

The Ridge and Di-hadron Correlations from the Beam Energy Scan

Liao Song for the STAR Collaboration

University of Houston

29th September 2015

Di-hadron correlations and ridge

- ★ Different orders of flow harmonics extracted using di-hadron correlations. Two methods used: Fourier decomposition method and Gaussian fitting method.
- ★ Does the ridge survive in all centralities and collision energies in the BES?

STAR Collaboration, Phys.ReV.C80(2009)064912

ALICE Collaboration PLB 708.(2012)249-264

dv₁/dy of net proton in the BES

STAR Collaboration, Phys. Rev. Lett. 112 (2014) 162301

- ★ STAR observed double sign change for proton dv₁/dy Possible signature of 1st order phase transition and softening of the EOS.
- ★ Is there also evidence of this from higher order harmonics v_2 and v_3 ?
- ★ Auvinen and Petersen (PRC 88 (2013) 064908) suggested v₃ could be suppressed relative to v₂. Hadronic interactions could wash out the softening of the EOS for v₂, making v₃ more sensitive to the first order phase transition.

Data sets and event/track selection

Au+Au $\sqrt{s_{NN}}$ = 7.7 - 39 GeV

energy(GeV)	vertex z cut	No. Evt
7.7	±70cm	4M
11.5	±50cm	12M
14.5	±50cm	20M
19.6	±40cm	36M
27	±40cm	70M
39	±40cm	130M

Track cuts:

- ★ |η|<1</p>
- ★ 0.2<pT<2 GeV/c</p>
- ★ number of TPC hits>15
- ★ fitted hits/maximum possible hits>0.52
- ★ DCA<2 cm

TPC: the main detector used in the analysis

the STAR detector

Di-hadron correlations in BES energies

To quantify the ridge, we make a projection of $\Delta \Phi$ for large $\Delta \eta$.

$\Delta \Phi$ projection of di-hadron correlations star

Au+Au 39 GeV: 0-5%

- Near-side ridge persists down to the lowest energies for central collisions.
- Ridge subsides in peripheral collisions at the lowest energies.

Energy dependence of ridge harmonics STAR

Fourier decomposition method

2.76 TeV data from ALICE, Phys. Rev. Lett. 107, 032301 (2011)

Both $v_2{2}^2$ and $v_3{2}^2$ show monotonically increasing trends vs. the collision energy.

$v_3{2}^2/v_2{2}^2$ vs. energy

Fourier decomposition method

2.76 TeV data from ALICE, Phys. Rev. Lett. 107, 032301 (2011)

- ★ v₃{2}²/v₂{2}² in 0-5% central collisions shows a dip vs. beam energies. It is not seen in all more peripheral bins.
- Next slides will investigate v₃{2}² extracted from Gaussian fitting method.

Energy and $\Delta \eta$ dependence of $v_3 \{2\}^2$

Gaussian fitting method

The two component Gaussian fitting range covers $|\Delta\eta| < 2$. The wider Gaussian gives the dashed curve: $v_3 \{2\}^2$

- ★ v₃ {2}² persists down to lowest energies in central collisions.
- ★ At low energies, v₃ {2}² disappears in peripheral collisions.
- Consistent with the Fourier decomposition method shown earlier.

Energy dependence of $v_3 \{2\}^2$

Gaussian fitting method

2.76 TeV data from ALICE, Phys. Rev. Lett. 107, 032301 (2011)

Over the range $-2 < \Delta \eta < 2$. Short range HBT-like correlations removed

- ★ Strong v₃ {2}² even at lowest energies.
- ★ v₃ {2}² approximately constant from 7.7 to 19.6 GeV.
- ★ Large increase from RHIC to LHC.

Energy dependence of v_3 {2}²/ $n_{ch,PP}$

Gaussian fitting method

 $n_{ch,PP}=(2/N_{part})dN_{Ch}/d\eta$ is the multiplicity per participant pair, used as an estimation of the **density of the system**

- ★ Scaling v₃ {2}² by multiplicity reveals interesting trend.
- Minima are prominent for all centrality intervals up to 0-50% most central.
- Dips in dv₁/dy and v₃ {2}²/n_{ch,PP} occur around the same beam energy.

Quark Matter 2015

Summary

- Di-hadron correlations and anisotropic flow coefficients from Fourier decomposition method and Gaussian fitting method were presented. The two methods are consistent.
- ★ Ridge and v_3 {2}² persist to lowest beam energies for central Au+Au collisions and become zero for peripheral collisions at the lowest energies.
- ★ Minima observations:
 - Local minimum observed when v₃{2}² is scaled by v₂{2}² only in the 0-5% most central collisions;
 - Local minimum also observed when v₃{2}² is scaled by n_{ch,PP} for all centrality bins in the 50% most central collisions;
 - Both of these minima are in the range of 11.5 to 19.6 GeV in beam energy.

THANK YOU!

Backup

