

Rapidity Correlations in the RHIC Beam Energy Scan

Sedigheh Jowzaee

for the STAR Collaboration

Wayne State University

Introduction

- Effect of the initial density fluctuations on particle azimuthal distributions in heavy-ion collisions
 - Characterized by Fourier expansion

$$dN/d(\varphi - \Psi_{RP}) \propto 1 + \sum_{n} 2v_n \cos[n(\varphi - \Psi_{RP})]$$

• Azimuthal correlations provide a wealth of insights, e.g. the "perfect fluid" discovery

Increasing viscosity decreases the observed v_n

• Effect of initial density fluctuations in the longitudinal direction in (pseudo)rapidity space

$$N(\eta)/\langle N(\eta)\rangle \propto 1 + \sum_{n} \sqrt{n + \frac{1}{2}} a_n P_n(\eta/Y)$$

- A. Bzdak *et al.*, Phys.Rev. C87 (2013) J. Jia *et al.*, Phys. Rev. C93, 044905 (2016)
- Long-range correlations from the asymmetry in forward-backward going participants
- Short-range correlations from resonance decays, jet fragmentation, and Bose-Einstein correlation

Motivation: Explore rapidity correlations in the STAR Beam Energy Scan data

- Rapidity correlation observable: $R_2(y_1, y_2) = -1 + \frac{\langle \rho_2(y_1, y_2) \rangle}{\langle \rho_1(y_1) \rangle \langle \rho_1(y_2) \rangle}$ Same event pair distributions \leftarrow Mixed event
- Legendre Polynomials decomposition of $R_2(y_1,y_2)$
- A specific normalization is used to minimize the residual centrality dependence

$$C_{N}(y_{1}, y_{2}) = \frac{R_{2}(y_{1}, y_{2}) + 1}{C_{p}(y_{1})C_{p}(y_{2})} \approx 1 + \sum_{n,m=1}^{\infty} \langle a_{n}a_{m} \rangle \frac{T_{n}(y_{1})T_{m}(y_{2}) + T_{n}(y_{2})T_{m}(y_{1})}{2} \qquad T_{n}(\eta) = \sqrt{n + \frac{1}{2}}P_{n}(\eta/Y), \ \eta \in [-Y,Y]$$

$$C_{p}(y_{1}) = \frac{\int_{-Y}^{Y} (R_{2}(y_{1}, y_{2}) + 1)dy_{2}}{2Y}, C_{p}(y_{2}) = \frac{\int_{-Y}^{Y} (R_{2}(y_{1}, y_{2}) + 1)dy_{1}}{2Y}$$

$$\langle a_{1}a_{1} \rangle - \text{ forward-backward fluctuations}$$

$$\langle a_{2}a_{2} \rangle - \text{ fluctuations of the width of dN/dy}$$

$$\langle a_{n}a_{m} \rangle - \text{ shorter range correlations (for m=n+2 \text{ and larger})}$$
J. Jia *et al.*, Phys. Rev. C93, 044905 (2016)

• In a wounded nucleon model A. Bzdak *et al.*, Phys.Rev. C87 (2013)

• Recent results from viscous hydrodynamics model study

STAR 🖈

A. Monnai et al., Phys.Lett. B752 (2016)

Dataset and Analysis Details

- BES-I dataset: Au+Au at $\sqrt{s_{NN}}$: 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, & 200 GeV
- Particles of interest: h^{\pm} , π^{\pm} , K^{\pm} , & p^{\pm} (2 σ cuts on dE/dx, & require correct TOF)
 - 0.2<p_T<2.0 GeV/c, p_{tot} <1.6 GeV/c for h^{\pm} , π^{\pm} , K^{\pm}
 - 0.4<p_T<2.0 GeV/c, p_{tot} <3.0 GeV/c for p^{\pm}
- Centrality
 - + N_{tracks} with 0.5<| $\eta|$ <1 for $h^{\pm},\,\pi^{\pm},\,K^{\pm}$
 - + $N_{\pi,K}$ with 0<|\eta|<1 for $p^{\scriptscriptstyle\pm}$
 - Only 0-5% central events shown here
- Correction of pseudocorrelations
 - Z-vertex binning and Track merging
- Systematic uncertainties from track and event cuts
- Same analysis code used for UrQMD events

• Measurement of the correlation function in this analysis

• Note:

- fewer pairs/event in STAR BES-I data than at the LHC
- Narrower rapidity acceptance in STAR compared to LHC
- SRC was not subtracted as done by ATLAS

SRC was not subtracted

The diagonal <a_na_m> (m=n) coefficients are generally positive for charged hadrons (correlations)

 $\pi^+\pi^+$, K⁺K⁺ and pp, 0-5% centrality

SRC was not subtracted

SRC was not subtracted

Unlike kaons and pions, the $\langle a_1 a_1 \rangle$ coefficient of protons is negative (anti-correlations)

Baryon correlations

• ALICE analysis results ALICE Collaboration, arXiv:1612.08975v1 p+p at $\sqrt{s_{NN}}=7$ TeV

• TPC/Two-Gamma Collaboration (PEP, SLAC) results e⁺e⁻ annihilation at 29 GeV

In BES-I data, simplest explanation is limited energy available to create 2^{nd} nearby like-sign proton (requires $2 p\bar{p}$ pairs produced)

- A strong correlation structure is observed in R_2 of LS and US h & π at 19.6-27.0 GeV
- The observed structure is similar in shape to "cluster" emission observed in p+p at RHIC and the LHC
 - B. Alver *et al.*, Phys. Rev. C75, 054913 (2007) CMS Collaboration, JHEP 1009, 091 (2010)

• The magnitude of the $|\langle a_n a_m \rangle|$ coefficients of h⁺h⁺ and $\pi^+\pi^+$ increases near 19.6 GeV

• In protons and kaons, |<a_a_m>| coefficients does not change significantly near 19.6 GeV

 $<a_1a_1>$ coefficient is negative for protons in all eight beam energies

SRC is dominant in near-side projection, and it is stronger for US pairs than for LS pairs

and it is charge independent

<u>Summary</u>

- Two-particle rapidity correlations studied for LS and US h, p, K and π in Au+Au in the STAR Beam Energy Scan data
- The shape of the rapidity correlations quantified by decomposing the correlation functions onto a basis set of Legendre polynomials
 - The sign of the $\langle a_1 a_1 \rangle$ coefficient indicates correlations vs. anti-correlations
- There are minima in the $\langle R_2(\Delta y) \rangle$ of protons around $\Delta y=0$
 - This was also observed at higher beam energies
 - $<a_1a_1>$ is negative for protons (anti-correlations), and is positive for π and K (correlations)
 - It is an approximately 1σ effect, but is observed at all eight beam energies
 - Upcoming BES-II will provide larger and better datasets (broader rapidity acceptance) for these analyses
- A charge-independent and beam-energy localized (19.6 & 27 GeV) structure is observed in R_2 for pions

Thank you!

ajowzaee@wayne.edu

Back-up

STAR 🛧

S. Jowzaee, Quark Matter 2017

STAR 🕁

S. Jowzaee, Quark Matter 2017