Topological Cut Optimization for Λ_c Reconstruction Using the Supervised Learning Algorithm in TMVA at STAR ## Chuan Fu (Central China Normal University) for the STAR Collaboration #### **Abstract** Measurement of charmed baryon, Λ_c , provides a unique tool to study the charm quark hadronization in the hot and dense medium created in heavy-ion collisions. With the dataset of Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV recorded by STAR experiment at RHIC in 2014, Λ_c signals were successfully reconstructed through the hadronic decay channel ($\Lambda_c \to \pi \text{Kp}$). Measurements of Λ_c production with better precision require refined topological cut optimization. In this poster, we will present Λ_c reconstruction using the Toolkit for Multivariate Data Analysis (TMVA)-Boosted Decision Trees (BDT) method with data from 2014. The improvement in the significance is notable compared to previous results using the TMVA-Rectangular Cut Optimization method. We will discuss the cut optimization for Λ_c in different transverse momentum (p_T) and centrality bins with the TMVA-BDT method. #### Λ_c Decay Topology | Constituent quarks | udc(udc) | |--------------------|--| | сτ | 60 μm | | Mass | 2286 MeV/c ² | | Right-sign | $K^+\pi^-\overline{p}$, $K^-\pi^+p$ | | Wrong-sign | $K^+π^+\overline{p}$, $K^-π^-\overline{p}$, $K^+π^-p$, $K^+π^+p$, $K^-π^-p$, $K^-π^+\overline{p}$ | Cut variables used for TMVA-BDT: daughter pion, Kaon and proton DCA to the primary vertex, DCA between daughters, $\cos\theta$ (θ is shown on the right picture), Decay Length of Λ_c . #### **TMVA-Boosted Decision Trees** Build the first decision tree: give the maximum signal and background separation Background (BG) sample S node (more signal) Cut variable<c1 Cut variable>c1 B node (more BG) Reweight the misclassified events Cut variable<c2 Cut variable<c3 Cut variable>c3 Cut variable>c2 and then build decision tree forest Get the BDT response according to the Adaptive Boost Algorithm^[3] #### **BDT Training and Cut Scan** - ullet Λ_c signal sample is from simulation Event Generator (EvtGen) + data-driven fast simulator. Background sample is from experimental data. - Left: one half of the sample was used for the training (symbols) and the other was used to perform the over-training test (curves). -> Consistent with each other: no over-training. - Right: scan the BDT response from -0.2 to 0.4 to obtain the optimal BDT cut (0.225). ### Λ_c Reconstruction Results - 2014 data, ~ 900 M events: Λ_c candidates from right-sign combination (solid symbols) and background from wrong-sign (open symbols). - Raw counts and significance are calculated within 3 sigma range by bin counting. - Compared to the reconstruction result using the TMVA-Rectangular Cut method^{[4][5]}, the TMVA-BDT method increases the significance by about 50%. #### **p**_T and Centrality Dependence #### Summary - •Extraction of Λ_c signal from Au+Au data has been optimized using the TMVA-Boosted Decision Trees method in different centrality and p_T bins. - •Compared to the TMVA Rectangular Cut method, the TMVA-BDT method improves the signal significance for Λ_c by about 30-50% depending on p_T and centrality. #### References - [1] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update. - [2] Miroslav Šimko for the STAR Collaboration, Measurement of Λ_c baryon production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV with the STAR experiment. [3] A. Hoecker et al. TMVA Toolkit for Multivariate Data Analysis, PoS ACAT 040 (2007), arXiv:physics/0703039. - [4] Guannan Xie for the STAR Collaboration, Quark Matter 2017. - [5] Guannan Xie for the STAR Collaboration, Nuclear Physics A 967 (2017): 928-931.