

Measurement of longitudinal decorrelation of anisotropic flow v₂ and v₃ in 200 GeV Au+Au collisions at STAR

Maowu Nie

For the STAR Collaboration Shanghai Institute of Applied Physics & Stony Brook University

Longitudinal dynamics in heavy-ion collisions

Evolution of the QGP in (3+1)D

STAR

Longitudinal dynamics in heavy-ion collisions

Evolution of the QGP in (3+1)D

Fluctuations in the overlapping region

Longitudinal dynamics in heavy-ion collisions

Evolution of the QGP in (3+1)D

Fluctuations in the overlapping region

Consequence:

 $V_n(\eta) = v_n(\eta) e^{in\Psi_n(\eta)}$

Asymmetry of a flow magnitude

Torque/twist of an event plane

2018/5/15

STAR

Flow decorrelation observables

Factorization ratio rn is constructed as a measure of the flow decorrelation

$$r_{n}(\eta) = \frac{\langle V_{n}(-\eta)V_{n}^{*}(\eta_{\mathrm{ref}})\rangle}{\langle V_{n}(-\eta)V_{n}^{*}(\eta_{\mathrm{ref}})\rangle}$$

$$= \frac{\langle v_{n}(-\eta)v_{n}(\eta_{\mathrm{ref}})\cos n(\Psi_{n}(-\eta) - \Psi_{n}(\eta_{\mathrm{ref}}))\rangle}{\langle v_{n}(-\eta)v_{n}(\eta_{\mathrm{ref}})\cos n(\Psi_{n}(-\eta) - \Psi_{n}(\eta_{\mathrm{ref}}))\rangle}$$

$$= \frac{\langle v_{n}(-\eta)v_{n}(\eta_{\mathrm{ref}})\cos n(\Psi_{n}(-\eta) - \Psi_{n}(\eta_{\mathrm{ref}}))\rangle}{\langle v_{n}(-\eta)v_{n}(\eta_{\mathrm{ref}})\cos n(\Psi_{n}(-\eta) - \Psi_{n}(\eta_{\mathrm{ref}}))\rangle}$$

 r_n measures relative fluctuation between v_n(-η) and v_n(η), and captures both the longitudinal flow asymmetry and the twist effect

2018/5/15

Energy dependence of r₂ at two LHC energies

ATLAS Collaboration, Eur. Phys. J. C (2018) 78:142

• From 5.02 TeV to 2.76 TeV, slightly stronger decorrelation is observed.

STAR

Why are measurements at RHIC important?

ATLAS Collaboration, Eur. Phys. J. C (2018) 78:142

Rapidity-dependent v₂(η) at RHIC energies

PHOBOS Collaboration, Phys. Rev. C 72, 051901(R) (2005)

- From 5.02 TeV to 2.76 TeV, slightly stronger decorrelation is observed.
- Dramatic decrease of v₂ with rapidity at RHIC energies

 strong
 longitudinal dynamics.

Expect an even stronger decorrelation at RHIC energies.

2018/5/15

The STAR detectors

A schematic diagram of the STAR detectors

Inner: 476 smaller cells Outer: 788 larger cells

- Forward Meson Spectrometer is an electromagnetic calorimeter.
- TPC acceptance : -1< η <1; FMS acceptance : 2.5< $\eta_{\rm ref}$ <4.
- TPC and FMS are used for this analysis, 2016 Au+Au data is used.

2018/5/15

FMS event-plane resolution

• FMS shows good 2nd- and 3rd-order event plane resolutions.

FMS as an event plane detector

FMS event-plane resolution

Comparison with the published results

- FMS shows good 2nd- and 3rd-order event plane resolutions.
- Both v_2 and v_3 are consistent with the published results from 200 GeV Au+Au collisions.

• $r_2(\eta)$ decreases linearly for the shown centralities.

• $r_3(\eta)$ decreases linearly for the shown centralities.

Centrality dependence of linear slope

r_n is parameterized with a linear function

- For r₂: decorrelation is weakest in mid-central collisions.
- For r₃: weak centrality dependence.

Centrality dependence of linear slope

\bullet r_n is parameterized with a linear function

- For r₂: decorrelation is weakest in mid-central collisions.
- For r₃: weak centrality dependence.
- r_3 slope is factor of ~4 larger than r_2 slope, the trend is similar to LHC results.

2018/5/15

• For r_2 : clear p_T dependence for central collisions.

2018/5/15

- For r_2 : clear p_T dependence for central collisions.
- Similar p⊤ dependence in central collisions at LHC energy.

2018/5/15

- For r_2 : clear p_T dependence for central collisions.
- Similar p_T dependence in central collisions at LHC energy.
- For r_3 : weak p_T dependence.

2018/5/15

- Short-range correlations are significantly suppressed.
- For longitudinal correlations, both r_2 and r_3 , show weak η_{ref} dependence.

2018/5/15

Comparison to the LHC results

- Significant energy dependence is observed.
- ~2 times stronger decorrelation effect than at the LHC energy 2.76 TeV.

+ r_2 as a function of scaled rapidity: η/y_{beam}

• Energy dependence remains after y_{beam} normalization, and changes with centrality. Non-trivial dynamics cannot be explained by simple beam rapidity scaling.

+ r_2 as a function of scaled rapidity: η/y_{beam}

- Energy dependence remains after y_{beam} normalization, and changes with centrality. Non-trivial dynamics cannot be explained by simple beam rapidity scaling.
- Ideal hydro calculation can roughly describe the LHC data, but overestimates the decorrelation effect at RHIC.

+ r_2 as a function of scaled rapidity: η/y_{beam}

- Energy dependence remains after y_{beam} normalization, and changes with centrality. Non-trivial dynamics cannot be explained by simple beam rapidity scaling.
- Ideal hydro calculation can roughly describe the LHC data, but overestimates the decorrelation effect at RHIC.
- Including a viscosity correction can better describe the RHIC data.

2018/5/15

r₃ as a function of scaled rapidity: η/y_{beam}

• Energy dependence remains after y_{beam} normalization, weak centrality changes.

r₃ as a function of scaled rapidity: η/y_{beam}

- Energy dependence remains after y_{beam} normalization, weak centrality changes.
- Ideal hydro still slightly overestimates the decorrelation effect at RHIC.

r₃ as a function of scaled rapidity: η/y_{beam}

- Energy dependence remains after y_{beam} normalization, weak centrality changes.
- Ideal hydro still slightly overestimates the decorrelation effect at RHIC.
- Viscosity correction estimates an even stronger v₃ decorrelation.

2018/5/15

STAR What about decorrelation at even lower energy?

Analysis of STAR data (2017 AuAu 54.4GeV data with ~800M min.bias events)

SM-AMPT parton-parton σ =3mb

- AMPT suggests even stronger decorrelation at lower energy.
- Future BES measurements will provide constraints on the initial and final conditions.

Summary

- First direct measurement of longitudinal flow decorrelation at RHIC.
 - r₂ shows non-monotonic centrality dependence; r₃ shows weak centrality dependence.
 - weak p⊤ dependence of vn decorrelation suggests this is a global property of the events.
 - v_n decorrelation is η_{ref} independent.
- Decorrelation is ×2 stronger than at LHC energies, cannot be explained by simple beam rapidity scaling.
- Comparison with the (3+1)D hydro calculations:
 - Ideal hydro tuned to LHC data overestimates the decorrelation at RHIC.
 - The viscosity correction leads to a weaker decorrelation for v₂ and stronger decorrelation for v₃.
- The decorrelation measurements at even lower energies are necessary.
- The results provide new constraints on both the initial state geometry and final state dynamics of heavy-ion collisions.

Backup

r₂ for different p_T ranges

ATLAS Collaboration, Eur. Phys. J. C (2018) 78:142

0.5

1

1.5

- A clear p⊤ dependence for central collisions.
- As centrality becomes more peripheral, r_2 becomes more p_T independent.
- Similar p⊤ dependence in central collisions is also observed at LHC energy.

2

r₃ for different p_T ranges

η_{ref} dependence of r_n

+ r_2 for different η_{ref} ranges

η_{ref} dependence of r_n

r₃ for different η_{ref} ranges

• For longitudinal correlations, r_3 shows weak η_{ref} dependence.

Comparison to the LHC results

+ Decorrelation of $v_2(\eta)$

$$r_n = 1 - 2F_n\eta$$

- Clearly energy dependence is observed.
- 5.02 TeV → 2.76 TeV → 200 GeV, decorrelation for v₂ gets stronger.
- ~2 times stronger decorrelation effect than at the LHC energy 2.76 TeV. 22