Underlying event studies in d+Au collisions at $\sqrt{s_{NN}}$ =200 GeV from STAR

Jana Bielcikova (NPI ASCR, Czech Republic), for the STAR Collaboration

Abstract:

Description of heavy-ion collisions, where modifications of the fragmentation functions due to interaction of partons with the hot and dense medium are expected, is a challenging task and requires a detailed understanding of small collision systems such as p+p and d+Au. Comparison of measurements in p+p and d+Au collisions can be further used to disentangle initial state effects from cold nuclear matter effects.

Particles produced in p+p and d+Au collisions originate not only from hard scatterings, but soft and semi-hard multiple parton interactions and initial- and final-state radiation combine to produce particles at mid-rapidity which constitute the so called underlying event. The STAR collaboration at RHIC recently presented first results on underlying event properties in p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV. We extend these studies and investigate in detail properties of underlying event in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The analysis is based on the large d+Au data sample collected by the STAR experiment in year 2008. The extracted underlying event properties are compared to those from p+p collisions. The obtained results will serve as input to Monte Carlo models.

What is an Underlying Event (UE)? p+p events are more than just hard scattering. They contain: • soft/semi-hard multiple parton interactions (MPI) initial/final state radiation (ISR/FSR) • beam-beam remnants

transverse

60[°] <|∆φ|<120[°]

Characterization of the UE properties:

In a given event a leading jet (di-jet) is found and underlying event properties are studied in transverse region relative to jet (di-jet) axis. leading jet $\Delta \phi$ toward

transverse 60° <|∆φ|<120[°]

|∆φ|**<**_60°

away

 $|\Delta \phi| > 120^{\circ}$

Comparison of $dN_{cb}/d\eta d\phi$ in leading and di-jet samples in p+p and

R. Field et al. (CDF), hep-ph/0510198

At Tevatron ($\sqrt{s}=1.96$ TeV) the charged particle density measured in leading jet sample is by ~50% larger than in di-jet sample \rightarrow significant ISR/FSR at large angles. Note: $x_T = 0.2$ p_T(jet)=20 GeV at RHIC p_T(jet)=200 GeV at Tevatron

The transverse region is split to two parts **TransMax** – transverse region with highest $\sum p_T$, $\sum N_{track}$ **TransMin** – transverse region with least $\sum p_T$, $\sum N_{track}$

Two types of analysis:

- leading jet in the acceptance
- di-jet: $|\Delta \phi| > 150^\circ$, $p_T^{away}/p_T^{leading} > 0.7$ (suppression of initial and final state radiation effects)

TransMax:

enhanced probability of containing hard initial/final state radiation component TransMin:

sensitive to beam-beam remnants and multiple parton interactions

Goal: compare "TransMin" and "TransMax" data from leading and di-jet samples \rightarrow information about large angle ISR/FSR

STAR experiment:

Time Projection Chamber (TPC):

• charged particle tracking • for jet and UE analysis charged particles with $p_T = 0.2-15 \text{ GeV}/c \text{ are used}$

Barrel ElectroMagnetic Calorimeter (BEMC):

 neutral energy contribution • tower size in (η,ϕ) is 0.05x0.05 • trigger

• acceptance: full azimuthal, $|\eta| < 0.9$

• 100% hadronic correction: p_T of charged track pointing to a BEMC tower subtracted off the tower E_{T} to avoid double counting (MIP, electrons, hadronic showers).

d+Au collisions at RHIC shows a small size of initial and final state radiation effects. Difference between TransMax and TransMin regions follows approximately Poisson sampling.

Transverse momentum distributions of particles in jets, UE and minimum bias collisions

Data analysis:

Data sample:

• d+Au collisions at $\sqrt{s_{NN}}$ =200 GeV measured in Run8 • 20% highest multiplicity events of minimum biased and **BEMC triggered collisions analyzed**

BEMC threshold	Number of events
E _T >2.64 GeV	4.6 M
E _τ >3.6 GeV	4.5 M
E _T >4.3 GeV	6 M
E _T >8.4 GeV	0.5 M

Jet reconstruction:

• infrared safe SISCone algorithm and sequential recombination algorithms k_t and anti-k_t

implemented in the Fastjet package used [1-2].

• resolution parameter R=0.4 and R=0.7 \rightarrow fiducial jet acceptance in pseudorapidity: $|\eta| < 1$ -R

• neutral energy fraction in jets: NEF= 0.1-0.9.

• reconstructed jet p_T is corrected for underlying event background [3]:

$p_T(jet) = p_T(raw) - \rho x A \pm \sigma \sqrt{A}$

A = active jet area, ρ = background density calculated per event using k_t algorithm, σ = background fluctuations

Further jet analysis details and jet related results in d+Au collisions can be found in [4]. The UE properties are within errors consistent for all jet finders used. The results shown are for the anti-k, algorithm. The p+p UE results are from [5].

charged particle p₋ (GeV/c)

charged particle p₁ (GeV/c)

In d+Au collisions, the p_{T} spectra of particles in TransMax and TransMin regions are very close to each other and approach the inclusive spectrum. In p+p collisions, the p_T spectrum of particles in TransMax region is harder than in TransMin region and both are harder than in minimum bias collisions. This difference is probably due to increased multiplicity in the UE in d+Au collisions relative to p+p collisions.

Conclusions:

The properties of underlying event in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV were studied for the first time at RHIC. The comparison with p+p data shows that the UE in d+Au collisions has by a factor five larger charged particle density which scales approximately with number of participants. The $< p_T >$ in d+Au underlying event is only slightly higher than in p+p collisions. p_{T} distributions of particles in TransMax and TransMin UE regions are similar to inclusive particle distribution in minimum bias events in d+Au collisions while they are harder in p+p collisions. No significant ISR/FSR effects at large angles are observed in p+p and d+Au collisions at RHIC in contrast to studies in p+p collisions at Tevatron ($\sqrt{s}=1.96$ TeV).

References:

1. G. P. Salam, G. Soyez, JHEP 0705 (2007) 086.

G. P. Salam, G. Soyez, JHEP 0804 (2008) 063; M. Cacciari, G. P. Salam, Phys. Lett. B641 (2006) 57.

M. Cacciari, G. P. Salam, G. Soyez, JHEP 0804 (2008) 005.

- J. Kapitan et al. (STAR Collaboration), Poster 428. 4.
- 5. H. Caines et al. (STAR Collaboration), arXiv: 1012.5008.

The STAR Collaboration: http://drupal.star.bnl.gov/STAR/presentations