Light nuclei production in heavy-ion collisions at RHIC

Md. Rihan Haque, for the STAR Collaboration

Abstract

 understand the light nuclei production mechanism in heavy-ion collisions.

1. Introduction

$>$ Light nuclei are expected to form at a later stage of the evolution due to their low binding energy ($\sim 2.22 \mathrm{MeV}$ for d, \bar{d} and $\sim 8 \mathrm{MeV}$ for $t,{ }^{3} \mathrm{He}$).

Mass number scaling of nuclei v_{2} suggests coalescence of light nuclei to be the underlying mechanism of nuclei formation in Heavy-ion collisions (HIC). This coalescence mechanism can be studied in detail by studying the nuclei spectra and comparing them with proton (anti-proton) spectra

The light nuclei (anti-nuclei) invariant yield is related to invariant yield of nucleon (anti-nucleon) as,
$E_{A} \frac{d^{3} N_{A}}{d^{3} p_{A}}=B_{A}\left(E_{p} \frac{d^{3} N_{p}}{d^{3} p_{p}}\right)^{Z}\left(E_{n} \frac{d^{3} N_{n}}{d^{3} p_{n}}\right)^{A-Z}$

where \boldsymbol{B}_{A} is called the coalescence parameter.

Coalescence parameter B_{2} (for d, \bar{d}) and B_{3} (for $t,{ }^{3} \mathrm{He}$) are related to the baryon density and correlation (freezeout) volume of the system. Therefore, studying light nuclei we can gain insight in the physical characteristics of the system during the freeze-out.
Measurement of B_{2} in BES ($\sqrt{ } \mathrm{S}_{\mathrm{NN}}=7.7,11.5,19.6,27,39$ and 62.4 GeV) would provide insight in the particle production mechanism via coalescence.
\bar{d} / \bar{p} ratio was found to follow a universal trend as a function of energy (Fig.2).
Measurement of \bar{d} / \bar{p} in the BES $\left(\sqrt{ } S_{N N}=7.7,11.5,19.6\right.$,
27,39 and 62.4 GeV) would test this universality.
2. STAR Experiment \& Analysis
The STAR experiment consists of several detectors, among
which TPC and TOF are primarily used for particle identification (Fig. 3).
The Time Projection Chamber (TPC) is the main tracking device for charged particles at STAR. It covers pseudo-rapidity window of $-1.0<\eta<1.0$ in full azimuth.
The average energy loss (<dE/dx>) per unit length of a charged particle as a function of rigidity (momentum / charge) as measured by TPC is shown in Fig. 4. The solid lines corresponds to the theoretical values.
Identification of nuclei: we define a quantity Z as,

$$
Z=\ln \left(\frac{(d E / d x)_{\text {measrer }}}{(d E / d x)_{\text {predict }}}\right)
$$

and then we fit this Z distribution to calculate light nuclei yield for $\mathrm{p}_{\mathrm{T}}<1.0 \mathrm{GeV} / \mathrm{c}$.
The Time of Flight (TOF) detector measures the time taken by charged particle to travel from its point of origin to the detector, and hence calculates its velocity (β). Therefore, using β from TOF and momentum (p) from TPC, we can obtain the mass of a charged track using the relativistic mass formula: $m^{2}=p^{2}\left(1 / \beta^{2}-1\right)$. A qualitative plot is shown in Fig. 5.
Identification of nuclei using TOF: Light nuclei yields were measured from the m^{2} distribution in fine p_{T} bins. Using the TOF we
$\mathrm{GeV} / \mathrm{c}$.

Event Cuts:

 Vertex $x_{2}<40 \mathrm{~cm}$ for $39,62.4 \mathrm{GeV}$,
${ }_{\mathrm{r}}<1.0 \mathrm{~cm}$ for all energy.
Track cuts:

$\mathrm{N}_{\text {Hilisded }}>\mathrm{D}^{\mathrm{D}} \mathrm{cm}$,
$\mathrm{DCA}<1 \mathrm{~cm}$
$|\eta|<1.0$
$|y|<0.3$

Fig. 1 : B_{2} parameter as measured by different experiments.

Fig. $2: \bar{d} / \bar{p}$ as a function of $\sqrt{ } \mathrm{s}_{\mathrm{NN}}$.

3. Invariant yields vs. p_{T}

4. Results-			A Aurau
$\checkmark\left\langle\mathrm{p}_{\boldsymbol{T}}\right\rangle$ of \bar{d} and d are similar for beam energies studied. $\checkmark\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ of both \bar{d} and d increase monotonically with increasing centrality. $\checkmark \quad \mathrm{N}_{\text {part }}$ scaled \bar{d} and d yields show weak centrality dependence. \checkmark both B_{2} and $\overline{\mathrm{B}}_{2}$ decrease with increasing centrality for all beam energies indicating the correlation volume $\left(V_{f}\right)$ increases with increasing centrality. \checkmark Both B_{2} and $\overline{\mathrm{B}}_{2}$ show weak energy dependence.			
	Fig. 7 : Centrality dependence of $\left\langle\mathbf{p}_{\mathrm{T}}\right\rangle, \mathrm{N}_{\text {part }}$-scaled integrated yield and B_{2} of \bar{d} (upper panel) and d (lower panel).		

5. Results-II Energy dependence of B_{2} and d / \bar{p}

The measurements of B_{2} of \bar{d} and d performed in this analysis are shown by open and filled star symbol respectively, in Fig. 8.
B_{2} measurements in this work are consistent B_{2} measurements in this work are consistent
with other previous measurements in similar energies.
energies
B_{2} is almost constant with respect to energy change appreciably with center-of-mass energy (with the caveat that B_{2} varies as a function of (with the caveat that B_{2} varies as a function of centrality)
\bar{d} / \bar{p} ratio measured in this analysis consistent with the previous measurement in the similar energy range.
\bar{d} / \bar{p} ratio increases monotonically with beam energies and reaches a plateau above ISR beam energy regardless of the beam species.

Fig. $8: \mathrm{B}_{2}$ measured in $\sqrt{\mathrm{S}}^{\mathrm{SN}}=7.7,11.5,19.6,27,39$ and 62.4 GeV (open and solid star).

6. Summary

$>$ Light nuclei p_{T} spectra are presented for $\mathrm{Au}+\mathrm{Au}$ collisions at $\mathrm{V}_{\mathrm{SN}}=7.7,11.5,19.6,27,39$ and 62.4 GeV .
$>\left\langle p_{\top}\right\rangle$ of \bar{d} and d are almost same and show weak energy dependence.
$>N_{\text {part }}$ scaled \bar{d} and d yields shows no significant centrality dependence.
> B_{2} of \bar{d} and d shows strong centrality dependence but no significant beam energy dependence.
> \bar{d} / \bar{p} ratio increases monotonically with beam energies and reaches a plateau above ISR beam energy regardless of the beam species.

