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Abstract

Due to their large masses, heavy flavor quarks are dominantly produced in initial hard parton scattering processes in high-energy heavy-ion collisions. They experience the full
evolution of the strongly interacting Quark-Gluon Plasma (QGP) created in such collisions. Thus, heavy quarks have been suggested as excellent probes of the properties of the
QGP. To study how heavy flavor quarks interact with the QGP, initial- and final-state effects upon heavy flavor production due to the presence of the heavy ions must be understood.
These effects, also known as Cold Nuclear Matter (CNM) effects, need to be studied in collision systems that include a heavy ion but are not expected to produce a QGP, such as
p+Au collisions. Non-Photonic Electrons (NPE) from semi-leptonic decays of open heavy flavor hadrons can serve as a proxy for heavy flavor quarks, and be used to measure CNM
effects on heavy flavor production. In this poster, we will present the status of the measurement of inclusive NPE production in p+p and p+Au collisions at v (syy) = 200 GeV with
the STAR experiment. Data were recorded by requiring large energy depositions in the Barrel Electromagnetic Calorimeter, from the 2015 run at the Relativistic Heavy lon Collider.

Motivation

Heavy quark interaction with the QGP results in
variations in measured heavy quark production
rates relative to that observed in proton-proton
collisions. There are other effects on heavy
quark production due to the presence of a
nucleus in the initial state, which must be
measured separately. These Cold Nuclear
Matter (CNM) effects include nuclear shadowing
and antishadowing, Cronin enhancement, and 0.2
energy loss (either radiative or collisional) due
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to multiple scatterings of partons in the nucleus
[2]. To study these effects, measurements of
heavy quark production can be made in
collisions of both p+p and asymmetric small
systems like p+Au. A comparison of heavy
guark production in p+p and p+Au collisions can
help quantify the CNM effects.
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Tracking, momentum
measurement, electron
identification via dE/dx.

> Barrel Electromagnetic

Calorimeter
Electron identification through
energy and momentum.
Triggering on high p+
electrons (pr > 2.0 GeV/c).

» Time Of Flight
Electron identification through
flight time for pr< 1.5 GeV/c.

» Vertex Position Detector
Provide Minimum-bias trigger.
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Uncorrected Electron Spectra
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momentum dependence of the electron purity and photonic electron reconstruction efficiency.

First look at uncorrected electron

spectra in p+Au collisions at
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Left: The uncorrected electron spectra from p+p and p+Au collisions. The unlike-sign and like-sign spectra are used to estimate the
PHE background, which is subtracted from the inclusive spectrum, leaving mostly the NPE signal. Middle: The uncorrected non-
photonic electron spectrum from this analysis using Run 15 data and STAR’s previous measurement with Run 12 data[4], showing a
factor of more than ten improvement in statistics. Right: The ratio of non-photonic electrons to photonic electrons. The increased

material budget in Run 15 significantly increases the background at low transverse momentum.
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collisions. These measurements
will help quantify Cold Nuclear
Matter effects on heavy flavor
production in p+Au collisions.




