Charge-dependent anisotropic flow in CutAu collisions

Takafumi Nifda for the STAR Collaboration Wayne State University

Azimuthal anisotropy Vn_{n}

- Anisotropies in momentum-space originate from anisotropies in initial geometry (including fluctuations)

Directed flow (v_{1}): sensitive to EoS and phase transition Elliptic(v2), Triangular(v3), \cdots : sensitive to η / s and initial fluctuations

Many experimental and theoretical studies so far

CutAu collisions

- Flexibility of RHIC
- Au+Au, Cu+Cu collisions
- d+Au, 3He+Au, p+A collisions @ 200 GeV
- U+U collisions @ 193 GeV
- Cu+Au collisions @ $200 \mathrm{GeV} \leftarrow$ this talk

CutAu collisions

- Flexibility of RHIC
- Au+Au, Cu+Cu collisions
- d+Au, 3He+Au, p+A collisions @ 200 GeV
- U+U collisions @ 193 GeV
- Cu+Au collisions @ $200 \mathrm{GeV} \leftarrow$ this talk

CutAu collisions

- Flexibility of RHIC
- Au+Au, Cu+Cu collisions
- d+Au, 3He+Au, p+A collisions @ 200 GeV
- U+U collisions @ 193 GeV
- Cu+Au collisions @ 200 GeV एthis talk
A. Iordanova, RHIC\&AGS2013

Asymmetric density profile Asymmetric pressure gradient

CutAu collisions

8 Flexibility of RHIC

- Au+Au, Cu+Cu collisions
- d+Au, ${ }^{3} \mathrm{He}+\mathrm{Au}, \mathrm{p}+\mathrm{A}$ collisions @ 200 GeV
- U+U collisions @ 193 GeV
- CutAu collisions @ $200 \mathrm{GeV} \leftarrow$ this talk
A. Iordanova, RHIC\&AGS2013

Asymmetric density proffle
 Asymmetric pressure gradient

CutAu collisions

- Flexibility of RHIC
- Au+Au, Cu+Cu collisions
- d+Au, 3He+Au, p+A collisions @ 200 GeV
- U+U collisions @ 193 GeV
- Cu+Au collisions @ $200 \mathrm{GeV} \leftarrow$ this talk
A. Iordanova, RHIC\&AGS2013

Asymmetric density profile Asymmetric pressure gradient

Dipole-like charge distribution by spectators

Why interesting?

- Sizable E-field pointing from Au to Cu, due to different number of protons in both spectators
A. Iordanova, RHIC\&AGS2013

Why interesting?

- Sizable E-field pointing from Au to Cu , due to different number of protons in both spectators
- Expect charge dependence of directed flow
- Electric conductivity of QGP (Y. Hirono et al., PRC90.021903)
- Sensitive to the quark/anti-quark creation time (V. Voronyuk et al., PRC90.064903)
- Understanding the time evolution of quark density is also important for theoretical prediction of CME/CMW

A. Iordanova, RHIC\&AGS2013

Why interesting?

- Sizable E-field pointing from Au to Cu, due to different number of protons in both spectators
B Expect charge dependence of directed flow
- Electric conductivity of QGP (Y. Hirono et al., PRC90.021903)
- Sensitive to the quark/anti-quark creation time (V. Voronyuk et al., PRC90.064903)
- Understanding the time evolution of quark density is also important for theoretical prediction of CME/CMW

Life time of E-field ($\sim 0.25 \mathrm{fm} / \mathrm{c}$)
PRC90.064903, Parton-Hadron String Dynamics

Solenoidal Tracker At RHIC (STAR)

Measurements of azimuthal anisotropies

* Event plane method
- Ψ_{1} determined by ZDC-SMD measuring spectator neutrons
- $\psi_{n}(n>1)$ determined by TPC(n-sub) and EEMC

$$
\begin{gathered}
v_{n}=\left\langle\cos \left[n\left(\phi-\Psi_{n}\right)\right]\right\rangle / \operatorname{Res}\left\{\Psi_{n}\right\} \\
\Psi_{n}=\frac{1}{n} \tan ^{-1}\left(Q_{n, y} / Q_{n, x}\right) \\
Q_{n, x}=\Sigma w_{i} \cos (n \phi) \\
Q_{n, y}=\Sigma w_{i} \sin (n \phi)
\end{gathered}
$$

- Scalar product method
- STAR, PRC66. 034904 (2002)
- $\mathrm{V}_{\mathrm{n}}(\mathrm{n}>1)$ using flow vectors determined by TPC-tracks in forward and backward region
- Systematic uncertainty

$$
v_{n}=\frac{\left\langle\vec{Q}_{n}^{F(B)} \cdot \vec{u}\right\rangle}{\sqrt{\left\langle\vec{Q}_{n}^{F} \cdot \vec{Q}_{n}^{B}\right\rangle}}
$$

- variation of track selection
- For v_{1}, EP resolutions from different 3-sub events
- For v_{n}, difference between TPC n-sub and EEMC

$\Psi_{1 \text { [Au-spectator\} }}$

$$
v_{1}^{\mathrm{even}}=\left\langle\cos \left(\phi-\Psi_{1}\right)\right\rangle
$$

- Sizable $\mathrm{v}_{1}{ }^{\text {even }}$ measured relative to $\Psi_{1}\{Z D C-S M D\}$ in Au-going side ($\Psi_{1}{ }^{\text {Au }}>0$) - Negative v_{1} in $\mathrm{p}_{\mathrm{T}}<1 \mathrm{GeV} / \mathrm{c}$: more low pt particles in Cu-side - Positive v_{1} in pт>1 $\mathrm{GeV} / \mathrm{c}$: more high рт particles in Au-side - V_{1} even become smaller in more peripheral collisions
V_{1} in Cu+Au is larger than that in Au+Au
- Asymmetric density causes sizable v_{1} (U. Heinz and P. Kolb, arXiv:nucl-th/0403044)

D Note: In A+A collisions, $\mathrm{v}_{1}{ }^{\text {even }}$ is only due to density fluctuations

STAR

Charge-dependent directed flow

Ψ_{1} \{Au-spectator\}

$\Rightarrow \Delta \mathrm{V}_{1}=\mathrm{V}_{1}\left(\mathrm{~h}^{+}\right)-\mathrm{V}_{1}\left(\mathrm{~h}^{-}\right)$, and $\mathrm{V}_{1} \sim 1 \%, \Delta \mathrm{v}_{1}<0.2 \%$

- $\Delta \mathrm{v}_{1}$ looks to be negative in $\mathrm{p}_{\mathrm{T}}<2 \mathrm{GeV} / \mathrm{c}$,
- similar p_{T} dependence to PHSD model (PRC90.064903), but smaller by a factor of 10
- Finite $\Delta \mathrm{v}_{1}$ indicates the existence of E-field
© Small $\Delta \mathrm{v}_{1}$ indicates the number of quarks at times earlier than the E-field life time(~0.25 fm/c) would be very small
๑ PHSD assumes all partons are present at early time and affected by the E-field

$\boldsymbol{\eta}$ dependence of \mathbf{v}_{1}

($\mathrm{V}_{1}{ }^{\text {even }}$ w.r.t to $\Psi_{1}\{Z D C-S M D\}$ in Au-going side defined as $\Psi_{1}{ }^{\mathrm{Au}}<0$

- Charge-difference can be seen in $-1<\eta<1$ and $1<\mathrm{p}_{\mathrm{T}}<2 \mathrm{GeV} / \mathrm{c}$
- Difference looks larger in Cu-going direction

How many quarks at initial state?

http://hepdata.cedar.ac.uk/

- Rough estimate from PDF
- Quark density in PDF \rightarrow Quarks at initial state
- Quarks + Gluons in PDF \rightarrow All quarks created
- Assuming gluons are converted to 2 quarks at final state

$$
x \sim \frac{p_{T}}{\sqrt{s}} e^{\eta}
$$

- $0.2<\mathrm{p}<1 \mathrm{GeV} / \mathrm{c},|\eta|<1, \sqrt{ } \mathrm{~s}=200 \mathrm{GeV} \rightarrow 4 \times 10^{-4}<\mathrm{x}<0.01$
- Initial quarks/All quarks created $\sim 15 \%$, which is close to 10% obtained from $\Delta v_{1}+$ PHSD model

Two wave of quark production

Suggest small fraction of initial quarks to all quarks!

Possible explanation?

- Two wave scenario of light quark production
- small fraction of quarks created at early time

Hisher-order flow

- Higher-order flow under the asymmetric pressure gradient - Any difference from symmetric collisions, especially in odd components?
- Good test of the hydrodynamic model which reasonably describes the symmetric collisions

STAR

Higher-order azimuthal anisotropy

V2 peaks at more central collisions ($\sim 30 \%$) than in Au+Au (40-50\%)

Hisher-order azimuthal anisotropy

- v2 peaks at more central collisions ($\sim 30 \%$) than in Au+Au (40-50\%)

STAR

Higher-order azimuthal anisotropy

- v2 peaks at more central collisions (~30\%) than in Au+Au (40-50\%)
- Stronger centrality dependence of v3 compared to Au+Au
- due to the intrinsic triangularity in addition to fluctuations?

Hisher-order azimuthal anisotropy

- v2 peaks at more central collisions ($\sim 30 \%$) than in Au+Au (40-50\%)
- Stronger centrality dependence of v3 compared to Au+Au
- due to the intrinsic triangularity in addition to fluctuations?

Hisher-order azimuthal anisotropy

- v2 peaks at more central collisions ($\sim 30 \%$) than in Au+Au (40-50\%)
\& Stronger centrality dependence of v3 compared to Au+Au
- due to the intrinsic triangularity in addition to fluctuations?

MC Glauber model

Higher-order azimuthal anisotropy

- v2 peaks at more central collisions ($\sim 30 \%$) than in Au+Au (40-50\%)
- Stronger centrality dependence of v3 compared to Au+Au
- due to the intrinsic triangularity in addition to fluctuations?
- Finite v4 is observed
- weaker centrality dependence than $\mathrm{Au}+\mathrm{Au}$
* No charge dependence for $\mathrm{V}_{\mathrm{n}}(\mathrm{n}>=2)$

Comparison with Hydro-model

- V2 and v3 are described well by e-b-e viscous hydrodynamic model - Bozek, PLB.717(2012)287
- The data are close to the model calculations with $\eta / s=0.08$ and 0.16
- $\mathrm{V}_{n}\{E P\}$ is in good agreement with $\mathrm{V}_{\mathrm{n}}\{\mathrm{SP}\}$ in more central collisions
- Difference in peripheral collisions due to different sensitivity to flow fluctuations (S. Voloshin et al., arXiv:0809.2949)

Identified Particle $\mathbf{v}_{\mathbf{n}}$

ק $\pi / \mathrm{K} / \mathrm{p}$ identification by TPC + TOF

- Mass ordering at low p_{1} for $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3} (effect of radial flow)
- Baryon/meson splitting at intermediate pт for v2 and v3

Analysis on charge-dependent v_{1}, especially for kaon, is ongoing!

Summary

- Charge-dependent directed flow in Cu+Au collisions
- Charge difference of v_{1} was observed, which is consistent with an existence of the initial electric field
- The fraction of initial (anti-)quarks could be constrained by the magnitude of $\Delta \mathrm{v}_{1}$
- Higher-order flow (v2-v4)
- v_{3} has a stronger centrality dependence than $\mathrm{Au}+\mathrm{Au}$, and v_{4} has a weaker centrality dependence than Au+Au
- PID vi, v2, and v3 have been presented

Thank you for your attention!

Back up

$\mathbf{V}_{1}{ }^{\text {odd }}$ in AutAu 200GeV

STAR, PRL 101.252301

- Small signal of v_{1} at mid-rapidity in Au+Au collisions

$$
v_{1}^{\mathrm{odd}}=\left\langle\operatorname{sgn}(\eta) \cos \left(\phi-\Psi_{1}\right)\right\rangle
$$

$\mathbf{v}_{1}{ }^{\text {even }}$ and $\mathbf{v}_{1}{ }^{\text {odd }}$ in $\mathrm{Pb}+\mathrm{Pb}$ 2.76 TeV

v_{1} in $\mathrm{Au}+\mathrm{Au}$ vs $\mathrm{Pb}+\mathrm{Pb}$
ALICE, PRL111.23202

Higher-order flow in AutAu

PHENIX, PRL 107.252301

E-b-e viscous hydrodynamics in Cu+Au

P. Bozek, PLB717(2012)287

$$
\begin{aligned}
& v_{1}^{\mathrm{even}}=\left\langle\cos \left(\phi-\Psi_{1}\right)\right\rangle \\
& v_{1}^{\mathrm{odd}}=\left\langle\operatorname{sgn}(\eta) \cos \left(\phi-\Psi_{1}\right)\right\rangle
\end{aligned}
$$

Initial spatial anisotropy CutAu vs AutAu

MC Glauber simulation

$$
\varepsilon_{n}=\frac{\left\langle r^{n} \cos \left[n\left(\phi-\Psi_{n}\right)\right]\right\rangle}{\left\langle r^{n}\right\rangle}
$$

$※ r^{3}$ weight for $n=1$

