

The XXVth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Measurements of Open Heavy Flavor Production in Semi-leptonic Channels at STAR

Xiaozhi Bai^{1,2} (for the STAR Collaboration)

1 Central China Normal University

2 University of Illinois at Chicago

Outline

- Motivation
- STAR and Data Analysis
- Non-Photonic Electron (NPE) Results
 - NPE in p+p collisions at $\sqrt{s}=200 \text{ GeV}$
 - R_{AA} in Au+Au and U+U collisions
 - Status of NPE analyses with the HFT
- Summary and Outlook

Motivation

Heavy Flavor Quarks

- Large masses, dominantly produced
 - in hard scatterings in the early stage
- Excellent probe for studying the QGP
- Non-Photonic Electrons (NPE)
 - Produced from semi-leptonic decays of open heavy flavor hadrons
 - A good proxy to measure heavy flavor quark production
 - Can be triggered online with high eff.

STAR Detector (2012)

Time Projection Chamber $|\eta| < 1.1, 0 \le \phi < 2\pi$ tracking, momentum electron ID through dE/dx

Time Of Flight $|\eta| < 0.9, 0 \le \phi < 2\pi$ electron ID for $p_T < 1.5$ GeV/c

Barrel EM Calorimeter $|\eta| < 1, 0 \le \phi < 2\pi$ electron ID for $p_T > 1.5$ GeV/c high p_T electron online trigger

Vertex Position Detector MinBias trigger

NPE yield after background correction: $N_{npe} = N_{inclusive} * purity - N_{photonic} / \varepsilon_{photonic} \begin{bmatrix} purity: purity of inclusive electron sample \\ \varepsilon_{photonic}: photonic electron reco. efficiency \end{bmatrix}$ NPE invariant cross section: $E \frac{d^{3}\sigma}{dp^{3}} = \frac{1}{L} \frac{1}{2\pi p_{T} dp_{T} dy} \frac{N_{npe}}{\varepsilon_{Total}} \qquad \varepsilon_{Total} = \begin{bmatrix} \varepsilon_{dEdx} \varepsilon_{EMC} \varepsilon_{Trg} \varepsilon_{Trk} & p_{T} > 1.5 \text{ GeV/c} \\ \varepsilon_{dEdx} \varepsilon_{TOF} \varepsilon_{Trk} & p_{T} < 1.5 \text{ GeV/c} \end{bmatrix}$

NPE in p+p@ $\sqrt{s=200 \text{ GeV}}$

Extend the p_T coverage to lower and higher values than previous STAR measurements with significantly better precision; Results confirm and constrain **FONLL** calculations!

Poster 0505 by X. Bai and 0567 by S. Zhang

R_{AA} in Au+Au@ $\sqrt{s_{NN}}$ =200 GeV

Significant suppression at $p_T>4$ GeV/c in the most central Au+Au collisions, and reduces gradually towards more peripheral collisions; Enhancement at low p_T across all centrality bins but with large systematic uncertainties.

Poster 0505 by X. Bai

STAR

12/16

[1]D. Kikola, G. Odyniec, R. Vogt, Phys. Rev. C 84, 054907 (2011)

Larger suppression of non-photonic electrons in uranium collisions is expected in comparison to gold nuclei at the same centrality class.

 R_{AA} in U+U@ $\sqrt{s_{NN}}$ =193 GeV

- By colliding uranium nuclei it is • possible to achieve up to 20% larger energy density than Au+Au collisions[1].
- Uranium nuclei have higher • number of nucleons compared to gold nuclei.

R_{AA} in U+U@ $\sqrt{s_{NN}}$ =193 GeV

U+U and AuAu use the same improved p+p reference

 R_{AA} in the most central 0-5% U+U collisions systematically lower than that in 0-5% Au+Au collisions, but still consistent within uncertainties.

Separate e_D and e_B with HFT

Precise measurements of charm and bottom quark production separately in heavy-ion collisions crucial for understanding parton energy loss mechanism. This becomes possible with the HFT.

9/29/2015

STAR

Simulation of e_D and e_B with HFT

- Photon conversion background can be significantly suppressed by requiring hits in the the first HFT PXL layer.
- Simulation with HFT for electrons decayed from D and B hadrons:
 - DCA distributions for D and B decayed electrons, and photonic electrons (PHE) are obtained from fast simulation using real detector resolutions from data
 - Pseudo data generated and fitted to D/B/PHE MC templates, with stat. uncertainty at $p_T=2-4$ GeV/c: $\delta D/D \sim 3\%$

 $\delta B/B \sim 12\%$

With full statistics of Run14+16 data, precise measurements are possible.

STAR

Summary and Outlook

- Production cross section in 200 GeV p+p collisions
 - measured as a function of p_T over a broad p_T range 0.3-12 GeV/c with significantly improved precision than previous measurements
 - confirm and constrain pQCD FONLL calculations
- R_{AA} in 200 GeV Au+Au collisions
 - strong suppression for $p_T>4$ GeV/c in central collisions, less towards more peripheral collisions.
 - Likely enhancement at low p_T in both central and peripheral collisions
- R_{AA} in 193 GeV 0-5% central U+U collisions
 - systematically lower than those in 0-5% central Au+Au collision but consistent within uncertainties.
- Separate measurements for D and B decayed electrons
 - become possible with the new HFT
 - analysis with Run14 Au+Au data in progress
 - precise results can be expected from STAR -> Stay tuned!