

Beam Energy Scan on Hypertriton Production and Lifetime Measurement

Yuhui Zhu^{1,2} for the STAR Collaboration

Brookhaven National Lab, USA
Shanghai Institute of Applied Physics, CAS, China

- \star Introduction and Motivation
- \star Analysis Details
- $\star {}^{3}_{\Lambda}$ H Production
- ★ Beam Energy Dependence of Strangeness Population Factor
- ★ Hypertriton Lifetime Measurement
- **\star** Conclusions and Outlook

Hypernucleus

Hypernucleus: Nucleus which contains at least one hyperon in addition to nucleons.

Yuhui Zhu

Sensitivity to OCD Phase Transition

Hypertriton is a local baryon-strangeness correlation system

Strangeness Po

TAR

It is predicted th: S_3 would behave differently in pure hadron gas and QGP.

1.5 1.2 0.9 0.6 0.3 0.0

Yuhui Zhu

Hypertriton Lifetime Measurement

free
$$\Lambda \rightarrow \begin{cases} p\pi^{-}(\sim 63.9\%) \\ n\pi^{0}(\sim 35.8\%) \end{cases}$$

bound $\Lambda \rightarrow \begin{cases} \text{mesonic (suppressed)} \\ \text{nonmesonic}(\Lambda + N \rightarrow N + N) \end{cases}$

Previous Measurements(before 1973):

Use nuclear emulsion or bubble chamber Accepted hypertriton events: less than 80

STAR 2010 Measurement

Run4 200GeV	minbias	22M
Run4 200GeV	central	23M
Run7 200GeV	minbias	68M

STAR 2010+2011 Datasets

Run10 200GeV	minbias	~220M
Run10 200GeV	central	~180M
Low Energies	minbias	~212M

Previous Measurement

It is promising to obtain an improved lifetime measurement result using present datasets.

STAR Detector

Solenoidal Tracker At RHIC

Time Projection Chamber

 $(0 < \phi < 2\pi, |\eta| < 1)$ Tracking – momentum Ionization energy loss – dE/dx

Yuhui Zhu

★ Datasets

Datasets Used						
Run10 7.7GeV	minbias	~4 M				
Run10 11.5GeV	minbias	~11 M				
Run11 19.6GeV	minbias	~31 M				
Run11 27GeV	minbias	~49 M				
Run10 39GeV	minbias	~118 M				
Run10 200GeV	minbias	~223 M				
Run10 200GeV	central	~199 M				
Run7 200GeV	minbias	~56 M				

★Analysis Method: Secondary Vertex Finding Technique

- \star Find helium-3 and pion helices
- \star Analyze each possible helium-3 and pion pair and give appropriate

V0 cuts

 \star Plot the invariant mass spectra

Daughter Identification

 \star ³*He*

	Run10 7.7	Run10 11.5	Run11 19.6	Run11 27	Run10 39	Run10 200(minbias)	Run10 200(central)	Run7 200 minbias
^{3}He	8587	7161	6321	5312	6456	5822	11181	2264
$^{3}\overline{He}$	0	0	0	19	133	2213	4241	861

 $\star \pi^{-}$

 $|n\sigma_{\pi}| < 2$

Statistics: Run7+Run10+Run11 minbias+central, totally 609.89M events

Background Estimation: Rotated background fit Signal: Bin-bin counting in a fixed mass range : [2.986, 2.996] GeV

 ${}_{\Lambda}^{3}H + {}_{\overline{\Lambda}}^{3}\overline{H}$ produced: 602 ± 63 significance: 9.6 σ

³H Production in Separate Energies

 ${}_{\Lambda}^{3}\text{H} + {}_{\overline{\Lambda}}^{3}\overline{\text{H}}$ produced at $\sqrt{S_{NN}} = 7.7,11.5,19.6,27,39,200\text{GeV}(\text{minbias})$

Yuhui Zhu

TAR

³He p_T Spectra

³He p_T Spectra becomes harder with the increase of beam energy. From this spectra, ${}^{3}_{\Lambda}H/{}^{3}He$ ratio can be obtained by dividing their yields in p_T range [2,5]GeV/c

With present statistics, the strangeness population factor indicates (with 1.7σ) an increasing trend with the increase of energy(from 5.2GeV to 200GeV)

Radioactive Decay Law $N(t) = N(0) \times e^{-t/\tau} = N(0) \times e^{-\frac{l}{\beta\gamma}/c\tau}$, *l* is the decay length

Absorption

Hypertriton interacts with air and detector structure materal

$$e^{\frac{\sigma_{3}}{\Lambda}H+material} \frac{l}{\sigma_{p+material}} \frac{\lambda_{T}/\rho}{\lambda_{T}/\rho}} \sim e^{\frac{\sigma_{3}}{\Lambda}H+p} \frac{l}{\sigma_{p+p}} \frac{\lambda_{T}/\rho}{\lambda_{T}/\rho}} < e^{\frac{\sigma_{pd}+\sigma_{p\Lambda}}{\sigma_{pp}} \frac{l}{\lambda_{T}/\rho}}$$

Absorption effect is less than 1.5% and can be neglected

Bin Width

Present is 4MeV bin, τ fit result is 123 ± 24 ps For 2MeV bin, τ fit result is 116 ± 23 ps Systematic error due to binning is 5.7%

Different Cuts

Change cuts 1): $\tau:120 \pm 30$ ps Change cuts 2): $\tau:130 \pm 28$ ps

Systematic error due to cuts is 6.2%

Total Systematic Error: ~8.4%

Lifetime Measurement

Yuhui Zhu

- ★ Over 600 ${}^{3}_{\Lambda}H + {}^{3}_{\overline{\Lambda}}\overline{H}$ are reconstructed with 9.6 σ significance
- ★ ${}^{3}_{\Lambda}H + {}^{3}_{\overline{\Lambda}}\overline{H}$ signal at separate energies is reconstructed
- ★ Strangeness population factor tends to increase with energy with 1.7σ
- ★ A statistically improved lifetime $\tau = 123 \pm_{22}^{26} \pm 10 \, ps$ is obtained.

 \star Subsequent study on the lifetime related physics

★ RHIC BES-II Project to improve the low energy statistics

Backup

Yuhui Zhu

V0 cuts at separate energies

	Run10 7.7	Run10 11.5	Run11 19.6	Run11 27	Run10 39	Run10 200(minbias)	Run10 200(central)	Run7 200 minbias
dca1to2	<1.0cm	<0.8cm	<0.9cm	<1.0cm	<1.0cm	<0.8cm	<1.0cm	<1.0cm
v0dca	<1.0cm	<0.8cm	<1.0cm	<1.0cm	<0.9cm	<1.0cm	<1.1cm	<1.0cm
dca(helium-3)	<1.0cm	<1.0cm	<1.0cm	<1.0cm	<1.0cm	<1.0cm	<1.0cm	<1.0cm
dca(pion)	>0.9cm	>0.8cm	>1.0cm	>1.2cm	>0.7cm	>1.0cm	>0.9cm	>0.8cm
V0 decaylength	>2.4cm	>2.1cm	>3.3cm	>3.5cm	>2.0cm	>3.3cm	>2.6cm	>2.4cm

V0 cuts for lifetime measurement

V0 cuts	v0dca	dca1to2	dca(heium-3)	dca(pion)	v0 decaylength
	<1.0cm	<1.0cm	<1.0cm	>0.8cm	>2.4cm

Difference cuts for systematic study on lifetime

Present cuts: l > 2.4 cm, dca(π)>0.8cm, dca1to2<1.0cm, v0dca<1.0cm Change cuts 1): l > 4.0 cm and dca(π)>1.2cm, $\tau : 120 \pm 30$ ps Change cuts 2): dca1to2<0.7cm and v0dca<0.7cm, $\tau : 130 \pm 28$ ps

Validity to combine different datasets to calculate lifetime

 $^{3}_{\Lambda}$ H efficiency vs $l / \beta \gamma$

