Beam energy dependence of charge separation using the $R_{\Psi_m}(\Delta S)$ correlator **Niseem Magdy** STAR

Stony Brook University (for the STAR Collaboration)

Abstract

A charge-sensitive correlator $(R_{\Psi_m}(\Delta S))$ is used to detect and characterize charge separation associated with the Chiral Magnetic Effect (CME) in heavy-ion collisions. The correlator gives a concave-shaped response relative to the second-order event plane, Ψ_2 , and a null response relative to the third-order plane, Ψ_3 , for CME-driven charge separation [1]. We present and discuss $R_{\Psi_m}(\Delta S)$ measurements, relative to Ψ_2 and Ψ_3 , for collisions of Au+Au at $\sqrt{s_{NN}} = 19.6$ and 200 GeV and p(d)+Au at $\sqrt{s_{NN}} = 200$ GeV. $R_{\Psi_2}(\Delta S)$ measurements are also presented for different p_T selections.

The STAR experiment at RHIC

$\Psi_m(\Delta S)$	response
--------------------	----------

 \geq Particles with 0.35 < pT < 2.0 GeV/c and $\eta < 0$ are analyzed using $\Psi_2^{\eta > 0.1}$

 \blacktriangleright Particles with 0.35 < pT < 2.0 GeV/c and $\eta > 0$ are analyzed using $\Psi_2^{\eta < -0.1}$

 \succ The TPC detector is used in the current analysis

 \triangleright Charged hadrons with 0.2 < pT < 2.0 GeV/c are used to construct $\Psi_{2}^{\eta > 0.1} \& \Psi_{2}^{\eta < -0.1}$

 $\Psi_{2}^{\eta > 0.1}$

Only statistical uncertainty are presented

 $R_{\Psi_m}(\Delta S)$ correlator

As outlined in Ref. [1], the correlators can be expressed as the ratio:

AVFD[4]

Comparison of the $R_{\Psi m}(\Delta S')$ correlators obtained from 30-50 % central Au+Au collisions from AMPT, AVFD and data.

 \succ The distinct difference in the measured response for $R_{\Psi_2}(\Delta S')$ and $R_{\Psi_3}(\Delta S')$ panel (c) is consistent with the CME-driven charge separation.

$R_{\Psi_m}(\Delta S)$ response for small and large systems

> The noticeably flat distributions for p(d)+Au collisions are consistent with the reduced magnetic field strength and the approximately random \vec{B} -field orientations (relative to Ψ_2) expected in these collisions. The distribution for peripheral Au+Au collisions is decidedly concave-shaped.

These observations contrast with the large background-driven signal observed for p+Pb and peripheral Pb+Pb collisions at the LHC [2], with the γ correlator.

 \succ These results suggest that the $R_{\Psi_2}(\Delta S')$ correlator is less sensitive to the backgrounds than the γ correlator.

$R_{\Psi_m}(\Delta S)$ correlator width

Charge separation magnitude is reflected in the width of the $R_{\Psi m}(\Delta S)$ distribution which is influenced by number fluctuations and event plane resolution

 $R_{\Psi_2}(\Delta S)$ response to $\langle p_T \rangle$ selections

The influence of background-driven charge separation on $R_{\Psi_2}(\Delta S)$ can be increased (decreased) by selecting particles with larger (smaller) $\langle p_T \rangle$

 \succ The visibly good agreement between the scaled ($\Delta S'$) correlators for the two $\langle p_T \rangle$ selections, confirms that they are not strongly influenced by backgrounddriven charge separation.

 $R_{\Psi_2}(\Delta S)$ correlators obtained for 30-60% central Au+Au collisions, two different $\langle p_T \rangle$ selections for which v_2 changes roughly by a factor of 2.

Beam energy dependence

 \succ The $R_{\Psi_3}(\Delta S'')$ distributions are all flat, while those for $R_{\Psi_2}(\Delta S'')$ are concave-shaped, suggesting the presence of a CME-driven charge separation contribution in mid-central Au+Au collisions spanning the range $\sqrt{s_{NN}} = 19.6 - 200$ GeV.

The extracted $\sigma_{R_{\Psi_2}(\Delta S'')} \propto 1/a_1$, $(a_1 \text{ is Fourier})$ dipole coefficient) suggest weak (if any) $\sqrt{s_{NN}}$ dependence for the CME-driven charge separation for the centrality selection and beam energy range.

Such a dependence could result if:

Reference

[1] N. Magdy, et al., arXiv:1710.01717 [2] CMS Collaboration Phys. Rev. Lett. 118, 122301 (2017) [3] Zi-Wei Lin, et al., Phys. Rev. C72, 064901 (2005) [4] Yin Jiang, et al., arXiv:1611.04586

✓ The lifetime of the \hat{B} -field varies with $1/\sqrt{s_{NN}}$ \checkmark The magnitude of the \vec{B} grows with $\sqrt{S_{NN}}$

Conclusion

Charge separation correlator, $R_{\Psi m}$ (for m = 2,3), is investigated in p(d)+Au ($\sqrt{s_{NN}}$ =200 GeV), and Au+Au collisions $(\sqrt{s_{NN}} = 19.5 - 200 \text{ GeV})$ using the STAR detector.

$\geq R_{\Psi m}$ measurements show:

- \checkmark Expected difference in the response for Ψ_2 and Ψ_3
- ✓ Expected difference in the response for small (p(d)+Au) and large systems (Au+Au)
- $\sqrt{\sqrt{s_{NN}}}$ independence
- $\checkmark \langle p_T \rangle$ independence

 \succ The presented $R_{\Psi m}$ results are consistent with the expectation for CME-driven charge separation.

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

