

Collision-system dependence of charge separation relative to the second- and third-order event planes; Implications for the **Chiral Magnetic Effect in STAR**

Niseem Magdy

for the STAR Collaboration **University of Illinois at Chicago**

Abstract

A charge-sensitive correlator $(R_{\Psi_m}(\Delta S))$ is used to detect and characterize charge separation associated with the Chiral Magnetic Effect (CME) in heavy-ion collisions. The correlator gives a concave-shaped response relative to the second-order event plane, Ψ_2 , and a null response relative to the third-order plane, Ψ_3 , for CME-driven charge separation [1]. We present and discuss $R_{\Psi_m}(\Delta S)$ measurements relative to Ψ_2 and Ψ_3 , for collisions of U+U at $\sqrt{s_{NN}} = 193$ GeV, Au+Au, Cu+Au and p(d)+Au at $\sqrt{s_{NN}} = 200$ GeV. The $R_{\Psi_2}(\Delta S)$ measurements are also presented for different event-shape selections.

► Particles with $0.35 < p_T < 2.0$ GeV/c and $\eta < 0$ are analyzed using $\Psi_2^{\eta > 0.1}$ ► Particles with $0.35 < p_T < 2.0$ GeV/c and $\eta > 0$ are analyzed using $\Psi_2^{\eta < -0.1}$

Shuffling of charges within an event breaks the charge separation sensitivity:

 \succ The $R_{\Psi_2}(\Delta S)$ and $R_{\Psi_3}(\Delta S)$ give similar response to the background irrespective of the correlator shape.

> The distinct difference in the measured response for $R_{\Psi_2}(\Delta S)$ and $R_{\Psi_3}(\Delta S)$ panel (d) are in contrast with the CME-driven charge separation.

$R_{\Psi_m}(\Delta S)$ response for small and large systems

- \succ The noticeably flat/convex distributions for p(d)+Au collisions are consistent with the reduced magnetic field strength and the approximately random \vec{B} -field orientations (relative to Ψ_2) expected $\widehat{\varsigma}$ 1.05 in these collisions. The distribution for peripheral Au+Au collisions is \leq_{\sim} decidedly concave-shaped.
- > These observations contrast with the large background-driven signal observed for p+Pb and peripheral Pb+Pb collisions at the LHC [2], with the γ correlator.
- \succ These results suggest that the $R_{\Psi_2}(\Delta S')$ correlator is less sensitive to the backgrounds than the γ correlator.

 $\mathbf{R}_{\Psi_{m}}(\Delta \mathbf{S})$ response to event-shape selections

> Events are further subdivided into groups with

Au+Au 🗗 200 GeV d+Au 🔶 $\langle N_{ch} \rangle \sim 20 \pm 2$ p+Au ⊷ **STAR Preliminary** 0.95 $\Delta S^{\prime\prime}$ -1

 $\succ R_{\Psi_2}(\Delta S)$ correlators obtained for 20-50% central Au+Au

Corrections for number fluctuations and the event plane resolution effects on the $R_{\Psi_m}(\Delta S)$

Charge separation magnitude is reflected in the width of the $R_{\Psi m}(\Delta S)$ distribution which is influenced by number fluctuations and event plane resolution. A scaling procedure was developed to mitigate both of these effects. This procedure was validated with the Au+Au data by selectively modifying the number fluctuations and the event plane resolution. Such modifications were accomplished by selecting a fraction of the particles in the sub-events used to (i) evaluate the event plane, (ii) measure charge separation relative to the event plane and (iii) both. Here we show a similar example using the AMPT model for case (iii).

✓ Number fluctuations

The influence of the particle number fluctuations can be minimized by empirically scale the ΔS by $\sigma_{\Lambda S^{sh}}$ to be $\Delta S'$.

\checkmark Event plane resolution The influence of the event plane resolution can be minimized by empirically scaling the $\Delta S'$ by

 δ_{Res} to be $\Delta S''$.

Collision-system dependence of the $R_{\Psi_m}(\Delta S)$

The $R_{\Psi_2}(\Delta S)$ and $R_{\Psi_3}(\Delta S)$ for 0-20% centrality selection in different collision systems.

The different percentage represent the fraction of the event statistics used to create the $R_{\Psi m}(\Delta S)$ correlator. The empirical formula suggested can account for both the number fluctuations and the plane resolution effects on $R_{\Psi m}(\Delta S)$ [1].

Reference

[1] N. Magdy, et al., Phys. Rev. C97, 061901 (2018) [2] V. Khachatryan et al. (CMS Collaboration) Phys. Rev. Lett. 118, 122301 (2017)

 \succ The R_{Ψ_2}(ΔS) correlators for different collision systems is strikingly different from those for R_{Ψ_3}(ΔS) correlators. \succ The R_{Ψ_2}(ΔS) decidedly concave-shaped, as would be expected for CME-driven charge separation with limited influence from background-driven charge separation.

Conclusions

Charge separation correlator, $R_{\Psi m}$ (for m = 2,3), is investigated in, U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV, Au+Au, Cu+Au and p(d)+Au collisions at $\sqrt{s_{NN}} = 200$ GeV using the STAR detector.

$\triangleright R_{\Psi m}$ measurements show:

- \checkmark Expected difference in the response for Ψ_2 and Ψ_3
- ✓ Expected difference in the response for small (p(d)+Au) and large systems (Au+Au)
- $\checkmark R_{\Psi_2}$ width is q₂ independent (weak v₂-driven background sensitivity)

The presented $R_{\Psi m}$ results are consistent with the expectation for CME-driven charge separation.

This work is supported by the grant from DOE office of science

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

