

Event anisotropy v2 in Au+Au collisions at

$\sqrt{s_{NN}}$ = 27 and 54.4 GeV with STAR

Shaowei Lan, for the STAR Collaboration

Abstract:

Elliptic flow is one of the most important observables in the relativistic heavy-ion collisions. It can provide us opportunities to study the evolution of the expanding system. In this poster, we will present elliptic flow of identified particles $(\pi^{\pm}, K^{\pm}, p(\bar{p}), K_S^0, \Lambda(\bar{\Lambda}), \varphi, \Xi^-(\bar{\Xi}^+), \Omega^-(\bar{\Omega}^+))$ at midrapidity $(\eta < 1)$ as a function of transverse momentum in Au+Au collisions at $\sqrt{s_{NN}} = 27$ and 54.4 GeV. The φ -meson and multistrange hadrons have small hadronic cross sections and freeze-out early from the medium, therefore can be used to study the energy dependence of partonic and hadronic interactions. Furthermore, the mass ordering of v_2 is expected to be violated between proton and φ -meson in the low p_T range $(p_T < 1.5 \text{ GeV/c})$ [1, 2] due to their different sensitivity to hadronic phase. These results provide us an opportunity to study the hadronic contributions on v_2 measurements as a function of collision energy and centrality.

Motivation: Initial spatial anisotropy in coordinate space exists in non-central heavy-ion collisions. Density gradients and interactions among constituents lead to conversion from initial spatial anisotropy to finial momentum-space anisotropy. $E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} (1 + \sum_{n=1}^{\infty} 2v_n cos(n(\phi - \Psi_{RP}))) \qquad v_2 = \langle cos(2(\phi - \Psi_{RP})) \rangle$ partonic hadronic

Multistrange Hadrons and φ-meson

- > Less sensitive to late hadronic rescatterings.
- > Freeze-out earlier than other light hadrons.

Experimental Setup:

The STAR Detector

- > Excellent particle identification.
- ➤ Large acceptance at midrapidity.
- > Full azimuthal coverage.

Data Sets

$\sqrt{s_{ m NN}}$ (GeV)	Events (10 ⁶)	Year
27	1000	2018
54.4	1200	2017

Particle Identification

v₂ Extraction

- \triangleright π , K, p, ϕ -meson: event plane method.
- \triangleright Weak decay particles $(K_s^0, \Lambda, \Xi, \Omega)$: invariant mass method.

Particle vs. Antiparticle v₂:

 $\phi, \Omega, \Xi \Lambda$

- ➤ Significant difference of baryon and antibaryon v₂ observed at low energy [3].
- New data from 27 GeV and 54.4 GeV are consistent with the energy dependence curve.

Mass Ordering Violation:

- ldeal hydrodynamics + hadron cascade (JAM model) calculation [1, 2] suggests mass ordering violation between proton and ϕ -meson v_2 at low p_T region.
- \triangleright The effect of late hadronic interactions on the proton v_2 .

- Mass ordering violation between proton and φ-meson v₂ at 54.4 GeV is observed.
- Clear centrality dependence for both 54.4 and 200 GeV [4].
- \overline{p} v₂ values are used at lower energy as they are all produced.

Summary:

- \triangleright We have measured the v_2 of identified particles at 27 and 54.4 GeV.
- The difference between particle and antiparticle v_2 at 27 and 54.4 GeV is consistent with the energy dependence curve.
- \triangleright Mass ordering violation between proton and φ -meson v_2 and its centrality dependence are observed at 54.4 GeV.

References:

- [1] S. Takeuchi, T. Hirano et al., Phys. Rev. C **92**, 044907 (2015)
- [2] T. Hirano, U. Heinz et al., Phys. Rev. C 77, 044909 (2008)
- [3] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 110, 142301 (2013)
- [4] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, 062301 (2016)