

Measurement of hadron suppression and study of its connection with vanishing v₃ at low $\sqrt{s_{\rm NN}}$

Stephen Horvat for the STAR collaboration

Yale University

Outline

- Introduction
 - Beam Energy Scan (BES)
 - Motivation
 - Data
- v_3^2 {2} and its connection to a partonic phase
- Hadron suppression in BES with Y(N_{part})
- Conclusion

The Solenoidal Tracker At RHIC (STAR)

Beam Energy Scan

- At what energy do key QGP formation signatures turn off?
- Is there a critical point and if so where?
- Is there evidence for a first order phase transition?

Motivation

- P.
- 2 suggested signatures of QGP formation are investigated
 - One measures v_3^2 {2}
 - The other looks for "high- p_T " suppression (Y(N_{part}))
- These two techniques are distinct and complementary

- These data are from phase 1 of the BES at RHIC
- Phase 2 of the BES will provide additional statistics and energies for $\sqrt{s_{NN}} < 20 \text{GeV}$

$\sqrt{s_{NN}}$ (GeV)	μ _B (MeV)	Year	N _{event} (10 ⁶)
7.7	420	2010	4
11.5	315	2010	12
14.5	260	2014	20
19.6	205	2011	36
27	155	2011	70
39	115	2010	130
62.4	70	2010	67
200	20	2010	350

STAR Internal Note SN0598 (2014)

Signatures from the bulk $(v_3^2 \{2\})$ **STAR**

J. Auvinen and H. Petersen, Phys. Rev. C 88, no. 6, 397 064908 (2013)

"shear viscosity suppresses the higher p_{T} -integrated v_{n} coefficients more strongly than V₂" - C. Chen et al., Phys.Rev. c 91 (2015) 2, 024908

Extracting v₃²{2}

$$\frac{dN}{d(\varphi_2 - \varphi_1)} \propto 1 + \sum_{n=1}^{\infty} 2v_n^2 \cos(n(\varphi_2 - \varphi_1))$$

- Corrected for detector acceptance and efficiency
- The $\Delta \eta$ distribution is fit with 2 Gaussians and the broader Gaussian is used to extract $\langle v_3^2 \{2\} \rangle$
- The narrow Gaussian is dominated by HBT

See Liao SONG's Talk Tuesday 2:40 Correlations and Fluctuations IV

STAR

Scaled by N_{part} to counter the approximate 1/ N_{part} dependence one would expect from fluctuation driven v_3^2 {2}

Stephen Horvat

Quark Matter 2015, Kobe, Japan, 27 September 2015

Scaled by N_{part} to counter the approximate 1/ N_{part} dependence one would expect from fluctuation driven v_3^2 {2}

Stephen Horvat

Quark Matter 2015, Kobe, Japan, 27 September 2015

Scaled by N_{part} to counter the approximate 1/ N_{part} dependence one would expect from fluctuation driven v_3^2 {2}

Stephen Horvat

Quark Matter 2015, Kobe, Japan, 27 September 2015

 v_3^2 {2} is positive for data more central than 50-60% centralities, for all energies measured here

Hybrid UrQMD

expectations suggest that these results are consistent with QGP formation, even in the lowest energy collisions at RHIC

×10⁻³

Results $- v_3^2 \{2\}$

- v₃²{2} vanishes for the lowest energy peripheral data
 - This is consistent with the hybrid UrQMD model's expectations for the turn-off of QGP formation

 $v_{3}^{2}\{2\} - Au + Au$ • 0-5% 0.8 ▲ 10-20% 30-40% 6.0 ×25 **50-60%** 0.4Pb+Pb 0.2 Au+Au 0 STAR Preliminary 10³ 10^{2} 10^{4} 10 $\sqrt{s_{_{NN}}}$ (GeV)

2.76 TeV data from ALICE, Phys. Rev. Lett. **107**, 032301 (2011)

State of world's R_{AA}

 We use R_{CP} in the BES since we do not have a p+p reference

STAR

Suppression of high p_T

'Suppression' $\equiv R_{CP} < 1$ 'Quenching' \equiv loss of energy for high momentum particles

STAR: Phys. Rev. Lett. 91, 172302 (2003)

high p_T charged hadrons are suppressed at $\sqrt{s_{NN}} = 200 \text{GeV}$

STAR: Phys. Rev. Lett. 91, 172302 (2003)

The 'Cronin Effect' is the experimentally observedenhancement of spectra in p+A collisions relativeto a p+p referencePRL 68, 452 (1992) Straub

Stephen Horvat

Quark Matter 2015, Kobe, Japan, 27 September 2015

STAR BES I Charged Hadron R_{CP}

• Enhancement effects compete against suppression effects concealing the turn off of QGP formation at low $\sqrt{s_{NN}}$

 Y(N_{part}) takes a projection at high-p_T of the numerator from R_{CP} and investigates its centrality dependence

- This method should increase sensitivity to suppression
- Provides possible evidence for where a QGP is formed

 $N_{coll} \equiv$ number of binary collisions (from Glauber MC)

If the "high- p_T " region scales with N_{coll} such that we can consider the Au+Au collision to be a linear superposition of p+p-like collisions then we would expect Y(N_{part}) to be flat at unity

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_{T}d\eta}\right)_{high-p_{T}bin}$$

If there are enhancement effects that grow stronger as you go more central then you would expect Y(N_{part}) to increase with N_{part}

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_{T}d\eta}\right)_{high-p_{T}bir}$$

 If the enhancement effects grow stronger as you go more central and then saturate then you would expect:

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_{T}d\eta}\right)_{high-p_{T}bin}$$

 Suppression that grows stronger as you go more central would give:

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_{T}d\eta}\right)_{high-p_{T}bin}$$

- Enhancement and suppression effects compete against each other
- Y(N_{part}) measures the net change in these as a function of centrality
- If enhancement grows faster initially but suppression effects become more dominant as you go more central (or enhancement effects become weaker) then there will be a turnover in Y(N_{part})
- The suppression is measured relative to a centrality that contains enhancement effects (Cronin, Radial Flow, etc.) rather than a p+p-like system

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_{T}d\eta}\right)_{high-p_{T}bin}$$

$Y(N_{part})$ 3.0 < p_T < 3.5 GeV/c

- Most central data are suppressed (turnover) for $\sqrt{s_{NN}} \ge 14.5 \text{ GeV}$
 - This does not rule out the formation of a QGP at lower energies than 14.5 GeV
- 7.7 and 11.5 GeV results increase monotonically
- 200 GeV results decrease monotonically

Error bands are correlated uncertainties

$Y(N_{part})$ 3.0 < p_T < 3.5 GeV/c

- Most central data are suppressed (turnover) for $\sqrt{s_{NN}} \ge 14.5 \text{ GeV}$
 - This does not rule out the formation of a QGP at lower energies than 14.5 GeV
- 7.7 and 11.5 GeV results increase monotonically
- 200 GeV results decrease monotonically

Error bands are correlated uncertainties

$Y(N_{part})$ 4.0 < p_T < 4.5 GeV/c

- Most central data are suppressed for $\sqrt{s_{NN}} \ge 14.5 \text{ GeV}$
- This method is sensitive to charged hadron suppression to a lower energy than previous techniques
 - To prove the suppression is due to quenching, possible contributions from hadronic energy loss and impact parameter dependent nPDFs need further investigation
- p+p and d+Au collisions for the BES will help

STAR

Conclusions

- Suggested QGP signatures
 - Some models suggest v₃²{2} as a signature for the formation of a low η/s partonic medium
 - Suppression measured by Y(N_{part}) may be due to in-medium energy loss
- Measurements
 - ➢ For sufficiently central collisions, v₃²{2} persists for $\sqrt{s_{NN}} ≥ 7.7 \text{ GeV}$ and Y(N_{part}) exhibits relative suppression for $\sqrt{s_{NN}} ≥ 14.5 \text{ GeV}$
 - For lower energy peripheral collisions these signatures are turned off

Stephen Horvat

Quark Matter 2015, Kobe, Japan, 27 September 2015

Stephen Horvat

Quark Matter 2015, Kobe, Japan, 27 September 2015