

Recent Measurements of Heavy Quarkonium Production in p+Au and p+p Collisions at STAR

In part supported by

Yanfang Liu, for the STAR Collaboration

Texas A&M University

Outline

$> J/\psi$ Production in Au+Au Collisions

• J/ ψ nuclear modification factor (R_{AA}) vs. p_T and centrality

$> J/\psi$ Production in p+Au Collisions

- J/ ψR_{pAu} in minimum-bias events
- J/ ψ yield in different centrality classes

$> J/\psi$ and Υ Productions in p+p Collisions

- Event activity dependence of quarkonia production
- J/ ψ and $\psi(2S)$ yields in 510 GeV p+p collisions

Summary and Outlook

Outline

 $> J/\psi$ Production in Au+Au Collisions

• J/ ψ nuclear modification factor (R_{AA}) vs. p_T and centrality

 $> J/\psi$ Production in p+Au Collisions

- $J/\psi R_{pAu}$ in minimum-bias events
- J/ ψ yield in different centrality classes

 $> J/\psi$ and Υ Productions in p+p Collisions

- Event activity dependence of quarkonia production
- J/ ψ and ψ (2S) yields in 510 GeV p+p collisions

Summary and Outlook

Heavy Quarkonia as Probe of the QGP

- Lattice QCD predicts a transition between hadrons and the Quark-Gluon Plasma (QGP) when temperature/density is sufficiently high.
- Quarkonia are expected to be dissociated in the QGP due to the color screening effect. The resulting suppression is viewed as a signature of deconfinement. T. Matsui and H. Satz, PLB 178 (1986) 416

- Other effects could also play a role
 - --- Regeneration
 - --- Energy loss
 - --- Cold nuclear matter effects (CNM)

J/ψ Suppression: RHIC vs. LHC

 $J/\psi R_{AA}$ as a function of N_{part} in 200 GeV Au+Au and 2.76 TeV Pb+Pb collisions

- Low-p_T: more suppressed at RHIC than at LHC in central collisions → smaller charm production cross-section at RHIC and thus smaller regeneration.
- **High-** p_T : J/ ψ is strongly suppressed at both RHIC and LHC in (semi-)central collisions \rightarrow Color Screening?

J/ ψ Suppression vs. p_T in Au+Au Collisions

- In central and semi-central collisions, J/ψ is suppressed from low to high p_T with no strong p_T dependence.
- Interplay of different effects
 - Dissociation: decreases with $p_{\rm T}$ due to formation time effect
 - Regeneration: mostly at low $p_{\rm T}$
 - Cold nuclear matter effects.
- Model calculations can describe data fairly well.

First final results from MTD in Au+Au collisions

Outline

 $> J/\psi$ Production in Au+Au Collisions

• J/ ψ nuclear modification factor (R_{AA}) vs. p_T and centrality

$> J/\psi$ Production in p+Au Collisions

- J/ ψR_{pAu} in minimum-bias events
- J/ ψ yield in different centrality classes

$> J/\psi$ and Υ Productions in p+p Collisions

- Event activity dependence of quarkonia production
- J/ ψ and ψ (2S) yields in 510 GeV p+p collisions

Summary and Outlook

Cold Nuclear Matter Effects

- Cold Nuclear Matter Effects
 - --- nPDF effect
 - --- Nuclear absorption effect
 - --- Comover absorption
 - --- Cronin effect

Modification of PDF distributions in a nucleus

- ➤ Shadowing: nPDF < proton PDF</p>
- Anti-shadowing: nPDF > proton PDF

. . .

Yanfang Liu, Quark Matter 2019

Cold Nuclear Matter Effects

- Cold Nuclear Matter Effects --- nPDF effect
 - --- Nuclear absorption effect
 --- Comover absorption
 - Cropin offect
 - --- Cronin effect

Absorption of quarkonia by remnant of incident nuclei

Gavin et al., PRL 78 (1997) 1006 Capella et al., PLB 393 (1997) 431

. . .

Cold Nuclear Matter Effects

- Cold Nuclear Matter Effects
 - --- nPDF effect
 - --- Nuclear absorption effect
 - --- Comover absorption --- Cronin effect

Break-up of quarkonia by comoving hadrons outside of nuclear remnant

Ferreiro et al., EPJC 61 (2009) 859 Ferreiro et al., PLB 680 (2009) 50 Ferreiro, et al., PRC 81 (2010) 064911

. . .

 $J/\psi R_{pAu}$ at 200 GeV

EPS09+NLO, Ma & Vogt, Private Comm. nCTEQ, EPS09+NLO, Lansberg Shao, EPJC 77 (2017) 1 Comp. Phys. Comm. 198 (2016) 238 Comp. Phys. Comm. 184 (2013) 2562 Ferreriro et al., Few Body Syst. 53 (2012) 27

- R_{pAu} is consistent with unity at high p_T and is less than unity at low p_T
- Model calculations with nPDF effects only can touch data within uncertainties
- Additional nuclear absorption is favored by data, which could depend on centrality

Centrality Determination in p+Au Collisions

Use minimum-bias p+Au collisions at $\sqrt{s_{NN}} = 200$ GeV taken by STAR in 2015.

Steps:

1) Use the track multiplicity within $|\eta| < 1$, called **number of good primary tracks (NGPT)**, for centrality classification. Its distribution can be well described by HIJING+GEANT simulation.

The requirements for NGPT tracks are:

- **DCA < 1cm**
 - --- closest distance between the track and the primary vertex
- |η| < 1

--- pseudo-rapidity

• NHitsFit ≥ 10

--- number of TPC space points used for track reconstruction

Centrality Determination in p+Au Collisions

Use minimum-bias p+Au collisions at $\sqrt{s_{NN}} = 200$ GeV taken by STAR in 2015.

Steps:

2) Based on HIJING+GEANT simulation, the NGPT is seen to be correlated with the number of binary nucleon-nucleon collisions (N_{coll}).

Centrality Determination in p+Au Collisions

Use minimum-bias p+Au collisions at $\sqrt{s_{NN}} = 200$ GeV taken by STAR in 2015.

Steps:

3) The boundaries of different NGPT centrality classes are determined, and the corresponding $\langle N_{coll} \rangle$ values are calculated.

Centrality Classes	$\langle N_{\rm coll} \rangle$
0-20%	7.8
20-40%	6.0
40-80%	3.9

J/ψ Signal in Different p+Au Centralities

- Good J/ ψ signal in different p+Au centrality bins
- R_{pAu} and study of correlation between self-normalized yield and event activity are underway

Outline

 $> J/\psi$ Production in Au+Au Collisions

- J/ ψ nuclear modification factor (R_{AA}) vs. p_T and centrality
- $> J/\psi$ Production in p+Au Collisions
 - $J/\psi R_{pAu}$ in minimum-bias events
 - J/ ψ yield in different centrality classes
- $> J/\psi$ and Υ Productions in p+p Collisions
 - Event activity dependence of quarkonia production
 - J/ ψ and $\psi(2S)$ yields in 510 GeV p+p collisions

Summary and Outlook

J/ψ Yield vs. Event Activity in p+p @ 200 GeV

<t Final EPOS3.2 D⁰ STAR J/w PYTHIA8 J/w p_>0 GeV/c 2 < p₁ < 4 GeV/c 0 GeV/c <mark>_</mark> p_{_} > 1.5 GeV/c 4 < p₊ < 8 GeV/c > 1.5 GeV/c p_>4 GeV/c >4 GeV/c Percolation model — p_{_} > 0 GeV/c ALICE J/w $\bigcirc p_{_{T}} > 0 \text{ GeV/c}$ 10 $(dN_{ch}^{MB}/d\eta)/\langle dN_{ch}^{MB}/d\eta \rangle$ $(dN_{ch}^{MB}/d\eta)/\langle dN_{ch}^{MB}/d\eta \rangle$ $(dN_{ch}^{MB}/d\eta)/\langle dN_{ch}^{MB}/d\eta \rangle$

- Stronger-than-linear rise of J/ ψ yield vs. mid-rapidity activity, especially at high $p_{\rm T}$
- Possible scenarios:
 - Quarkonium produced in multi-parton interactions (MPI): PYTHIA8 and EPOS
 - String percolation
 - Color glass condensate (CGC)/saturation

STAR, PLB 786 (2018) 87

Y Yield vs. Event Activity in p+p @ 500 GeV

Leszek Kosarzewski Poster No. HF30

CMS, JHEP 04 (2014) 103 ALICE, PLB 712 (2012) 165 STAR, PLB 786 (2018) 87

- Faster-than-linear rise for $\Upsilon(1S)$
- Similar trends observed for J/ψ and Υ at RHIC and LHC

$\Upsilon(1S)$ and J/ ψ Event Activity: Data vs. Models

- Both PYTHIA8 with MPI and Percolation Model qualitatively describe data trend
- CGC/Saturation consistent with both J/ ψ and Υ measurements at low and high p_T
- More precise measurements at high multiplicity needed in order to distinguish between models

E. Levin, et al., EPJC 79 (2019) 376 E, Ferreiro, et al., PRC 86 (2012) 034903

J/ψ Cross-Section in p+p @ 500/510 GeV

- Inclusive J/ ψ cross-section combining dimuon channel at low $p_{\rm T}$ and dielectron channel at high $p_{\rm T}$
- Several models on the market
 - Improved color evaporation model (ICEM)
 - NLO non-relativistic QCD (NRQCD), applicable at high $p_{\rm T}$
 - CGC+NRQCD at low $p_{\rm T}$
- ICEM and NRQCD calculations are compared to data with b-hadron feed-down contributions from FONLL added
 - Low p_{T} : ICEM and CGC+NRQCD over-predict data assuming zero polarization
 - High $p_{\rm T}$: ICEM and NLO NRQCD are consistent with data

New J/ ψ and $\psi(2S)$ in p+p @ 510 GeV

Chan-Jui Feng Poster No. HF35

- J/ψ and $\psi(2S)$ signal through the dimuon channel using 2017 data
 - About a factor of 8.5 more statistics compared to published 2013 result

Corrected J/ ψ and ψ (2S) Yields and Their Ratio

- More differential J/ ψ measurement at low $p_{\rm T}$ with improved precision, and extends to higher $p_{\rm T}$
- First $\psi(2S)$ to J/ ψ ratio vs. p_T from STAR
- Results follow the world-data trend and ICEM prediction

November 5th, 2019

Summary and Outlook

≻ Au+Au

- Strong suppression of J/ ψ at high $p_T \rightarrow$ dissociation in medium
- Weak dependence of $J/\psi R_{AA}$ on p_T seen in all centrality classes
- ≽ p+Au
 - In MB events, suppression at low $p_{\rm T}$, and consistent with unity at high $p_{\rm T}$
 - Significant J/ ψ signal in different centrality classes. Centrality and multiplicity dependent studies are underway
- > p+p
 - J/ψ and Υ at RHIC follow similar faster-than-linear trend as at LHC
 - New J/ ψ and $\psi(2S)$ measurements will further help constrain models
- ➢ Outlook
 - More statistics from 2017 p+p (10×) and 2015 p+Au for the dielectron channel

Back Up

The Solenoid Tracker At RHIC (STAR)

TPC

Time Projection Chamber measures tracking for particle momenta and energy loss for particle identification. Covers $|\eta| \le 1.0$

TOF

Time Of Flight detector measures particles' flight time for particle identification. Covers $|\eta| \le 1.0$

BEMC

Barrel Electro-Magnetic Calorimeter triggers on and identifies high- $p_{\rm T}$ electrons. Covers $|\eta| \le$ 1.0

MTD

Muon Telescope Detector triggers on and identifies muons. Covers $|\eta| \le 0.5$ and 45% in $0 \le \phi < 2\pi$

VPD

Vertex Position Detectors provide main minimum-bias trigger, the event start time and the primary collision vertex location. Covers 4.24≤|η|≤5.1

$\Upsilon(nS)/\Upsilon(1S)$ vs. Multiplicity

• No significant dependence on event multiplicity