

Measurement of semi-inclusive γ_{dir} +jet and π^0 +jet distributions in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR experiment

Nihar Ranjan Sahoo, for the STAR Collaboration Shandong University, Qingdao, China

Abstract

We present the semi-inclusive measurement of charged jets recoiling from direct-photon and $\pi 0$ triggers in central Au+Au collisions at 200 GeV center of mass energy, using a dataset with integrated luminosity 13 nb-1 recorded by the STAR experiment in 2014. The photon and $\pi 0$ triggers have 9 < E_T^{trig} < 15 GeV. Charged jets are reconstructed with the anti-k_T algorithm with resolution parameters R=0.2 and 0.5. A mixed Event technique developed previously by STAR is used to correct the recoil jet yield for uncorrelated background, enabling recoil jet measurements over a broad p_{T,jet} range with large jet radius. We report the corrected semi-inclusive recoil jet yields for both triggers and compare them to those for p+p collisions. These measurements have different trigger bias, in terms of both the path-length distribution and quark/gluon mix of the recoil jet population, and their corrected recoil spectra are compared.

1. Motivation

- Jet quenching is an important signature of the hot and dense lacksquareQCD matter produced in heavy-ion collisions [1].
- A direct photon (γ_{dir}) produced in coincidence with a recoil • jet (γ_{dir} +jet) is a good probe to study the parton energy loss

2. STAR detector setup

3. Analysis details

Purity of direct photon for different trigger E_T^{trig} bins

- in the QGP [2].
- Comparison between γ_{dir+} jet vs π^{0+} jet provides quantitative • understanding of parton energy loss in the QCD medium
 - Energy loss as a function of path length, color factor, parton energy, etc.
 - Redistribution of lost inside the energy medium [Jet radius]

γ_{rich}+jet: SE and ME π^0 +jet: SE and ME Au+Au 200 GeV, 0-15[∞] + 9 < E^{trig}_T < 11 GeV [SE] $\star 11 < E_T^{trig} < 15 \text{ GeV [SE]}$ $R_{jet} = 0.5$ $R_{iet} = 0.2$ $R_{iet} = 0.2$ anti-k_⊤ anti-k_⊤ π⁰+jet STAR Prelimit **STAR Prelimina** ਦੇ 10^{−6} <u>N</u> $p_{\text{T,jet}}^{\text{reco,ch}} (= p_{\text{T,jet}}^{\text{raw,ch}} - \rho \cdot A) \text{ [GeV/c]}$ $\begin{array}{c|c} -10 & 0 & 10 & 20 & 30 \\ p_{\text{T.iet}}^{\text{reco,ch}} \left(= p_{\text{T.iet}}^{\text{raw,ch}} \text{-} \rho \cdot \text{A}\right) \left[\text{GeV/c}\right] \end{array}$ $\begin{array}{c} 0 \\ p_{\text{T,jet}}^{\text{reco,ch}} \left(= p_{\text{T,jet}}^{\text{raw,ch}} - \rho \cdot A\right) \left[\text{GeV/c}\right] \end{array}$ 20 30

π^{0+} jet: Recoil jet p_T spectra

_{ي ق}10^{-2′}

ວີ 10⁻³

z^{²/₂} 10⁻⁴

ੁੋ 10⁻⁶

SIN SIN

4. Results and discussion

Caption- γ_{rich} +jet :The reconstructed jet p _{T, jet} reco distributions are shown for the same event (SE) and mixed event (ME) for two triggers E_T^{trig} bins: 9-11 GeV and 11-15 GeV. Left and right panels represent for $R_{jet} = 0.2$ and 0.5, respectively. Lower panels shows the ratio between SE and normalized ME.

Recoil charged jets dominate (above ~10 GeV/c) over uncorrelated jet background from mixed events for different E_T^{trig} bins and jet radii. A clear trigger dependence can been seen.

γ_{dir} +jet: Recoil jet p_T spectra

Fully corrected semi-Captioninclusive γ_{dir} trigger recoil charged jet p_T , jet spectra for the above two E_T^{trig} bins. Dashed lines are PYTHIA8 expectation. Left panel (R=0.2) and Right panel (R=0.5). Systematic (lighter band) and statistical (darker band) uncertainty. γ_{dir} +jet: Downward arrow represents the large uncertainty.

Full analysis chain:

- Discrimination between $\pi^0/\gamma_{\rm rich}$ -triggered events Transverse Shower Profile method [4]
- 2. Recoil jets from high-tower-triggered events (SE)

Using FastJet package [3]; Recoil jet region: $[\pi-\pi/4]$, $\pi + \pi/4$]; Jet radius = 0.2 and 0.5; $|\eta_{iet}| < 1-R$

3. Subtraction of uncorrelated jet background in recoil region Based on h+jet analysis[5], event-mixing technique

4. Correction for detector and heavy-ion background fluctuations effects

- 5. Conversion from γ_{rich} +jet to γ_{dir} +jet [4] Using π^0 +jet yield and purity of γ_{dir}
- 6. Major sources of systematic uncertainty

Unfolding, mixed-event normalization region, detector effects, γ_{dir} background subtraction [contributes only to γ_{dir} +jet]

 $\gamma_{\rm rich}$ trigger events: enriched- $\gamma_{\rm dir}$ trigger events with some admixture of photons from π^0 .

A clear difference between recoil-jet spectra for different trigger E_T : 9 < E_T ^{trig} < 11 GeV vs. 11 < $E_T^{trig} < 15$ GeV. Recoil jet p_T is suppressed with respect to PYTHIA8. γ_{dir} +jet: downward arrow represents upper limit in the yield at: $p_{T,iet}^{ch} = 11 \text{ GeV/c}$ for $9 < E_T^{trig} < 11 \text{ GeV}$, $p_{T,iet}^{ch} = 15 \text{ GeV/c}$ for $11 < E_T^{trig} < 15$ GeV.

 γ_{dir} +jet vs π^0 +jet: Recoil jet suppression for R_{jet} = 0.2 and 0.5

Recoil jet with jet radius 0.2 shows strong suppression whereas a negligible suppression is observed for jet radius 0.5, within uncertainties. I_{AA}PYTHIA values are comparable between the two E_T trig bins. The same level of suppression is seen between γ_{dir} +jet and π^0 +jet for

Caption- I_{AA}^{PYTHIA} as a function of $p_{T,jet}^{ch}$ for γ_{dir} - (red band) and π^0 -trigger (blue band) recoil charged jet. Top: 9 < $E_T^{trig} < 11$ GeV. Bottom: $11 < E_T^{trig} < 15$ GeV. Lighter and darker bands represent systematic and statistical uncertainties, respectively. Right and left panels represent R_{iet}=0.2 and 0.5, respectively.

Recoil jet yield suppression with respect to p+p:

$${}_{AA}(p_{T,jet}^{ch}) = rac{Y(p_{T,jet}^{ch})^{Au+A}}{Y(p_{T,jet}^{ch})^{p+p}}$$

 $Y(\mathbf{p}_{\mathrm{T,jet}}^{\mathrm{ch}})^{\mathrm{Au+Au}}$ and $Y(\mathbf{p}_{\mathrm{T,jet}}^{\mathrm{ch}})^{\mathrm{p+p}}$ represent recoil jet yield per trigger as a function jet $P_{T,jet}^{ch}$ for Au+Au and p+p collisions, respectively. For p+p baseline, PYTHIA8 result is used.

different E_Ttrig bins and jet radii within uncertainties.

References

- 1. J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005)
- 2. X.-N. Wang, Z. Huang, and I. Sarcevic, Phys. Rev. Lett. 77, 231 (1996)
- 3. M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C (2012) 72:1896
- 4. L. Adamczyk et al. (STAR Collaboration), Phys. Lett. B 760 (2016) 689-696
- 5. L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 96 (2017) no.2, 024905

5. Summary and outlook

- First γ_{dir} +jet and π^0 +jet measurement at RHIC within 9 < E_T trig < 15 GeV is presented in central Au+Au collisions at center of mass energy 200 GeV
- Recoil jet with jet radius 0.2 is strongly suppressed at high jet p_T whereas a noticeable recovery of jet energy loss is • observed at jet radius 0.5 for both the γ_{dir} and π^0 trigger cases
- Recoil jet suppression is seen to be independent of E_T^{trig} ; whereas γ_{dir} +jet and π^0 +jet show similar level of suppression.
- The measurement within $15 < E_T^{trig} < 20$ GeV for γ_{dir} +jet is ongoing

Email Id: nihar@rcf.rhic.bnl.gov The STAR Collaboration: https://drupal.star.bnl.gov/STAR/presentations/