

Long-range collectivity in small collision systems with two- and four-particle correlations at STAR

Shengli Huang
For STAR Collaboration
Stony Brook University, Chemistry Department

Outline

- ☐ Motivation and Analysis Methods
- ☐ Physics Results
- ✓ The v_2 in different small systems at different collision energies
- ✓ The c_2 {4} in d+Au collisions at different collision energies
- **□**Summary

What is the Origin of Ridge?

- ☐ Ridge (a long-range near-side correlation) is observed in small systems at RHIC: Creation of a small QGP droplet or other mechanisms?
- ☐ If a small QGP droplet is indeed created:

 How does the system evolve in a small QGP droplet?

 How about the dependence of multiplicity and collision energy for the flow?

Initial Geometry and Final State Evolution

Glauber Model

	0-5% p+Au	0-5% d+Au	0-5% He+Au
ε2	0.23	0.54	0.50
ε ₃	0.16	0.19	0.28

J. L. Nagle *PRL113(2014)112301*

- ☐ Different initial geometry in small systems such as p/d/³He+Au
- Large eccentricity ≠ Large flow at low multiplicity: a large shear viscous correction
- ☐ The interplay between them can be explored by measuring the flow in different systems for events with same multiplicity

P. Liu arXiv:1804.04618

Event Activity

- Event classes with different activity are selected by using BBC east in the Au-going direction (-5.0< η <-3.3)
- □ Long-range two-particle correlations are measured in TPC($|\eta|$ <0.9)

- ☐ Correlation between multiplicity at backward and mid-rapidity
- □ 10 event classes with different TPC $<dN/d\eta>$ are selected by sum ADC of BBC east in d+Au collisions at 200 GeV

Long-range Two-particle Correlations

Low Multiplicity (LM)

d+Au 200 GeV

- ☐ A near-side ridge is observed in the HM d+Au $(<dN/d\eta>=17.8)$ and p+Au $(<dN/d\eta>=10.1)$ collisions
- ☐ A Fourier function is employed to extract the $V_{n,n}$

p+Au 200 GeV

$$dN/d\Delta \phi \sim 1 + \sum_{n=1}^{4} 2V_{n,n} \times \cos(n\Delta \phi)$$

Integral
$$v_n = \operatorname{sqrt}(V_{n,n}); v_n(p_T) = V_{n,n}(p_T)/v_n$$

Two Jet Subtraction Methods

1.Low multiplicity subtraction scaled by short-range ($|\Delta \eta|$ <0.5) near-side jet yield

$$V_{n,n}^{HM}(subtracted) = V_{n,n}^{HM} - V_{n,n}^{LM} \times \frac{N_{asso.}^{LM}}{N_{asso.}^{HM}} \times \frac{Y_{jet,near-side}^{HM}}{Y_{jet,near-side}^{LM}}$$

ATLAS:PRC90(2014)044906 CMS:PLB765(2017)193

STAR: PLB743(2015)333

Assumption: short-range near-side jet modification = long-range away-side jet modification

2.Template Fit

A new developed method to subtract away-side jet contribution by ATLAS:

$$Y_{templ.}(\Delta \phi) = F \times Y_{LM}(\Delta \phi) + Y_{ridge}(\Delta \phi)$$

where
 $Y_{ridge}(\Delta \phi) = G \times (1 + 2 \times \sum_{n=2}^{4} V_{n,n} \times \cos(n\Delta \phi))$

ATLAS:PRL(116)172301

Assumption: away-side jet shape can be measured in LM events and scaled by fit parameter "F" due to jet modification

It will cause a bias if assumptions are not correct

v_2 in HM d+Au (0-10%) at 200 GeV

□ v₂ without subtraction is larger than that with subtraction for both methods. *The subtraction of nonflow is crucial in small system!*

v_2 in HM d+Au (0-10%) at 200 GeV

- □ v₂ without subtraction is larger than that with subtraction for both methods. *The subtraction of nonflow is crucial in small system!*
- At lower p_T , the v_2 from LM subtraction is around 35% lower than that from template fit, while they are quite similar at intermediate p_T

v_2 in HM d+Au (0-10%) at 200 GeV

- □ v₂ without subtraction is larger than that with subtraction for both methods. The subtraction of nonflow is crucial in small system!
- At lower p_T , the v_2 from LM subtraction is around 35% lower than that from template fit. While they are quite similar at intermediate p_T
- ☐ The subtracted v₂ measured by STAR is similar to PHENIX measurement, which has at least 10% non-flow

v_2 in HM p+Au (0-10%) at 200 GeV

- ☐ Compared to d+Au results, v₂ in p+Au without subtraction is much larger than that with subtraction for two methods
- \square In p+Au collision, the v_2 from LM subtraction is much lower than that from template fit.
- \Box v₂ from template fit method is similar to PHENIX measurement at low p_T

p/d+Au v_2 with same <dN/d $\eta>$

12

- \Box By LM subtraction method, v_2 in d+Au is a little bit larger than that of p+Au collisions
- \mathbf{u}_2 between p+Au and d+Au collisions from template fit is similar, while the initial eccentricities are different by a factor of two

Integral $V_{2,2}$ vs. $< dN/d\eta >$

- ☐ There is large difference between two methods
- \square LM subtraction leads to a negative $V_{2,2}$ at low energy
 - ✓ Different kinematics between near- and away-side jet-like correlations?
- \square V_{2,2} from template fit increases as a function of <dN/d $\eta>$

Integral v₂ from Template Fit

- ☐ The unsubtracted integral v_2 as a function of $<dN/d\eta>$ is different in different systems at different collision energies
- \Box The integral v₂ from template fit shows a universal trend as a function of <dN/d $\eta>$

Differential v₂ from Template Fit in d+Au BES

- \Box The differential v_2 becomes negative at high p_T in d+Au collisions at low energy
- ☐ The correlation from away-side jet is stronger at higher p_T. This potentially can lead to large uncertainties in the non-flow subtraction

$c_2{4}$ vs. $<dN/d\eta>$

Four-Particle Cumulant

$$c_2\{4\} = \langle\!\langle e^{-i2(\phi_i+\phi_j-\phi_k-\phi_l)}\rangle\!\rangle - 2\langle\!\langle e^{-i2(\phi_i-\phi_j)}\rangle\!\rangle$$
 $\phi_i,\,\phi_j,\phi_k,\phi_l$ are the azimuthal angles of four different particles in an event ; $\langle\!\langle \rangle\!\rangle$ represents the average over all particles from all events within a given multiplicity range $v_2\{4\} = \sqrt[4]{-c_2\{4\}}$

An indication that $c_2\{4\}$ is negative for high multiplicity d+Au collisions at 200 and 62.4 GeV, while the statistical uncertainties are large

<u>Summary</u>

- \Box Large difference between $V_{2,2}$ from two methods has been observed at low energy
 - ✓ There are large uncertainties in the non-flow subtraction in small systems
- \square We see similar v_2 between p/d+Au collisions for same multiplicity.
 - ✓ v₂ is not only driven by initial geometry
- \Box The integral v_2 extracted by template fit shows a universal trend as a function of $<dN/d\eta>$ for different small systems at different energies
 - ✓ Multiplicity plays an important role for the flow in small systems!
- $\Box c_2$ {4} is negative at high multiplicity at 62.4 and 200 GeV, but the measurements are limited by statistics.