η -region correlations minus cross η -region correlations. (b) Background jet correlations. (c) Background-subtracted threeparticle correlations. The red lines indicate the diagonal and off-diagonal and the black lines indicate the projection ranges.

4. Systematic Error Evaluation

- Two-particle azimuthal correlations
- \checkmark P_x cut > {2%, 5%, **10%**, 15%, 20%, 30%, 50%}
- ✓ DCA < {1, 2, 3}
- ✓ NFitPoint > {15, 20, 25}
- 5. Results

- Three-particle azimuthal correlations
- ✓ DCA < {1, 2, 3} ✓ NFitPoint > {15, 20, 25}

Select 10% of events on the left tail of the distribution to enhance away-side jet population inside acceptance of 0.5<η<1 (or -1<η<-0.5)

- Trigger particle (3< p_T^{trig} <10 GeV/c) over all η range ($|\eta|$ <1) a)
- P_x is corrected by run-by-run ϕ -dependent efficiency*acceptance b)
- η -dependent correction: treat symmetrized dN/d η distribution from $|z_{vtex}|$ < 2cm as the baseline. The ratio of **C**) the dN/d η distribution from each z_{vtex} bin to this baseline is the η - and z_{vtex} -dependent correction
- d) Di-hadron $\Delta \phi$ correlations are analyzed for associated particles (0.15<p_assoc<3 GeV/c) in two η ranges symmetric about midrapidity, one close to and the other far away from the $P_x \eta$ window
- Correlations are corrected for η and p_{T} dependent efficiency*acceptance and then by mixed events |e)
- Flow backgrounds are the same in close-region and far-region, and thus cancelled in their **f** difference. What's left in the difference is away-side short-range correlations.
- Three-particle azimuthal correlations Suppose an event is composed of:

ղ**-region 0**

Two-particle azimuthal correlations

FIG. 7. Away-side jet correlation width as a function of centrality for 3<p^{trig}<10 GeV/c and various p^{assoc} bins in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

Away-side correlation broadens with centrality except very low pT

Three-particle azimuthal correlations

PRD 74 (2006) 072002

PRC 73 (2006) 054903

FIG. 8. Projections of near-side and away-side three-particle correlations along the diagonal Σ within $0 < \Delta < 0.35$ and off-diagonal Δ within $|\Sigma| < 0.35$.

 $\Sigma = (\Delta \phi_1 + \Delta \phi_2)/2 - \pi$ (away-side) or $\Sigma = (\Delta \phi_1 + \Delta \phi_2)/2$ (near-side) $\Delta = (\Delta \phi_1 - \Delta \phi_2)/2$

- Near σ diag > off-diag. \rightarrow jet axis swing effect? (the trigger and the two associated particles are likely on different sides of the jet axis)
- Away σ diag >> off-diag. \rightarrow significant k_T and/or flow deflection.
- **Off-diagonal** σ **near** = away and no centrality

(besides the trigger particle **T**)

- A: Jets correlated with the trigger (di-jet)
- **f**: flow background
- **a**: jets uncorrelated with the trigger

Fig. 4: Cartoon: methodology for three-particle correlations

- **same** η**-region pairs** = TAf+TAa+TfA+Tff+Tfa+TaA+Taf+TAA+Taa **a**)
- **cross** η**-region pairs** = TAf+TAa+TfA+Tff+Tfa+TaA+Taf **b**
- same η -region pairs cross η -region pairs = TAA + Taa **C**)
- **Background jets Taa:** Background jets in triggered events = jets in min-bias events (no requirement of a **d** trigger, normalized per event)
- What's left in three-particle correlations are the short range correlations on both the near side and away side

20 10 0 30 50 % Most Central

dependence \rightarrow little jet modification?

6. Summary

- Novel methods were devised to measure away-side jet correlations with clean, robust flow subtraction Away-side correlation broadens with centrality except low p_T (where the correlation is broad in all centralities).
- Near-side diagonal projection broader than off-diagonal projection \rightarrow Jet axis swing effect?
- Away-side diagonal projection is significantly broader than off-diag. \rightarrow significant k_T and/or flow deflection. Need d+Au data to better quantify relative strengths.
- Off-diagonal width similar between near- and away-side, and no centrality dependence is found. \rightarrow Little jetshape modification on the away side?

The STAR Collaboration: http://drupal.star.bnl.gov/STAR/presentations

η

