

Directed Flow in STAR Fixed target Experiment

D. Tlusty, for the STAR Collaboration

Abstract

Some QGP signatures, such as number-of-constituent-quarks scaling of v₂, can be seen to persist down to Vs_{NN} = 7.7 GeV, while others, such as suppression R_{CP}, show a turn-on behavior. Fixed target collisions in STAR allow the centerof-mass energy to go as low as 4.5GeV. This would provide an opportunity to measure such signatures down to an energy range that can serve as a clean "control" energy in which only a pure hadron gas is expected. In this poster we will present Directed flow of strange hadrons K⁰_S and .

Motivation

STAR Beam Energy Scan (BES-I) results suggest a softening of the equation of state (EOS) which

hints at critical fluctuations

To help clarify these hints, STAR needs to access energies below 7.7 GeV where we expect no QGP formation

Hence we need to switch from the collider mode to fixed-target mode for collisions below v_{NN} < 7.7 GeV at RHIC

Find evidence of the possible first-order phase transition

Find the possible Critical point 3)

Results

Directed Flow

Directed flow describes the sideward motion of the particles within the reaction plane

Generated during the nuclear passage time $(2R/\gamma \approx 0.1 \text{ fm/c})$

 v_1 of Both K_{S}^0 and Λ follow the trend from the STAR Beam Energy Scan and protons are consistent with the trend from E895 [3]

Summary

First directed flow v_1 results of 2015 STAR Fixed target test run were presented.

 v_1 of both K_{S}^0 and Λ follow the trend from the STAR Beam Energy Scan.

 $\sqrt{s_{_{NN}}}$ (GeV)

Therefore probes the very earliest stage of the collision dynamics

Calculated as

 $v_1 = \langle \cos(\phi - \Psi_R) \rangle$

angle in LAB

Reaction Plane angle Ψ_{R}

References

 ϕ

[1] L. Adamczyk *et al.* (STAR Collaboration), Phys. Rev. Lett. **112**, 162301 (2014) [2] A. M. Poskanzer, S. A. Voloshin, Phys. Rev. C 58, 1671 (1998) [3] P. Chung et al. (E895 Collaboration), Phys. Rev. Lett. 86, 2533 (2001)

 v_1 of protons is consistent with the trend from E895 experiment [3]

The FXT program extends BES-II down to $\sqrt{s_{NN}}$ = 3.0 GeV

Baryon Chemical Potential μ_{R}

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

