Coherent low transverse momentum e⁺e⁻ pair production in hadronic Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at STAR

Shuai Yang, for the STAR Collaboration

Brookhaven National Laboratory

Abstract

Dileptons (I⁺I⁻) are produced in all the stages of the heavy-ion collisions, and escape with minimum interaction with the strongly interacting medium. Thus, I⁺I⁻ pair measurements play an essential role in the study of hot and dense nuclear matter, created in heavy-ion collisions. Recently, a significant excess of J/ ψ yield at very low transverse momenta (p_T < 0.3 GeV/c) was reported by the ALICE ^[1] and STAR collaborations in peripheral A+A collisions. These observations may point to evidence of coherent photoproduction of J/ ψ in hadronic interactions which conflicts with traditional knowledge of the coherent photoproduction mechanism. It is interesting to investigate the e⁺e⁻ pair production in a wider invariant mass region (M_{ee} < 4 GeV/c²) at very low p_{τ} in heavy-ion collisions for different centrality bins in order to study the production mechanism.

In this poster, we will present e⁺e⁻ spectra with various invariant mass and p_T differentials in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV. The structure of the t (t = p_T^2) distributions of these mass regions will be shown and compared with the same distributions in ultra-peripheral collisions.

Physics results

Summary

 \succ Significant enhancement at very low p_{T} in the most peripheral collisions is observed in the entire mass region for the first time

 \succ The enhancement at very low p_{τ} has a similar structure to that in UPC

References

[1] J. Adam et al. (ALICE Collaboration), Phys. Rev. Lett. 116 (2016) 222301 [2] C. A. Bertulani, S. R. Klein, and J. Nystrand, Annu. Rev. Nucl. Part. Sci. 55 (2005) 271

[3] R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253

STAR

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

