

Measurements of heavy flavor decay electron production in p+p collisions at $\sqrt{s}=200$ GeV at STAR

Shenghui Zhang, for the STAR Collaboration

University of Science and Technology of China (USTC)

Abstract

Heavy quarks are believed to be produced at early stages of high-energy heavy-ion collisions. Measurements of heavy quarks can improve our understanding of parton interactions with the Quark-Gluon Plasma (QGP) and its properties. Heavy quark production in p+p collisions is a baseline to investigation of the QGP in heavy-ion collisions and is expected to be well described by perturbative Quantum Chromodynamics (pQCD). However, the pQCD calculations have large uncertainties at low transverse momentum (p_{τ}). Thus measurements of heavy quark production at low p_{τ} in p+p collisions, which can be studied by measuring electrons from semi-leptonic decays of heavy flavor hadrons, are crucial for constraining the pQCD models.

In this poster, we will present the STAR measurements of low p_{τ} heavy flavor decay electron (HFE) production in p+p collisions at $\sqrt{s}=200$ GeV in RHIC run 2012.

STAR Detector

Electron Identification

Analysis

Time Projection Chamber • $|\eta| < 1$, full azimuth •*Tracking, momentum.* •PID through dE/dx

Time of Flight

- • $|\eta|$ <0.9,full azimuth
- PID through TOF
- *Timing resolution:*~85 ps.

Barrel Electromagnetic Calorimeter

- •|*η*|<1,full azimuth
- p/E for PID
- Fast online trigger

Dataset: 299M min-bias events from p+p 200 GeV from Run 12

Inclusive electron

1)Part of hadrons rejected by dE/dx and velocity cuts 2) Fit $n\sigma_e \ distribution \ (n\sigma_e = \ln\left(\left(\frac{dE}{dx}\right)^{Mea} / \left(\frac{dE}{dx}\right)^{Bichsel}\right) / R_{\frac{dE}{dx}})$ -hadron fit function: $C * \exp\left\{-0.5 * \left(\frac{x-\mu}{\sigma}\right)^2 - \exp\left(-\frac{x-\mu}{\sigma} * \eta\right)\right\}$ *—electron fit function: Gaussian* 3) Get purity according to $n\sigma_e$ distibution and cut

Photonic electron

1) Tagged electron + partner electron, get M_{ee} distribution $(M_{ee} < 0.15 \, GeV/c^2, \, pairDca < 3.0 cm)$

2)*Background reconstruction*: UnlikeSign - LikeSign(same event)

Non-Photonic electron(NPE)

N(photonic_e) $N(inclusive_e) * purity - \frac{N(photome_e)}{Photonic e reconstruction eff.}$

<u>Efficiency</u>

- TPC tracking eff. and PHE reconstruction eff. are from MC simulations (embedding)
- Other effs. are extracted using photonic electron sample from data

O	0	nσ _e cut eff.	봕	TPC tracking eff.	
_		partner n $\sigma_{ m e}$ cut eff.	¥	PHE reconstruction eff	
(0) 1 2 ⊢	~ ~ ~	1/B out off		The reconstruction en.	

Background from hadron decays

Study background by simulations 1) $K \rightarrow e \pi v(K_{e3})$:

 $K^+ \rightarrow e^+ \pi^0 v$ $K_L^0 \to e^{\pm} \pi^{\mp} v$ 2) dielectron decays of vector mesons : $\omega \rightarrow e^+ e^- / \omega \rightarrow \pi^0 e^+ e^- \phi \rightarrow e^+ e^- / \phi \rightarrow \eta e^+ e^-$

Inclusive electron

Photonic electron identification

Systematic Uncertainty

- Cuts
- Electron raw yield extraction
- Efficiency
- Background from vector mesons decay

<u>HFE production in p+p 200GeV</u>

 \checkmark Spectrum is extended to low p_T and has a better coverage compare to STAR previous published result. ✓ Consistent with FONLL calculation.

<u>Summary</u>

1)*HFE production in the* p_T range of 0.35 - 2.5*GeV/c in* p + p collisions at $\sqrt{s} = 200$ GeV is measured. 2) This measurement provides a reference for Nuclear Modification Factor R_{AA} measurement in heavy – ion collisions.

