Event-by-Event Distributions of Flow Harmonics in U+U Collisions at $\sqrt{s_{NN}} = 193$ GeV

Maowu Nie, *for the STAR Collaboration* Shanghai Institute of Applied Physics & Stony Brook University

Abstract

In this work, we present the study of Event-by-Event(EbyE) measurement of elliptic flow in U+U collisions with center-of-mass energy $\sqrt{s_{NN}} = 193$ GeV and in Au+Au collisions with $\sqrt{s_{NN}} = 200$ GeV. A comparison between the asymmetric U+U and a symmetric Au+Au system is shown in terms of the probability distributions of flow vector. The measured flow vector distributions are unfolded by a data-driven Bayesian Unfolding process to suppress non-flow and statistic fluctuation to obtain the true flow distributions[1]. From the probability distribution (p(v₂)), multi-particle cumulants of v₂ - v₂{2}, v₂{4} and v₂{6} are calculated. Comparing to Au+Au, v₂{4} > 0 and v₂{6}<0 in the most central U+U collisions indicates that the prolate shape of uranium increases the anisotropy in the final momentum space distributions of the observed particles. A splitting between v₂{6} and v₂{4} is observed for most centralities in Au+Au and U+U, which is a signature of non-Gaussian fluctuations.

Motivation

 \succ Investigate the difference of initial condition fluctuation in deformed U+U and

Results

The 2kth-order coefficient can be calculated analytically from the measured v₂

> Measure the full distribution of $p(v_n)$ distribution. We can get the $\langle v_n \rangle$ and σ ; the full shape of the distribution.

physical flow signal cancels, it contains mainly the effects of statistical smearing and non-flow.

> Bayesian Unfolding procedure: q_2 for iterations; Convergence after 8 iterations.

> Unfolded v_2 distribution \rightarrow the underlying flow probability distribution.

Results - Probability distributions of EbyE v₂

- In most central collision, for Au+Au, v₂{4} < 0 and v₂{6} > 0; for U+U, v₂{4} > 0 and v₂{6} < 0.</p>
- The prolate shape of uranium increases the anisotropy in the final momentum space distributions of the observed particles.

Skewness with cumulants[3] $\gamma_1^{exp} = -6\sqrt{2}v_2\{4\}^2 \frac{v_2\{4\} - v_2\{6\}}{(v_2\{2\}^2 - v_2\{4\}^2)^{3/2}}$

- > A fine splitting between $v_2{4}$ and $v_2{6}$ is observed for most centralities, which is a signature of non-Gaussian fluctuations.
- Comparing to Au+Au and Pb+Pb, the ratio in U+U is relatively smaller in most central region, which means the fluctuation is mainly due to the prolate shape.

A comparison between the asymmetric U+U and a symmetric Au+Au system is shown in terms of the probability distributions of event-by-event flow vector.

> In Central region the shapes are different, which is also reflected in the cumulants

References

[1] Aad G *et al.* (ATLAS) 2013 *JHEP* **11** 183
[2] Adamczyk L *et al.* (STAR) 2015 *Phys. Rev. Lett.* **115** 22301
[3] Giacalone G *et al.* arXiv:1608.01823

Negative skew corresponding to the hierarchy v₂{4} > v₂{6}, which lifting the degeneracy between higher-order cumulants.

Summary

- > Measured event-by-event probability distribution of v_2 in U+U and Au+Au.
- In most central U+U $v_2{4} > 0$ and $v_2{6} < 0$, which is due to the prolate shape of uranium increases the anisotropy in the final momentum space distributions.
- A splitting between v_2 {4} and v_2 {6} is observed for most centralities in Au+Au and U+U, which is a signature of non-Gaussian fluctuations.
- Comparing to Au+Au and Pb+Pb, a relatively smaller ratio in the most central region indicates the fluctuation is mainly due to the prolate shape.

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

