

Forward+near-forward azimuthal correlations in p+p and d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Xuan Li for the STAR Collaboration Temple University

Outline

- Motivation
 - How sharp is the transition from dilute parton gas to saturated parton density: eg. Color Glass Condensate (CGC)?
- Forward+near-forward correlations at STAR
 - Near-forward jet-like cluster reconstruction
 - Forward π⁰ + near-forward jet-like cluster azimuthal correlations
 - Correlations in p+Au approach comparison with d
 +Au results
- Summary & Outlook

How to probe low x gluons

• Forward particle production.

- Large rapidity $(\eta_{\pi} \sim 4)$ inclusive π production and correlations probe asymmetric partonic collisions.
- Mostly high- x_q valence quark (x>0.2) + low- x_g gluon (x<0.01).
- Forward back-to-back correlations can probe low x gluon.

• We use the data of run8 p+p and d+Au collision at $\sqrt{s} = 200$ GeV.

The soft gluon x is related to associated particle in correlations

 The pseudo-rapidity of the associated particle is strongly correlated with soft gluon x in the asymmetric parton scattering.

Existing STAR forward di-hadron measurements

forward-forward, forward-mid correlations

$P_T(FMS) > 2.0 \text{ GeV/c}$; 1.0 GeV/c < $P_T(BEMC/TPC) < P_T(FMS)$

- Forward-forward: significant broadening from p+p to d+Au in back-to-back peak. Suppression in central d+Au.
- Forward-mid: No significant broadening from p+p to d+Au.
 - Higher pedestal in d+Au than in p+p.

π^0 reconstruction in the FMS

Leading forward π^0 is reconstructed in the most forward ulletFMS photon pair mass in p+p collision

There are clear π^0 peaks in the FMS during p+p and d+Au ulletcollisions. QM2012 Xuan Li

7

Jet-like cluster reconstruction in the EEMC

• The jet-like cluster are reconstructed based on cone algorithm.

One event of the energy deposition in the EEMC with FMS π^0 trigger(p_t>2.0GeV/c) in p+p collision at \sqrt{s} = 200GeV.

The EEMC energy deposition is jetty.

- Energy E_{jet} : $E_{jet} = \Sigma E_{Ti_{j}} E_{Ti}$ is the energy of tower i.
- Mass M_{jet} : (1) Assuming tower hits are zero mass. Projecting T_i energy to its center to get the momentum vector of the tower p_{Ti} . (2) The jet-like momentum vector $p_{jet} = \Sigma p_{Ti}$. (3) $M_{jet} = \operatorname{sqrt}(E_{jet}^2 - \eta P_{jet}^2)$.

What is the underlying events

- Underlying event can shift physical jet to observed jet.
- Underlying events: Initial and final state interactions ("color and spectator baggage") [ISMD05, Rick Field].

In back to back correlation (away side jet must remain $[5\pi/6,7\pi/6]$), define jet #1 direction is $\phi = 0$, then the regions $[\pi/3,2\pi/3]$ and $[4\pi/3,5\pi/3]$ are the underlying event study areas (transverse region).

Xuan Li

The mass spectrum of the back-to-back jet-like cluster and the underlying events in the EEMC
 Data and simulation comparison under the condition: FMS π⁰ (pt^{FMS}>2.0GeV/c), the back-to-back EEMC jet-like cluster(1.0GeV/c<pt^{EEMC} <pt^{FMS},M>0.2GeV/c²) and the underlying events (no M cut and no pt cut).

- To suppress underlying event contribution, we use 600MeV tower threshold for the EEMC and 0.4GeV/c² as the lower mass limit for the reconstructed jetlike cluster.
- $\sigma_{dAu} \sigma_{pp} = 0.10 \pm 0.02^{+0.04}_{-0.02}$ Significant broadening from p+p to d+Au.

The correlation results on the tower threshold dependence

• The EEMC tower thresholds are selected from 250MeV, 400MeV, 500MeV to 600MeV. Results are after mixed event corrections. Fit function is $G(x) = b + \frac{A_1}{\sqrt{2\pi\sigma}} \exp(\frac{1}{2}(\frac{x-A_2}{\sigma})^2)$, σ is defined as width.

• The different tower thresholds do not impact on the width differences between pp and dAu much.

QM2012

FMS (π^0)-EEMC (jet-like cluster) correlations (High p_t)

b_{pp}= 0.0007, b_{dAu}= 0.0094
 To suppress underlying event contribution, we use 600MeV tower threshold for the EEMC and 0.4GeV/c² as the lower mass limit for the reconstructed jet-like cluster.

•
$$\sigma_{dAu} - \sigma_{pp} = 0.13 \pm 0.02^{+0.03}_{-0.02}$$
 Significant broadening from p+p to d+Au.
Xuan Li Xuan Li

Summary on the correlation peak

 Compare the width differences from p+p to d+Au collisions for different di-hadron correlations.

p,(Leading)>2.0GeV/c,1.0GeV/c<p.(associated)<p.(Leading) p_(Leading)>2.5GeV/c,1.5GeV/c<p_(associated)<p_(Leading) **Correlation width difference Correlation width difference** $\pi^{0} + \pi^{0}$ (stat. error only) [ArXiv:1102.0931] $\pi^{0}+\pi^{0}$ (stat. error only) [ArXiv:1102.0931] 0.8 0.8 π^0 +jet-like cluster π^0 +jet-like cluster systematical error 0.6 0.6 systematical error 0.4 0.4 **STAR Preliminary STAR Preliminary** 0.2 0.2 0 0 0.003<x<0.02 -0.2 0.003<x<0.02 0.008<x<0.0 0.0009<x<0.005 -0.2 0.008<x<0.0 0.0009<x<0.005 -0.4 2 3 -0.4 0 1 2 3 0 1 associated particle n associated particle n

Low p_t

High p_t

Not only x dependence but also Q^2 dependence.

 Evolution of results in assoc particle η is consistent with a smooth transition from dilute parton system to Color Glass Condensate state (or saturation).

QM2012

Tagging Spectator Neutrons from Deuteron Beam as p+Au approach

• Clear neutron peak in deuteron-facing ZDC in d+Au collisions.

Results in p+Au approach

 Multi-parton interactions appear to contribute to the pedestal in d+Au collisions but less significantly to p+Au collisions.

QM2012

Summary

- Significant broadening from p+p to d+Au collisions for the FMS π^0 EEMC jet-like cluster correlation peak width.
- Comparisons of p+Au to d+Au suggest independent double parton scattering is present in d+Au, affecting only the azimuthal correlation pedestal.
- The rapidity dependences of the correlations suggest a smooth transition process from dilute parton gas to dense CGC state.

Outlook of nucleus gluon saturation study

The final state π^0 s or jet-like clusters are complex objects that can include not only color interactions from initial states but also from final states.

• A Electron Ion Collider (EIC)?

- Go to lower x than fixed target experiment.
- DIS process is much cleaner than the hadron-hadron interaction.

19

Backup

What does the nucleon parton distribution look like?

• The nucleon quark distribution is well known.

How about a larger nucleus?

• Fixed target experiments derived the nuclear gluon density only at 0.02<x<0.3.

• Nuclear (mass number A) gluon density $\approx A^{1/3} \times$ nucleon gluon density at a given x, leading to the expectation $Q_s^2 \approx A^{1/3} x^{\beta}$. [hep-ph/0304189] For example, for Au nucleus, the saturation is expected at x \approx 0.001.

Why do forward π^0 production in a hadron collider?

• Large rapidity π production (η_{π} ~4) probes asymmetric partonic collisions

• Directly couple to gluons \Rightarrow probe of low x gluons

QM2012

Tagging Spectator Neutrons from Deuteron Beam

• It may also be useful to distinguish between p+Au and d+Au collisions by looking for events where the neutron in the deuteron remains intact

Deuteron-facing (West) ZDC Response

Gold-facing (East) BBC Charge Sum

• Minimum Bias Run 8 d+Au Data

ArXiv:1109.0649

- Tag spectator neutrons using deuteron-facing (West) ZDC
- Clear single-neutron peak
- Cutting on single-neutron peak biases towards peripheral collisions

ZDC west neutron tag in deuteron beam

• dAu FMS π^0 and EEMC jet-like coincidence.

 In 200k dAu simulation with shadowing setup, using HIJING neutron and apply ZDC acceptance. With FMS π⁰ p_t>2.0GeV/c trigger.

The ZDC neutron bump has photon background, but the ZDC neutron tag events are dominated by pAu collisions.

ZDC west neutron tag in deuteron beam

• dAu FMS π^0 and EEMC jet-like coincidence.

similar like forward-forward data.

Mixed events studies

• Algorithm. The studies initially use MB data for EEMC jet-like cluster B.

The correlation results on the lower limit of the mass cut for the EEMC jet-like clusters

• The EEMC jet-like cluster lower limit of the mass cut a=0.2GeV/c², 0.3GeV/c² and 0.4GeV/c². Results are after mixed event corrections. Fit function is $G(x) = b + \frac{A_1}{\sqrt{2\pi\sigma}} \exp(\frac{1}{2}(\frac{x-A_2}{\sigma})^2)$ and σ is width.

• The different mass lower limit cuts do not impact on the width differences between pp and dAu much.

QM2012

Different form Different EEMC tower threshold.

ullet

Ο

<u>م</u>

UNIZUTZ

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

mass>a(GeV/č)

0.70 0.1 0.2 0.2 0.4 0.5 0.4 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

AUGULI

mass>a(GeV/c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

mass>a(GeV/c)

The mass spectrum of the back-to-back jet-like cluster and the underlying events in the EEMC Data and simulation comparison under the condition: FMS π^0 (p^{FMS}>2.0GeV/c), the back-to-back EEMC jet-like cluster(1.0GeV/ $c < p_t^{EEMC} < p_t^{FMS}$, M>0.2GeV/c²) and the underlying events (no M cut and no p_{+} cut). 600MeV tower threshold p+p collision low p d+Au collision low p EEMC back-to-back pp data EEMC back-to-back dAu data EEMC transverse pp data EEMC transverse dAu data 10⁻ EEMC back-to-back pp sim 10 EEMC back-to-back dAu sim EEMC transverse pp sim EEMC transverse dAu sim Probability per trigger Probability per trigger 10⁻² 10^{-2} **STAR Preliminary STAR Preliminary** 10⁻³ 10 **0**-4 **10⁻⁴** •0⁻⁵ 10^{-5} 10⁻⁶ 10⁻⁶ 10⁻⁷ 0.4 0.6 0.8 1.2 1.4 0.2 0 1 0.8 1.2 1.4 0 0.2 0.4 0.6 1 M(GeV/c²) M(GeV/c²)

Systematic uncertainties on the width differences

- Systematic uncertainty sources:
 - (I) Cone radius R
 - (II) EEMC tower energy threshold
 - (III) Pseudo-rapidity cuts for the EEMC jet-like cluster
 - (IV) Mass cut lower limit for the EEMC jet-like cluster
- We change only one cut and fix the other cuts to see the systematic uncertainties.
 - Standard cuts: R=0.6, EEMC tower threshold 600MeV, jet-like cluster with 1.1<η<1.9, and jet-like cluster mass lower limit 0.4GeV/c².

Systematic uncertainties

• Consider the four sources on previous slide.

Item	Width differences $\Delta \sigma$ (low p_t)	Width differences $\Delta \sigma$ (high p_t)
standard	$0.0957 {\pm} 0.0200$	$0.1295{\pm}0.0229$
I	$0.1163 {\pm} 0.0279$	$0.1107{\pm}0.0264$
II	0.0770 ± 0.0140	$0.1242{\pm}0.0173$
III	$0.1308 {\pm} 0.0296$	$0.1428{\pm}0.0333$
IV	$0.0915 {\pm} 0.0224$	$0.1246{\pm}0.0220$
systemactic	+ 0.0351	+0.0329
	- 0.0187	-0. 0188

- Based on the systematic studies shown above, the correlation width differences between p+p collisions and d+Au collisions for the coincidence probability of FMS π^0 and EEMC jet-like cluster are,
- $0.0957 \pm 0.0200^{+0.0351}_{-0.0187}$ with low pt cuts,
- $0.1295 \pm 0.0229_{-0.0188}^{+0.0329}$ with high pt cuts.

Reduce underlying event contribution impact on the fit constant value most

• For FMS π^0 -EEMC jet-like cluster correlations.

FMS π^0 background contribution

• In p+p full simulation, inclusive FMS π^0 mass.

Ongoing corrections on the forward+forward correlations

- Corrections are:
 - Δφ dependent background subtraction.
 - $\Delta \phi$ dependent efficiency correction.

- Test corrections in PYTHIA/GEANT for p+p $\longrightarrow \pi^0 + \pi^0$.
- Good agreement with **PYTHIA** (no detector) information.